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Abstract. The rules of swarming intelligence can be applied to govern migration in the distributed genetic prog-
ramming (DGP) algorithm, but they require modifications. Initial rules are taken from the flocking algorithm and 
adapted for DGP. As the rule for the alignment of direction is completely discarded and the remaining rules operate on 
implicit data of subpopulation locations, the resulting joint search technique must be reevaluated. This article presents 
the pragmatic coupling of flocking and DGP algorithms. The experiment of visualizing the movement of DGP sub-
populations through the search space provides a graphic overview of the behavior of DGP subpopulations. The results 
confirm a typical influence of the modified flocking rules to the flockmates represented by the subpopulations. 

 
 

1. Indroduction 

Genetic programming (GP) is an evolutionary 
algorithm for automatic creation of computer prog-
rams. It allows getting the program to solve the given 
problem without specifying the algorithm itself. The 
roots of this automatic programming method lies in 
Darwinian natural selection and mimics the hypothesis 
of the evolution of living beings by the survival of the 
fittest. 

Historically the first thoughts of using evolution 
for artificial intelligence date back to year 1948, when 
Turing [1] described the genetic, or evolutionary, 
search as one of the approaches to the machine intelli-
gence. The foundation for GP were laid in 1975 by the 
research of cellular automates by Holland, that led to 
the formation of genetic algorithms (GA). Genetic 
programming emerged as the specification of GA that 
was suited to create the computer programs. While the 
first GP the papers of Smith report research in 1980 
and Cramer in 1985 [2], J.R. Koza is considered as the 
inventor of genetic programming due to his extensive 
work in this field in the nineties. GA and GP falls to 
the same group of evolutionary algorithms (EA), that 
are based on applying selection and reproduction to 
the set of individuals according to their performance. 
The evolutionary algorithms also contain such related 
artificial intelligence techniques as evolutionary prog-
ramming, evolution strategies and classifier systems. 

As suggested by A. H. Turing, search and optimi-
zation is the core of artificial intelligence. The task of 
finding the solution of the problem to the computer 
means literally finding the best solution of all possible 

solutions. There are numerous search methods and 
while are more general than others, there is no univer-
sal method for all occasions ("No Free Lunch" 
theorem [3]). An interesting example of the search 
technique that theoretically is of good in all domains 
is Levin search [4]. If some search algorithm finds the 
solution in O(f(n)) steps, it is proved that Levin search 
can solve the problem in at most O(f(n)) steps. The 
practical application of Levin search is hindered by 
the constant factor in O(f(n)) notation which becomes 
crucial for real life problems with enormous search 
spaces. 

The last years of GP research have brought some 
theoretical insight to the principals of the operation of 
genetic programming algorithm. The schemata theory 
existed since the early days of GA research and is as 
well applicable to GP. The substantial progress was 
made by exploring Markov chain models to describe 
processes of GP algorithm [5]. The GP theory research 
has revealed that GP is a more general search tech-
nique than GA, GA being the simpler case of genetic 
programming. 

2. Distributed GP 

The algorithms of evolutionary search depend on 
having the big population of possible solutions that 
covers as much of the problem search space as pos-
sible. The search space is defined at the start of search 
and in order to get the solution faster should be 
defined as small a possible. This is the task for the 
search algorithm programmer and selecting the right 
representation of the solution does it. In case of GP, 
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where solutions are usually represented as program 
parse trees, the most important to successful search are 
the selection of tree nodes and the initial/maximal tree 
sizes. The first one denotes the allowed terminal and 
functional items of the parse tree and define the 
abstraction level of the search. The second slices some 
finite region of the infinite search space that is 
expected to have the sought solution. The adaptive 
representation (e.g., Automatically Defined Functions) 
gives the GP algorithm the ability to manipulate the 
levels of abstraction during the execution. Such a 
technique helps to narrow the search space according 
to the results of the search and usually speed up the 
search [6]. 

