
ISSN 1392 – 124X  INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.4  

ON THE USE OF SPACE-FILLING CURVES IN CHANGING  
IMAGE DIMENSIONALITY  

Jonas Valantinas 
Department of Applied Mathematics, Kaunas University of Technology 

Studentų St. 50-325c , LT-51368 Kaunas, Lithuania 

Abstract. The paper describes a new generalized approach (idea) to solving the image dimensionality change 
problem. The proposed idea employs continuous space-filling curves (Hilbert, Peano, etc.), characterized by self-
similar and self-avoiding geometrical construction. These curves, being applied to multi-dimensional images in the 
role of image scan trajectories, determine relatively high smoothness of generated one-dimensional image analogues. 

To illustrate practical applicability and usefulness of the developed approach, some interesting task-oriented digital 
image processing techniques are discussed in brief, namely: hyperbolic image filtering in spaces of different 
dimensionality and efficient encoding of multi-dimensional “silhouette” images in the one-dimensional space. 
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1. Indroduction 

One of the main problems in the graphical data 
processing area – the efficient encoding (compression) 
of digital images. Successful attempts to solve the 
problem lead, in many cases, to the higher data com-
pression ratios, to much better data transmission rates 
and to the more optimized use of data storage cells. 
Everybody, who is gone deep into the essence of the 
matter, is well aware that simultaneous improvement 
of the image compression effect (ratio) and the quality 
of a restored image (estimate) faces difficulties. In-
deed, higher image compression ratios worsen the 
quality of image estimates, various undesirable effects 
(block structure, artifacts around sharp edges, etc.) 
reveal themselves and, vice versa, many attempts to 
improve the quality of restored images lessen the 
image compression effect. 

Efficiency of a particular image processing (enco-
ding) technique, for the most part, depends on the 
following three factors: 
• the type of an image (binary images, grey-level 

images, colour images); 
• dimensionality of an image (one-dimensional 

images, two-dimensional images, three-
dimensional images); 

• smoothness of an image. 
 For instance, hyperbolic image filtering techniques 
are under the deep influence of image dimensionality, 
i.e., the greater the number of dimensions of an image, 
the better compression ratios, as well as quality of 
reconstructed images, are obtained [1, 2]. Block-

Truncation-Coding algorithms are very “sensitive” 
from the point of view of smoothness of an image, [3]. 
Productivity of fractal image coding procedures highly 
depends on the type and “fractal nature” of the image 
under processing, [4, 5, 6]. 

In the meanwhile, some algorithms are developed 
to process binary (“black-and-white”) images, whe-
reas others – to process grey-level (or, colour) images. 
Efficiency of the latter algorithms, as a rule, decreases 
considerably if one tries to apply them to images of 
another type. For instance, the JPEG Standard is high-
ly efficient when used to compress two-dimensional 
grey-level images, but is absolutely inapplicable to 
“black-and-white” images, [7]. No version of JPEG is 
made known for three-dimensional images either. 

Finally, there exist efficient specialized encoding 
procedures, oriented to process one-dimensional digi-
tal images (data sequences) and not fitted to use in a 
multi-dimensional case, and vice versa, [8]. So, rheto-
rically, why not to “move” the image under processing 
into another, more suitable, space preliminary? 

The latter circumstance (changing image dimen-
sionality) sometimes appears to be a right way out if 
someone makes his mind to increase efficiency and/or 
adaptability of a particular digital image processing 
technique. Unfortunately, investigations in the area are 
far from being advanced and need to be continued. 

Bearing all this in mind, a new generalized ap-
proach (idea) to solving the image dimensionality 
change problem has been developed. The idea is based 
on the direct use of space-filling curves of various 
degrees (Hilbert, Peano, etc., [9]). 
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To demonstrate vitality, practical applicability and 
usefulness of the proposed generalized image dimen-
sionality change approach, some new theoretical and 
experimental analysis results, associated with func-
tioning of hyperbolic image filters in spaces of diffe-
rent dimensionality, as well as with coding technology 
of multi-dimensional binary „silhouette“ images, are 
presented in the paper. 

In parallels, the basic concepts and ideas, that are 
needed to describe, state and solve the image 
dimensionality change problem, are introduced and 
explored in the sections below. 

2. The metric space of digital images, 
smoothness of an image 
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The (metric) formula is used every time when it is 
necessary to compare quality of a restored image 
against that of the original one. 

