
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2006, Vol.35, No.1

PATTERN BASED GENERATION OF FULL-FLEDGED RELATIONAL
SCHEMAS FROM UML/OCL MODELS1

Andrius Armonas, Lina Nemuraitė
Kaunas University of Technology, Department of Information Systems

Studentų St. 50-308, LT-51368 Kaunas, Lithuania

Abstract. In this paper, we briefly describe currently used methods for generating relational database schemas,
their limitations and drawbacks, and propose a method which advances them by generating full-fledged relational
database schemas from a conceptual model. The proposed method consists of metamodel-based ant pattern-based
transformations. Principles of creating pattern-based transformations are defined for transformation of OCL
expressions to corresponding SQL code.

Keywords: UML, OCL, SQL, conceptual model, transformation, data model, relational schema generation.

1. Introduction

While new technologies come along every day, re-
lational database management systems still remain
widely used for storing and managing data in enter-
prise environment. Relational database management
technologies were highly refined through more than
30 years of development, but their full integration and
compliance with today’s software design processes is
still an issue. Only a few proprietary relational data-
base management systems offer tools for designing
and generating full-fledged relational database sche-
mas. The problem is that such tools use proprietary
design processes, which usually don’t conform to any
open standard and the code generated by these tools
cannot be reused across different relational database
management platforms, i.e. proprietary tool is desig-
ned to generate proprietary dialect of SQL code. In
order to migrate between different relational platforms
one has to switch from one proprietary design process
to another and learn new tools, having almost no
chances to reuse previously designed models. The
problem is even worse when migrating to new techno-
logies (e.g. from relational to object), because models
are designed exclusively for relational technology.

One of the ways to solve problems described
above is to use open standards such as OMG MDA
(Model Driven Architecture) throughout whole design
process. When using MDA, a considerable part of
models becomes platform and even technology
independent and that makes it easier to follow always-
changing information system creation technologies.

This paper describes a method for transforming MDA
platform independent models (PIM), extended with
OCL constraints, to platform specific models (PSM),
and principles of SQL 0 code generation from these
models. The proposed method is based on metamodel-
level transformations and pattern-based transforma-
tions which supplement each other during RDB code
generation process. The proposed method enables
generating code from PIM models to different plat-
forms, including SQL code for relational databases.

2. Advantages of generation of relational
database schemas from UML models with
OCL constraints

Object oriented design processes 0, 0 are
expanding more and more every day, though the most
of database management systems remain relational. It
means object oriented processes must support deve-
lopment of software fully sustained by relational data-
base technology.

A lot of authors 0, 0, 0, 0, 0, 0 propose methods for
transforming object models to relational database
schemas. Most of these transformations are simple
class-to-table mappings taking into account only
attributes and foreign keys. The result of such
transformations is far from full use of features of
relational databases. While some authors offer ideas to
generate views and stored procedures, the biggest
problem is that there is no comprehensive set of trans-

1 The work is supported by Lithuanian State Science and Studies Foundation according to Eureka programme project

„IT-Europe” (Reg. No 3473)

27

A. Armonas, L. Nemuraitė

formations to generate referential integrity constraints,
assertions, views, stored procedures and triggers.

A well-known method to generate relational sche-
mas from UML 0, 0 class diagrams is defined in
proprietary “UML Profile for Database Design” 0
models created by Rational. Using these models is a
multi-step process, which transforms UML models to
intermediate models and generates SQL code from
them. It is important to note that after generating
intermediate models a designer must extend them with
relational database concepts such as stored procedures
and triggers (by hand) and only then he or she can
generate relational schemas. If designer does not
extend intermediate models, the transformation pro-
cess generates simple schemas without views, triggers
and stored procedures. After extending intermediate
models with a dialect of SQL and with non-standard
stored procedures they get relational specific and even
more – platform specific.

Storing business rules in database schemas (as
triggers and assertions) solves some of software code
overhead problems and guarantees that various pieces
of client software using the database will operate on
the same business rules, i.e. integrity rules. It is pos-
sible to use UML diagrams with OCL (Object Const-
raint Language) 0 constraints for generation of such
integrity rules. UML is a widely used open standard
which can be used in object oriented software deve-
lopment processes and wide range CASE tools sup-
port it. OCL, which is a part of UML, is used to
precisely specify integrity rules by defining them as
object invariants. OCL navigation-oriented methodo-
logy has much in common with concepts of relational
queries. Most of today’s relational database manage-
ment systems have their own languages or dialects for
specifying stored procedures, triggers ant assertions
(though SQL:2003 0 standard describes the standard
language). Using OCL it is possible to specify
platform independent integrity constraints and trans-
form them to platform specific (e.g. relational)
integrity constraints on demand.