Another way to accelerate search is the 
parallelization of GP algorithm. The biggest portion of 
computations is conducted independently for each 
member of the population of solutions, so GP 
algorithm can be easily adapted to parallel execution. 
A big number of potential solutions provide the 
opportunity to select the required level of parallelized 
nodes: from fine-grained, where each solution can be 
assigned to separate node, to several large subpopula-
tions. The empirical results show that coarse-grained 
division of the population to big almost independent 
subpopulations is the most beneficial: it minimizes the 
communication among computational nodes and mat-
ches the most popular architecture of (affordable) pa-
rallel systems. Moreover, such distribution finds a 
solution faster even if executed on a single non-
parallel machine. This coarse-grained paralellization is 
called the "island model" (by similarity to the evolu-
tion of individuals of the separated islands), or simply 
distributed genetic programming (DGP). The only 
thing that is added to standard GP is the migration of 
solutions among subpopulations. The migration adds 
new parameters for the customization of the algo-
rithm. As with any other configuration, changing the 
values of the migration parameters can lead either to 
improvement of deterioration of the search characte-
ristics. Besides the number of subpopulations, the 
main additional parameters of DGP are: 
1. migration frequency - how many generations are 

run between two subsequent migrations; 
2. migration rate - how many individuals migrate 

each time; 
3. migration topology - which subpopulations 

participate in the exchange. 
There are some issues that must as well be con-

sidered in the DGP implementation, though their con-
figuration is not as important as the three parameters 
of migration. The first one is selection of the indivi-
duals for migration. Basically, it may be left the same 
as the selection for the genetic operators (crossover, 
mutation and replication) since each subpopulation 
should use the information about the exploration of its 
search space domain and send good genetic samples to 
neighboring subpopulations. The other matter is the 
exchange type: copy, move or even some form of 
crossover of the emigrants. Either one of them is 

suitable as far as genetic material reaches the intended 
target. 

This article focuses on setting of the migration 
parameters of the DGP algorithm. The goal is to set 
migration in the way that the performance of the DGP 
algorithm is at least better than the one of the standard 
GP (best case scenario is achieving the results com-
parable with the human optimized migration parame-
ters) while keeping the need to set parameters by hand 
at the minimal level. In other words, the parameters 
should be set dynamically during run time. 

3. Swarm intelligence 

Swarm intelligence (SI) is another search and opti-
mization technique that comes from the field of 
biology. SI system consists of the number of indepen-
dent agents that interact with each other. There is no 
central control for the behavior of the agents. The 
emerging behavior of the whole system typically is 
predictable only in the short term. Each agent has the 
common goal (e.g. finding food in natural environ-
ment, or optimizing some values in the search task) as 
well as the responsibility to observe the conduct of 
neighboring agents. If the agents dispose the informa-
tion about global status of the whole group (e.g. the 
optimal spot in the search space so far) depends on the 
implementation of SI. The best known SI methods are 
Particle Swarm Optimization (PSO) [7] and Ant 
Colony Optimization (ACO) [8]. 

One can notice some similarity between SI and 
DGP: both have a number of interacting entities that 
explore a problem search space. For DGP this entity, 
or agent, is a subpopulation that covers a portion of 
common search space and communicates with neigh-
boring subpopulations. Application of the SI rules to 
the DGP algorithm gives the opportunity to influence 
the movement of the subpopulations through the 
search space. The rules are adapted from one of the 
earliest successful implementations of the SI - 
flocking. Flocking can be described as a case of PSO 
without the knowledge of the global results (that is, 
each agent communicates only with its neighbors). 
The flock members follow three main rules [9]: 
1. Separation – avoiding crowding/collisions with 

neighbors; 
2. Alignment – moving to the same direction as 

most of the neighbors; 
3. Cohesion – moving to the average position of 

neighbors. 
These rules can be summarized as the desire of 

each agent to keep a constant formation, or grid, of the 
whole flock. Since rule 1 and rules 2+3 drive the agent 
to the opposite directions, it stays in more or less 
stable position to its neighbors while moving through 
the search space. 
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4. Adapting flocking rules to DGP  
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 Figure 1 shows an overview of the DGP algorithm 
that includes flocking rules. The important part is the 
dynamic migration that adds calculations of location 
and neighbors, while standard DGP only executes the 
described exchange of individuals. 
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Figure 2. Example of the required migration 

The main challenges of using DGP and flocking 
together arise from the different notions of the search 
space and movement of the search agents through it. 
These differences are summarized in Table 1. 