Thus,  is a finite metric space of d-di-
mensional digital images (at the n-th resolution level). 
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Let, now, [ , , be a dis-
crete d-dimensional spectrum (DCT, Walsh, etc., [10]) 
of the image [ . It is well known that 
the spectral coefficients Y  decrease in absolute 
value, as their serial numbers k (indices k ) 
increase, provided the basis vectors of the discrete 
transform in use are presented in a frequency order. 
Evidently, there exists a d-dimensional hyperbolic 
“surface” 
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The quantity α  (expression (2)), characterizing 

the shape of the hyperbolic “surface”, i.e., the rate of 
decay of spectral coefficients (high frequency 

components of the image), as their serial numbers 
increase, is assumed to be the smoothness parameter 
(level, class) of the image [ . This as-
sumption is intuitively understandable – the more 
intense manifestation of high frequency components 
in the discrete spectrum of the image, the more notice-
able changes of pixel intensity values (sharp edges) 
are detected in the image, [11]. 
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In what follows, we are to deal with digital images 
falling into the metric space (  (  ,log Nr

}3,2{∈r ), and no preliminary assertions will be made 
concerning their smoothness level. 

3. The notion of a space-filling curve 

Let us introduce the notion of a space-filling curve, 
using the terminology of iterated function systems 
(IFS), [12]. 

Suppose,  is a Euclidean metric space and 
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The metric space  together with a finite set 
of contractive affine transformations 
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Let us move the above affine transformations into 
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To motivate the development, we take an 
IFS{ , where all the affine transfor-

mations are similitudes of scaling factor 

},...,, ; 221 rωωωℜ

r1 , corres-
ponding to the collage in Figure 1. 
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Iterated function systems, acting in a three-dimen-
sional Euclidean space , are introduced in an 
analogous way. 
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Among the algorithms, applied to synthesizing 

attractors of IFS, we find the following ones – the de-
terministic algorithm, the random iteration algorithm 
and the escape time algorithm. The former two algo-
rithms, roughly speaking, are based on the definition 
of the attractor of an IFS, i.e., explore the fact that the 
set A (expression (3)) is an attractive fixed point for 

, [12]. The third (escape time) 
algorithm rests on the application of shift dynamical 
systems, [13].  
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Figure 1. The collage, obtained using a finite set of affine 
transformations (similitudes): (a) r = 2; (b) r = 3 

We shall comment the very first (deterministic) 
fractal synthesis algorithm in more detail, because it 
facilitates presentation and explanation of the notion 
of a space-filling curve, which, frankly speaking, is 
nothing but the attractor of a properly chosen IFS. 
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quadrant is entered only once (the traverse direction of 
the curve being fixed). 
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 , (the deterministic algorithm is in action!). 
So, the sequence of closed nonempty sets 

 is obtained. It is proved 
that the sequence converges to the attractor of the IFS 
in the Hausdorff metric, [12]. Consequently, for large 
values of n, the n-th term of the sequence  can be 
identified with the attractor of the IFS. 
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Now, consider a square region However, this is not quite what we want, because 
the connecting line segments, indicating the 
neighbourhood relation (i.e., how the curve leaves and 
enters the adjacent quadrants), must be introduced. 
Not going into technical details, we note that, after 
introduction of the said connecting line segments for 
each approximation  ( n ), the above con-
vergence process results in the so-called (continuous) 
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– the “support” for two-dimensional images, described 
at arbitrary finite resolutions, namely: rr × , 
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space-filling curve. Accordingly, each modified (sup-
plemented) approximation  ( n ) is called 
a (continuous) space-filling curve of the n-th degree. 

nA ,...}2 ,1{∈
The three-dimensional continuous space-filling 

curves can be introduced in, practically, the same way. 
A few examples of space-filling curves of various 

degrees are presented in Figures 2 – 4. 
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Figure 2. Hilbert space-filling curves of various degrees (d = 2, r = 2): (a) First degree Hilbert curve; 
(b) Second degree Hilbert curve; (c) Third degree Hilbert curve 

  

 

 

 
       (a) (b) (c) 

 

          

m2 

m1 

Figure 3. Peano space-filling curves of various degrees (d = 2, r = 3): (a) First degree Peano curve; 
(b) Second degree Peano curve; (c) Third degree Peano curve 
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Figure 4. Hilbert space-filling curves of various degrees (d = 3, r = 2): (a) First degree Hilbert curve; 
(b) Second degree Hilbert curve 

It goes without saying that the above space-filling 
curves can be successfully applied to scanning of 
multi-dimensional digital images, i.e., to generating of 
sufficiently “good” one-dimensional analogues (data 
sequences) for them. This intuitive assertion rests on 
the observation that the scan order, determined by the 
space-filling curve (Hilbert, Peano, etc.), reflects 
“geometry” of the image, i.e., nearby pixels in the 
multi-dimensional image go to nearby pixels in the 

ordering and vice versa. This fact ensures relatively 
high level of smoothness of obtainable image repre-
sentations (one-dimensional image analogues). 