Specifying integrity constraints with OCL makes it
possible to automatically generate SQL code and have
precise models, which are platform independent.

3. Main problems of UML/OCL-to-SQL
transformations

Three issues are always considered when gene-
rating SQL code from UML with OCL constraints:
generation of integrity constraints, views and stored
procedures. Generation of these database concepts is a
complex process, which is often ambiguous, incomp-
lete, and various authors differently approach it. The
following technical problems can be discovered in the
field:
• Simple OCL types (real, integer, etc.) are directly

transformed to SQL data types. Though problems
occur when there are no direct corresponding

types in SQL and vice versa (e.g. SQL type
INTERVAL).

• Transformations of OCL invariants to SQL integ-
rity constraints are described by many authors.
Most of them propose methods for transforming
OCL invariants to triggers. As stated earlier, there
is a big lack of deep analysis of complex situa-
tions. For example, combining OCL “derive”,
“union” and “iterate” expressions often leads to
ambiguity when generating SQL code, because
there is more than one way of dealing with such
situations, which depends on the whole transfor-
mation process.

• Simple class-to-table transformation is fairly ob-
vious. But there are problems caused by incompa-
tibility of object and relational models. Relational
paradigm is based on mathematical principles
(sets) while object technology arose from engi-
neering practice. Having different origins, these
two different technologies make the identification
of an object conceptually different. After trans-
forming object models to relational, the object is
often identified by several primary keys on rela-
tional side. This means that clear rules must be
defined to deal with object identification ambi-
guity when transforming between the two tech-
nologies.

• The constraints usually are not bound by one ob-
ject. The navigation through associations makes it
possible to specify all model constraints. These
constraints become queries and sub queries after
transforming them to SQL. The resulting sub
queries usually are very complex and inefficient.

• Transforming some OCL constructs as iterate
expressions to equivalent SQL code is still a big
issue.

• Some of OCL expressions are too complex in
comparison to equivalent SQL code.

The field of generating views has its own problems:
• Methods for defining views in UML models are

usually complex and not generalized enough for
complex situations.

• There are no clear rules for dealing with aggre-
gates, group constructs, sub queries and union
statements.

Technically it is possible to generate SQL const-
raints, views and server procedures from UML with
OCL. The main problem is that there is no single
unambiguous methodology for doing that.

This paper describes two methods supplementing
each other for generation of relational database sche-
mas: metamodel-based transformations and pattern-
based transformations. It will be focused on pattern-
based transformations and one of the main require-
ments for these transformations − to fit them into
MDA principles. It means that created UML/OCL
models must be platform independent and might be

28

Pattern Based Generation of Full-Fledged Relational Schemas from UML/OCL Models

reused for generation of code for different techno-
logies.

4. Generating relational database schemas
from UML/OCL models

Comparison of currently used methods for relatio-
nal database schema generation and suggested method
is depicted in Figure 1.

On the left, the method of Rational Company is
presented that uses the “UML Profile for Database
Design” models. When using this method, firstly
UML class diagrams are created. After that, they are
transformed to specialized data models (“Conceptual
Current To Data Model” package in Figure 1). When
software designer extends these models with server
procedures and triggers, the RDB schema can be gene-
rated („Data Model To Relational“ package in Figure

1). It is important to note that “UML Profile for Data-
base Design” models contain fragments of SQL or
other language (like PL/SQL). Such models are bound
to concrete platform and generate non-standard SQL
code. Besides that, they are used only in Rational
products and are not recognized as OMG standards.

The proposed method is represented on the right in
Figure 1. Like in Rational models, firstly UML class
diagrams are created. Though instead of using “UML
Profile for Database Design” CWM 0 relational
models are used as platform specific (intermediate)
models. Transformation process consists of meta-
model-based and pattern-based transformations. Meta-
model-based transformations are exomorphic (also
known as horizontal), performed between two distinct
metamodels. These transformations are used for trans-
forming platform independent models to platform
specific models.