As the domain (search space) and the way of con-
ducting the search (movement) differ, it is impossible 
to apply the flocking rules directly. The arising diffi-
culties are given below: 
• Search space. While working with locations and 

distances in the Euclidean space is trivial, com-
parison of two trees that represent the solutions in 
DGP is not. The matter is even more complicated 
because of heterogeneity of tree nodes (various 
functions and terminals) and different arity of 
nodes (from 0 to infinity). Direct mapping from 
the tree to linear dimension is impossible (or re-
quires intensive use of computational resources, 
what would annul the benefit of applying flocking 
to the DGP). 

• Movement. The current location and velocity of 
the flockmate in Euclidean space fully describes 
the subsequent location, so altering the velocity is 
enough to drive the agent in the desired direction. 
But the changes made to the parse trees by the 
selection and genetic operators have the probabi-
listic nature and can't be predicted. So there's no 
way to anticipate the next form of the parse tree 
of a group of them (subpopulation). 

Figure 1. DGP algorithm with dynamic 

Table 1. Main differences between DGP and flocking 

 Search space (agent position) Movement 
DGP Hierarchical (program parse tree) Probabilistic selection and genetic operations 
Flocking Euclidean (location in multidimensional space) Current location and velocity 

 
These inadequacies of search methods require sub-

stantial modifications in order to use them together. As 
we seek just to control the migration of the DGP 
algorithm, the modified part must be the flocking 
rules, not the GP algorithm. The changes are as 
follows: 

• Location in the search space. Though the real 
search space of DGP is a heap of program parse 
trees, they are too complicated to be used as loca-
tions of the flockmates. The remaining choice for 
the location is a phenotype, i.e. the fitness of the 
solution. While the single fitness value that is 
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usually employed in the selection procedures of 
the DGP has very little data about the solution, 
the results of all fitness evaluations for the parti-
cular parse program can be used. The array of the 
evaluations of each fitness case supplies just the 
right format of data for the flocking algorithm. 
The following presumptions justify the use of fit-
ness evaluations as the reflection of the positions 
in the search space: 

Typically there are at least several test cases. This 
gives the greater variety of possible location values (as 
opposed to the single value of final fitness). 

Different test cases cover some specific collections 
of input values. So, if the programs showed good 
results with those particular test data, they probably 
share some common genetic material. 
• Movement through the search space. There isn't 

a notion of direction in the DGP search space. 
Even if the history of the parse tree was collected, 
it does not affect the genetic operators and the 
modifications they make to the tree. So the rule 
alignment to the neighbors must be discarded. As 

of the location – the way to "move" the parse tree 
must be done by changing its genetic information. 
In case of using test case evaluations as the 
location measures, moving means altering the 
genotype to have more genes that lead to the re-
quired results. This means that it is impossible to 
move a program to the arbitrary location, we can 
only move toward the program with the desired 
location. Such a procedure would cause problems 
to move a single program parse tree, as it would 
intersect with the operation of the genetic opera-
tors (crossover and mutation). But the flockmates 
are not single individuals, but subpopulations of 
the DGP, so the exchange of the genetic data 
means just passing some individuals among the 
subpopulations – the migration. The example of 
this migration is given in Figure 2, where subpo-
pulation 4 tries to move closer to subpopulations 
1 and 2, while subpopulation 3 – to 4 and 5. 
These actions are expected to assist in avoiding 
the collision with close subpopulations (6 and 5 
for 4, 2 for 3).  
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Figure 3. Migration schemes: A – conceptual grid, B – connections in static migration topology, C – connections in flocked 

migration topology 

5. Movement visualization 

In order to gain a better understanding of the in-
fluence of the flocking rules to the DGP, a simple 
experiment was carried out. The main goal was to 
track the movement of the DGP subpopulations 
through the search space and compare the track of the 
DGP algorithms with and without flocking. 

The GP algorithm was used to solve the trivial 
problem of symbolic regression: while having only 
inputs and outputs, the function that yields the given 
results must be deduced. The function is x4+x3+x2+x, 
test cases consist of 200 random values from range [-
1;1). Half of each subpopulation is replaced at every 
generation. Most other parameters (population size, 
tree sizes, e.t.c.) were not important for this 
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experiment and were kept at low level to decrease the 
number of required calculations. 