To translate the above reasoning into reality, we 
need to have a means for the generation of successive 
index values for image elements (pixels), pretending 
to occupy their positions in one or another ordering 
(scan). Practically, a few approaches are worthy of 
attention and can be proposed, namely: the earlier 
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mentioned deterministic fractal synthesis algorithm, 
Lindermayer systems, specialized procedures, [12, 14, 
15]. But, implementation of the first two approaches 
involves some difficulties, associated with formation 
of line segments, connecting adjacent quadrants (co-
pies of a piecewise continuous space-filling curve of 
the first degree). In [15], a specialized recursive image 
dimensionality change procedure, developed exceptio-
nally for Hilbert space-filling curves (orderings), is 
presented. 
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Similar matrices can be constructed for all copies of 
the “seed”, comprising the space-filling curve of the 
second (or, higher) degree. Their internal structure is 
identical to that of the matrix T  (expression (5)). 
Say, for Hilbert curve of the second degree (Figure 2, 
b), we obtain four “seed” matrices of the second order: 
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and its rows specify increments of the (pixel) index 
values , as we “move” along the “seed” 
(along the first degree space-filling curve). 
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As it was mentioned above, to scan a multi-dimen-
sional image [  (i.e., image at the n-th 
resolution level; , ), the use 
should be made of the d-dimensional space-filling 
curve of the n-th degree. Since the latter curve com-
prises  copies (scaled at ratio 
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We have proved that any “seed” matrix of order n, 
i.e.,  ( i , ), can 

be computed using the first order “seed” matrix T  
and a particular subset of the set of transition matrices 
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Figure 5.The scheme of relationships between the “seed” matrices of various orders 

Based on this understanding, a new generalized 
image dimensionality change procedure (algorithm) 
has been developed and is presented below. The 
multi-dimensional image [  ( n)()]( nSmX d∈ rlog=  

 , ) is transformed into a 
one-dimensional data sequence (one-dimensional 
image) , using the space-
filling curve of the n-th degree. Numbering of image 
elements (pixels), as well as orientation of employed 
space-filling curves, is chosen in agreement with Fi-
gures 2 – 4. 

,N∈N }3,2{∈r

  )],([ hhV
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1  −dN

{∈d

..., ,1 ,0=

Algorithm /Changing image dimensionality/ 

1. Specify the first order “seed“ matrix  and 
the transmition matrices Q  ( i ) for the 

space-filling curve of the n-th degree in use;  

)1(
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2. Find the q-valued resolution of the decimal 
number i (expression 8), i.e., 

(

2

i
⋅ ; 

Take the “seed“ matrix T , which describes the scan 
trajectory (ordering) of the i-th quadrant of the image 

 under processing, i.e., 

)

⋅ . 

3. Scan the i-th quadrant of the image [X(m)], i.e., 
for all successive values of l (l = 0, 1,..., q -2), do: 
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5.1. Hyperbolic image filtering in spaces of 

different dimensionality 

The generalized hyperbolic image filtering idea 
can be introduced this way. Consider a d-dimensional 
grey-level digital image [ . Let 

 be its d-dimensional discrete spectrum. If, 
now,  is some a priori chosen integer 

, then for storing one must take 
only those spectral coefficients Y , whose serial 
numbers k (indices ) satisfy the condition - 

)()]( nSmX d∈

)(kX

)]([ kYX

M

1( dM≤
d

(< ))1 dN −

dkk  ..., ,1

dMk ⋅⋅...1 dk ≤  (here }1 ,max{ ikik = , i = 1,…, d). 
When reconstructing the initial image (obtaining its 
estimate )](~[X m ), the rest spectral coefficients (with 

dMk ⋅⋅...1 dk > ) are equated to zero, i.e., high fre-
quency components of the image at the decompression 
stage are ignored (compression effect!). Thus, the 
hyperbolic filtering idea leans upon the supposition 
that the human eye is less sensitive to changes in high 
frequencies than in lower ones. 