UML
Metamodel

UML Profi le for
Databases (Rational)

Conceptual Current To
Data Model (Rational)

Data Model To
Relational (Rational)

UML
Metamodel

Conceptual Proposed Relational (CWM)

Metamodel
Transformations

Pattern-based
Transformations

Conceptual
Current To PSM

PSM To Relational
(Metamodel-Based)

PIM To Relational
(Pattern-Based)

Conceptual Current

OCL

Figure 1. Currently used methods and proposed method for transforming UML/OCL to relational schemas

Classif ier

UML Metamodel
Element

CWM Relational
Metamodel Element

UMLToRelation
al Map

0..n1 0..n1 10..n 10..n

Source language Set of transf ormation rules Destination language

Class

DataTy pe

Set

Ty ped Feature

AssociationEnd

Association

Attribute

Operation

Column

Key Table

ForeignKey

SQLSimple
Ty pe

SQLDataTy pe

Figure 2. Metamodel level transformation using transformation rule set

Metamodel-based transformations map source mo-
del elements to target model elements. The simplest
way to do this is to map source model element meta-
class to target model element meta-class. Such map-
pings are specified using transformation languages.
OMG has issued an RFP for such transformation
language (MOF 2.0 Query/Views/Transformations
RFP, ad/2002-04-10). One of proposed languages is
TRL (Transformation Rule Language, OMG docu-
ment ad/2003-08-05). TRL enables querying models
and specifying transformations for metamodels based

on MOF 2.0. All OCL 2.0 operations are available in
TRL, because TRL is an extension of OCL. In Figure
2, the source and target metamodel elements are
represented; the metamodel-based transformation rule
set is used for transforming between two metamodels.

After metamodel-based transformations the pat-
tern-based transformations are performed. Usually
they take place when metamodel-based transforma-
tions cannot be performed. The pattern-based trans-
formations are typically used for transformation of
OCL constraints. For example, for generating views, it

29

30

is possible to use OCL “derive” expressions. These
expressions are transformed to SQL constructs using
pattern-based transformations.

The idea of using pattern-based transformations is
as follows: after transforming OCL expressions to
object diagrams, the latter are transformed to SQL or
stored procedure code. Objects of generated object
diagrams are instances of MOF, representing elements
of UML and OCL metamodels. Parts of object dia-
grams, which can be transformed to SQL or stored
procedure code are mapped to these code blocks. Such
mappings are called patterns. When generating full
SQL or stored procedure code from the object dia-
gram, patterns are combined and full-featured SQL
can be generated. In the next section, the principles of
creating patterns will be defined.

5. Principles of creating pattern-based
transformations

We have taken the production information system
model from 0 to demonstrate transformation of
UML/OCL models to SQL code. PIM and PSM
models are depicted in Figure 3 and Figure 4, respec-
tively.

The PIM model depicted in Figure 3 is platform
independent and it is not limited to generation of re-
lational schemas. For denoting primary identification
of object, we use stereotype {P}, and stereotype {U}
for denoting uniqueness of an attribute. Other
stereotypes like referential constraints on attributes are
explained in 0. The PSM model depicted in Figure 4 is
dedicated explicitly for generation of relational

schemas. The PSM model is created by using meta-
model-based transformations (transforming UML PIM
level models to CWM relational models). They trans-
form classes (and association classes) to relational
tables, which are depicted as classes with stereotype
Table, associations (including the ones having the
association classes) to foreign keys, UML attributes to
relational table columns. It also includes generation of
foreign key columns, simple and complex data type
transformations. Essential metamodel-based transfor-
mations are described in 0. After metamodel-based
transformations, pattern-based transformations are
performed. These include generation of constraints for
tables from OCL invariants, generation of views from
UML/OCL models and generation of server proce-
dures from OCL expressions.

In this section, we will show principles of how
pattern-based transformation should be defined and
performed. The result of performing such transforma-
tion will be also discussed.

OCL constraints for production information system
are defined in Table 1.