 ; )(:)]([ mXhV = 1: += hh . 
4. Let t ( }2,...,1 ,0{ −∈ n

1−< q
t ) be the minimal index 

such that  (Step 2). Then move to the (i+1)-st 
(adjacent) quadrant of the image [X(m)] (along the 
connecting line segment): 

it

( )
; )1,(),...,0,(( :   

 :,...,
)1()1(

1

1

11
−++=

==
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++
diTmiTm

mmm

t
tn

idt
tn
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d

tt

)(:)]([ mXhV = 1:;   += ii , 
and go to step 2. If 1−= qti , for all 2,...,1 ,0 −= nt , 
then go to step 5. 

5. (The end) One-dimensional analogue [V(h)] of 
the image [X(m)] is generated. 

The computational complexity of the proposed 
image dimensionality change algorithm can be simpli-
fied considerably by preliminary evaluation of “seed” 
matrices of all orders. Since many matrices repeat, we 
can perform appropriately organized grouping of 
“seed” matrices and employ them later on efficiently. 
For instance, there are only four distinct “seed” 
matrices for the two-dimensional space-filling Hilbert 
and Peano curves (Figures 2, 3), twelve distinct “seed” 
matrices for the three-dimensional space-filling 
Hilbert curve (Figure 4). 

The characteristic features of the hyperbolic image 
filters – their simplicity, easy realization, tolerable 
compression ratios (β = 5 – 20, for d = 2, and β = 20 – 
100, for d = 3). 

When performing hyperbolic filtering in spaces 
with varying dimensionality, the final result (compres-
sion ratio, quality of restored images) strongly 
depends on the image smoothness class in one or ano-
ther space. In the publication [2], special (theoretical) 
criteria, based on the image smoothness analysis 
results, have been introduced to pick up an optimal 
space for hyperbolic image filtering. In particular, it 
has been stated that hyperbolic filtering of the image 
[X(m)] in the space  is more efficient (image 

compression ratio being fixed!) than in , 
provided  

)(
1

1
d

d nS

)(
2

2
d

d nS

5. Task-oriented application of image 
dimensionality change procedures 

One of the most general leading principles, which 
are at the helm in drawing up digital image processing 
and analysis strategies, says - the digital image 
processing should always be performed in the task-
oriented image space, which either gives optimum to 
the objective function (final result), or facilitates the 
most rational use of a particular specialized image 
processing algorithm, acting in the chosen image 
space, [16]. )loglog(    )(

1221 dddd MM<αα ; 
The above principle can be translated into reality if 

and only if the digital image under processing 
 ( n ) allows repre-

sentations in other (neighbouring) image spaces 
 ( n ), i.e., if the 

following condition holds true - 1

)()]([ d
d nSmX ∈

)),(( ˆ
ˆ

δd
d nS d̂

}3,2,1{,N ∈∈ dd
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d∈

2 32 3 nn ⋅=⋅=⋅ . 

here: and  signify smoothness class of the 

image , presented in the image spaces 

 and , respectively;  and  
stand for the filtering levels in the latter spaces; 

1dα
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3,2,
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,1

)
2dn

1dM
2dM

∈dd . 
Rather interesting experimental results on this 

subject were obtained by Mantas Puida (Master of 
Science in Informatics, Kaunas University of Techno-
logy, [17]). For the efficiency analysis of hyperbolic 
image filters in spaces of different dimensionality, all 
necessary representations (analogues) of the image 
under processing were obtained using multi-dimen-
sional Hilbert space-filling curves of a prescribed 
degree. 

On the other hand, to find those representations 
(analogues of the image [ ), a particular scan 
trajectory (Hilbert, Peano, scanline ordering, etc.), that 
gives maximum to the image (analogue) smoothness 
parameter value in a newly chosen space, should be 
employed. 

)](mX

Some interesting developments in this field are 
presented briefly below. 
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In particular, it has been revealed that hyperbolic 
filtering of two-dimensional images in neighbouring 
image spaces, softens manifestation of the Gibb’s 

effect (so peculiar to JPEG), resulting from attempting 
to approximate square wave by a trigonometric 
polynomial (Figure 6). 