To demonstrate the process of how OCL
constraints defined in Table 1 can be transformed to
SQL code, we will take getPlannedAmount()
operation. Part of it is transformed into object diagram
which is depicted in Figure 5. The object diagram is
based on UML 2.0 and OCL 2.0 metamodels. The
following part of getPlannedAmount() is depicted in
Figure 5:

self.plan->collect(
 plan:Plan | plan.amount)

Person
empNumber : String

OperationType
name {U} : String
time : Integer
rate : Real
Text : String

Product
code {P} : String
price : Real
description : String

getPlannedAmount()

Manager
ProductOperation

seqNumber {P} : Integer

0..n

1

0..n

1
R4

0..n

1

0..n

1
R9

Employee0..n1 0..n
+man
1

Plan
fromDate : String
toDate : String
amount : Integer
code {R3, P} : String

0..n

1

0..n

1
R3

Task
fromDatePlanned : String
toDatePlanned : String
fromDateActual : String
toDateActual : String
taskMark : String

afterClosure()

0..n

1

0..n

1

R5

0..n

1

+performed
0..n

+performer
1

0..n

1

+inspected
0..n

+inspector

1

0..1

0..1

0..1

{R5+R9, acyclic} +after

0..1

0..n

0..1

0..n

+plan
0..1

R7

Production
fromDate : String
toDate : String
amount : Integer
code {R2, P} : String

0..1

0..1

+prod 0..1

+plan 0..1

R8

0..n

1

0..n

1

R2

0..n 0..10..n
+prod

0..1R6
{R7 + R8}

Figure 3. Conceptual model of production information system (PIM)

A. Armonas, L. Nemuraitė

31

OperationType
OperationTypeID {P} : Integer
name {U} : String
time : Integer
rate : Real
Text : String

<<Table>>
Product

code {P} : String
price : Real
description : String

getPlannedAmount()

<<Table>>

ProductOperation
seqNumber {P} : Integer
OperationTypeID : Integer
code : String

<<Table>>
0..n

1

0..n

1

0..n

1

0..n

1

Plan
PlanID {P} : Integer
code : String
fromDate : String
toDate : String
amount : Integer

<<Table>>
0..n

1

0..n

1

Production
ProductionID {P} : Integer
code : String
PlanID : Integer
fromDate : String
toDate : String
amount : Integer

<<Table>>
0..1

0..1

0..1

0..1

0..n

1

0..n

1

Task
TaskID {P} : Integer
seqNumber : Integer
PlanID : Integer
ProductionID : Integer
inspector : Integer
performer : Integer
after : Integer
fromDatePlanned : String
toDatePlanned : String
fromDateActual : String
toDateActual : String
taskMark : String

afterClosure()

<<Table>>
0..n

1

0..n

1

0..1

0..1

0..1

0..1

0..n

0..1

0..n

0..1

0..n 0..10..n 0..1

Manager
ManagerID {P} : Integer
PersonID : Integer

<<Table>>
Employee

EmployeeID {P} : Integer
PersonID : Integer

<<Table>>

0..n1 0..n1

0..n

1

0..n

1

0..n

1

0..n

1

Person
PersonID {P} : Integer
empNumber : String

<<Table>>

0..1

1

0..1

1

0..1

1

0..1

1

Figure 4. Intermediate (relational technology specific) model of production information system

Table 1. OCL constraints for PIM class diagram of production information system

Natural language description OCL constraint
There must be defined at least one of
attributes fromDatePlanned,
toDatePlanned, fromDateActual,
toDateActual in class Task

context Task inv datesDefined:
self.fromDatePlanned.oclIsKindOf(OclVoid) = false or
self.toDatePlanned.oclIsKindOf(OclVoid) = false or
self.fromDateActual.oclIsKindOf(OclVoid) = false or
self.toDateActual.oclIsKindOf(OclVoid) = false

If production tasks are planned, then
instances of class Task having
associations R7 and R8 also have
association R6

context Task
inv certainlyPlanned:
if self.prod->notEmpty() and self.prod.plan -> notEmpty()
then self.plan = self.prod.plan
endif

Tasks do not repeat in task order of one
production plan

context Task::afterClosure(t: Task) : Set(Task)
post: result = t.after->iterate (p : Task;
 acc : Set(Task) = t.after | acc ->
 if t.after->notEmpty() then
 if acc.includes(t) then
 acc
 else
 acc.union(t.afterClosure())
 endif
 endif)

context Task inv:
not self.afterClosure(self)->includes(self)

Task is performed by performer and
checked by inspector. Performer and
inspector cannot be the same person.

context Task
inv diffPersons:
 not(self.performer = self.inspector)

Operation getPlannedAmount gets
amounts of production planned to
produce.

context Product::getPlannedAmount() : Integer
post:
result = self.plan->collect(plan:Plan | plan.amount)->sum()