 
(a) 

 
(c) 

 
(b) 

 
(d) 

Figure 6. Hyperbolic image filtering in spaces of different dimensionality: (a) original image “Bird” 512x512; 
smoothness class 74.02 =α  (DCT); (b) the image estimate, resulting from hyperbolic filtering in the one-dimensional  

space ( ,57.01 =α  ,524271 =M 83.4)~,( == XXδδ

,129592 =M
; (c) the image estimate, resulting from hyperbolic filtering  

in the two-dimensional space ( δ = 4.29; Gibb’s effect is visual); (d) the image estimate,  
resulting from hyperbolic filtering in the three-dimensional space ( 75.03 =α , ,30993 =M  δ = 7.69); 

5.2. Efficient encoding of multi-dimensional binary 
„silhouette“ images 

Let , where , for all 

; , , , 
. Using the image dimensionality change 

procedure, the image  [  is moved into the 

image space , i.e. [  is replaced 
with its one-dimensional analogue (binary data se-
quence) [ . 

)()]([ nSmX d∈

 ..., ,1 ,0{= NI
}3 

),(( 1 dnS ⋅

1 ,0  )],( =hhV

}1 ,0{)( ∈mX
nrN = {∈r

)](mX
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dIm ∈
,2{∈d

}1−

(X

)δ

  ,..., N

,...}3,2

)]m

d

If the initial multi-dimensional binary image 
 is characterized as being “silhouette”, then 

employment of the space-filling curves of the n-th de-
gree (Hilbert, Peano) signifies that the size of 
monochrome blocks, comprising the generated binary 
data sequence (one-dimensional image) [ , are 
expected to be sufficiently large. This perception has 
gone as the underlying idea throughout the developed 
“silhouette” image encoding procedure, [15]. The 
embodied data compression principle rests on the 

successive elimination of monochrome blocks of 
maximal size from the image [ . To improve the 
overall performance of the procedure, the “enforced” 
enlargement of consecutively removable monochrome 
blocks is done. The latter circumstance makes the 
coding procedure lossy.  

)]([ mX

)](hV

)](hV

)](hVThe compressed version of [  consists of the 
appropriately made up information, concerning the 
size, contents and localization of all the eliminated 
blocks. 

Numerous experimental results showed that the 
image compression ratios achieved highly depend on 
the shape and localization of monochrome blocks in 
the “silhouette” image under processing. An obvious 
advantage of the approach – the presence of lossy 
encoding (Figure 7). 

As it can be seen (Figure 7), application of two-
dimensional space-filling Hilbert curves of the ninth 
degree (in the image dimensionality change process) 
gave much better results ( in terms of “bits-per-
pixel”), as compared with scanline ordering (left to 
right, top to bottom). 
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Figure 7. Efficient encoding of multi-dimensional binary “silhouette” images: (a) Image “Gun.bmp” 512x512 
(Lossless coding: Hilbert ordering – 0.039 bpp, scanline ordering – 0.066); (b) Image “Castle.bmp”  

512x512 (Lossless coding: Hilbert ordering – 0.107 bpp, scanline ordering – 0.133 bpp) 

6. Conclusion 

Changing image dimensionality appears to be an 
interesting, intrigue and perspective (from the practi-
cal point of view) idea. It can be successfully emp-
loyed every time when it is necessary to adapt one or 
another specialized image-processing technique to 
images of different dimensionality. The image dimen-
sionality change criteria, in general, may be very spe-
cific. But, if image processing is linked with efficient 
image encoding (compression), the only criterion – 
preservation of maximal smoothness of the image. 

The paper describes a generalized approach (pro-
cedure) to changing dimensionality of a multi-dimen-
sional image. The approach employs space-filling 
curves of various degrees (Hilbert, Peano, etc.), which 
reflect “geometry” of the image, i.e., nearby pixels in 
the image go to nearby pixels in the ordering. 

Indisputable advantage of the proposed image di-
mensionality change procedure (approach) – inva-
riance of all the intermediate steps with respect to the 
geometrical construction and size of a “seed” (space-
filling curve of the first degree), i.e., the idea can be 
easily put into practice, whatever the shape of the 
“seed” in use. 

Some areas of practical application of the 
developed image dimensionality change procedure are 

elucidated in the paper, namely: hyperbolic image fil-
tering in spaces of different dimensionality, efficient 
encoding of multi-dimensional binary “silhouette” 
images in the one-dimensional image space. 

Theoretical and experimental analysis results ob-
tained confirm that the use of task-oriented image 
dimensionality change procedures forms a new plat-
form for the development, adaptation and productive 
future analysis of mathematical digital image pro-
cessing (encoding, filtering, etc.) techniques.   
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