Pattern Based Generation of Full-Fledged Relational Schemas from UML/OCL Models

: AssociationEndCallExp

referredAssociationEnd

varName = 'self'
: VariableDeclaration

varName = 'p'
: VariableDeclaration

: OperationcollectOp

: OperationCallExp

: AttributeCallExp

: AssociationEnd : AssociationEnd

name = 'Product'
: Classifier

name = 'Amount'
: Attribute

referredOperation

navigationSource

referredVariable referredVariable

referredAttribute

name = 'Plan'
: Classifier

: VariableExp : VariableExp

arguments

type

source

type

sourcesource

Figure 5. Object diagram which corresponds to getPlannedAmount() operation

Pattern-based transformations are realized by com-
bining patterns. Every object, instantiated from a sub-
class of OclExpression, which is not subclassed any-
more, has a corresponding pattern (pattern is a rule
which maps instances of OclExpression subclasses to
SQL code). These subclasses of OclExpressions are
linked through associations between themselves. Ac-
cording to these associations it is possible to combine
patterns, which are bound to the linked OclExpres-
sions, and generate SQL code from the combined
patterns.

In Figure 5, four subtypes of OclExpression can be
seen: OperationCallExp, AssociationEndCallExp,
AttributeCallExp and VariableExp.

Instance of VariableExp expression is linked
through association to instance of VariableDeclaration
and the latter is linked to a class Product. These
objects can be mapped to the following SQL code:

SELECT * FROM $(ClassName)

or we can use simply:
$(ClassName)

When traversing object diagram and generating
SQL code, variable $(ClassName) must be substituted
with the name of class, which is a type of the variable
we are referring to. We will refer to described
mapping as “PatternVariableExp”. This pattern takes
“self” and replaces it with string “Product” in the
getPlannedAmount() operation.

Instance of AssociationEndCallExp corresponds to
expression “self.plan”. It can be seen that instance of
AssociationEndCallExp has three association ends:

source (“self”), referred association end (“plan”) and
navigation source (“product”). Association end
“source” is instance of VariableExp, which has been
already described, and it corresponds to pattern
“PatternVariableExp”. Referred association end will
be used to refer to destination table (we will declare it
as variable $TO in SQL template) and navigation
source end will be used to refer to source table (we
will declare it as variable $FROM in SQL template).
We may associate instance of AssociationEndCallExp
to the following SQL template (this pattern will be
called “PatternAssociationEndCallExp”):

SELECT TO.*
FROM ($(PatternVariableExp)) AS $(FROM)
INNER JOIN $(TO) ON
 $(FROM).$(FROM)ID=$(TO).$(TO)ID

Variable $(PatternVariableExp) is substituted with
parsed value of pattern “PatternVariableExp”, which is
string “Product”. If there were some kind of expres-
sion “self.assoc1.assoc2.plan”, then $(PatternVariable
Exp) would have been replaced with some select and
subselect queries. We use expressions $(FROM)ID
and $(TO)ID to refer to primary keys of tables joined.
For the object diagram depicted in Figure 5, pattern
“PatternAssociationEndCallExp” is parsed to the
following statement:

SELECT TO.*
FROM (Product) AS Product
INNER JOIN Plan ON
 Product.ProductID=Plan.PlanID

Expression AttributeCallExp evaluates to the value
of the attribute. It has two associations to the source of
expression whose attribute will be evaluated. This
means that associated pattern will have two

32

A. Armonas, L. Nemuraitė

33

parameters: one specifying source of records
($(Source)) and another specifying name of attribute
($(Attr)) to select from the source. Expression
AttributeCallExp can be associated to the following
pattern (“PatternAttributeCallExp”):

SELECT $(Attr), SourceAlias.*
FROM ($(Source)) SourceAlias

Parameters of this pattern for object diagram in
Figure 5 are: “Amount” for $(Attr) and $(Source)
which is left for substitution later (AttributeCallExp
depends on OperationCallExp). In such manner,
pattern for AttributeCallExp gets the following form
in example:

SELECT Amount, SourceAlias.*
FROM $(Source) SourceAlias

Expression OperationCallExp combines the
previously defined patterns. The “collect” operation is
related to relational “project” operation. It will
combine patterns “PatternAttributeCallExp” and
“PatternAssociationEndCallExp”, i.e. “Pattern-
AssociationEndCallExp” will be a parameter to
pattern of AttributeCallExp expression. It can be
denoted as follows:

PatternAttributeCallExp
(Source = PatternAssociationEndCallExp)

Variable $(Source) is replaced with value of parsed
pattern “PatternAssociationEndCallExp” in pattern
“PatternAttributeCallExp”:

SELECT Amount, SourceAlias.*
FROM (
 SELECT TO.*
 FROM (Product) AS Product
 INNER JOIN Plan ON
 $Product.ProductID=$Plan.PlanID
) SourceAlias

Using principles described above, the required
patterns can be defined for OCL expressions for
transforming them to SQL code.

6. Conclusions

Precise conceptual models may be described in
UML using OCL constraints. But such models are not
used for generating code in practise. A lot of tools can
generate relational database schemas, but constraints
are usually specified in platform- dependent models
and are available only for specific platform or SQL
dialect of target database.

In this paper we have described principles of ge-
nerating full-fledged relational schemas from concep-
tual model with conceptual constraints. Such models
are not limited to only generating relational schemas –
OCL constraints are accessible by programmers and
code generators that get aware about constraints
implemented in database.

 The proposed method is based on MDA principles
and consists of UML metamodel-based transforma-
tions and pattern-based transformations.

References
 [1] D.H. Akehurst, B. Bordbar. On Querying UML data

models with OCL. UML 2001: The Unified Modeling
Language, Modeling Languages, Concepts, and Tools,
4th International Conference, Toronto, Canada, Octo-
ber 1-5, LNSC 2185, 2001.

 [2] S. Alagic, P.A. Bernstein. A Model Theory for Ge-
neric Schema Management. Lecture Notes in
Computer Science, Vol.2397, Springer Verlag, 2002,
228-246.

 [3] H. Balsters. Derived Classes as a Basis for Views in
UML/OCL Data Models. University of Groningen,
Report, No.02A47, 2003.

 [4] Common Warehouse Metamodel (CWM) specifica-
tion. OMG document formal/03-03-02, 2003, internet
resource: <http://www.omg.org>.

 [5] B. Demuth, H. Hussmann. Using UML/OCL
Constraints for Relational Database Design. UML
1999, The Unified Modeling Language. Proc. 2nd
International Conference, Springer LNCS 1723, 1999,
598-613.

[6] M. Gogolla, A. Lindow. Transforming Data Models
with UML. Knowledge Transformation for the Seman-
tic Web, 2003, 18-33.

 [7] M. Gogolla, M. Richters. Expressing UML class
diagrams properties with OCL. Lecture Notes in
Computer Science, Vol.2263, 2002, 85-114.

 [8] I. Jacobson, G. Booch, J. Rumbaugh. The Unified
Modeling Language User Guide. Boston: Addison
Wesley, 2000.

 [9] A. Kleppe, J. Warmer, W. Bast. The Model Driven
Architecture: Practice and Promise. Addison Wesley,
Boston, 2003.

 [10] MDA Guide Version 1.0.1. OMG document omg/03-
06-01, 2003, internet resource: <http://www.omg.
org>.

 [11] E. Miliauskaite, L. Nemuraite. Representation of
integrity constraints in conceptual models. Information
technology and control. ISSN 1392-124X, Information
Technology And Control, Kaunas, Technologija, 2005,
Vol.34, No.4, 355 – 365.

 [12] E. Miliauskaite, L. Nemuraite. Taxonomy of
integrity constraints in conceptual models. P.Isaias et
all. (Eds.): Proceedings of the IADIS Virtual Multi
Conference On Computer Science and Information
Systems 2005, April 11-29, IADIS Press, ISBN: 972-
8939-00-0, 247-254.

 [13] E. Naiburg, R. Maksimchuk. UML for Database
Design. Addison Wesley, Boston, 2001.

 [14] SQL/Foundation (ISO-ANSI Working Draft) (ANSI
TC NCITS H2, ISO/IEC JTC 1/SC 32/WG 3), 2003.

 [15] UML 2.0 Infrastructure Specification. OMG document
ptc/03-09-15, 2003, internet resource: <http://www.
omg.org>.

 [16] UML 2.0 OCL Specification. OMG document ptc/03-
10-14, 2003, internet resource: <http://www.omg.
org>.

[17] UML 2.0 Superstructure Specification. OMG
document ptc/03-08-02, 2003, internet resource:
<http://www.omg.org>.

Received December 2005.

Pattern Based Generation of Full-Fledged Relational Schemas from UML/OCL Models