The population was divided to 9 subpopulations. 
This number is close to the reported optimal values in 
various DGP research papers [10]. This is also 
convenient for our task, because the subpopulations 
are the entities that will be tracked and presented for 
visual evaluation – too many subpopulations would be 
hard to comprehend, while just a few wouldn’t 
disclose the dispersion of the flocking subpopulations. 
The static migration scheme has the grid structure 
where each subpopulation interacts with adjacent sub-
populations. There are 24 migration channels (12, if 
counting only unique pairs of communicating subpo-
pulations, but information is exchanged both ways, so 
actually it is 12x2=24) and approximately 3 neighbors 
(24/9=2.7). 10% of the subpopulation migrates every 
second generation. 

When flocking rules are employed, the neighbors 
are selected by the locations of the subpopulations and 
migration is conducted from the most distant neigh-
bors (that should move the current subpopulation clo-
ser to the source of the immigrants). The location is 
measured as the array of the fitness case evaluations. 
Normally, the 200 fitness cases wouldn’t be a prob-
lem, but this is far too much for the visualization. The 
most suited for representation for human comprehen-
sion is 2-dimensional space. Therefore the results of 
fitness cases are split to 2 roughly equivalent groups: 

one with input x<0, the other with x>0. Neighbors are 
selected dynamically (3 neighbors for each subpopula-
tion), and decisions about the directions of migration 
are carried out according to the location of the neigh-
bors (so there is a possibility to skip migration). The 
conditions of migration are checked every 2 genera-
tions and 10% of individuals are transferred if migra-
tion is required (parameters are similar to static migra-
tion). The imaginary migration topologies of static and 
flocked migration control schemes are shown in 
Figure 3. Flocked subpopulations try to communicate 
with adjacent subpopulations, while statically linked 
subpopulations do not take the current arrangements 
of subpopulations in the search space. 

The track is made up of ten subsequent genera-
tions. The full pictures of both migration schemes are 
shown below (Figure 4). The subpopulations are en-
coded by the shape of figures: five subpopulations are 
circles with different radius, four – squares with diffe-
rent width. The generations are marked by the color of 
figures: the darker the color, the bigger the generation 
number (10th generation if black). Quick observation 
of these images shows the preference of flocked DGP 
to keep the search more dispersed. The dark figures of 
the static migration scheme gather to the upper left 
corner, while flocking rules support the exploration of 
more search space (presumably the effect of separa-
tion rule). 

 
 
 
 
 
 
 
 
 
 
 
 
 

A B 

Figure 4. The combined traces of static (A) and flocking (B) migration schemes 

The next sets of images show the snapshots of the 
arrangement of subpopulation at certain generations. 
They are presented to give the better overview of the 
locations of the members of the group of subpopula-
tions at discrete time moments. The subpopulations 
are encoded as in previous figure (circles and squares 
with various sizes). The snapshots are taken every 
second generation. 

Comparing the images in Figure 5, we can notice 
the same effect of greater dispersion of flocked 
subpopulations (subpopulations in the highest image 

in the right column are crowded, but this image is at 
the start of the run, so it’s mostly random genetic 
data). The crowding in statically controlled migration 
scheme becomes more obvious as GP algorithm run 
reaches the later generations. 

6. Conclusions 

The article looks at the blending of distributed 
genetic programming with the modified version of 
swarm intelligence (flocking). The modifications are 
needed to unify the approach of these search 
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techniques to the search space. Unmodified flocking 
rules have no ability to cope with the complex prog-
ram parse trees that are governed by the probabilistic 
selection and genetic operators. In short, the proposed 
way is to use the results of fitness evaluations as the 
reflection of the real search space (parse trees) and 
discard the precise directions of movement by just 
moving flockmates toward each other. 

Since the adoption of flocking requires a consider-
able amount of simplifications, it is desirable to check 
the flocking rules still work. The purpose of the flock 
(apart of the goal of finding food or some other 
search) is to keep the flexible but constant grid of the 

flock: no lost flockmates and no collisions. The pre-
sented tracks of DGP subpopulations display the de-
sired characteristic of avoiding the crowded search. 
This should prevent some cases of premature conver-
gence to the suboptimal solution. 

The results of the experiments that were used for 
the visualization of search didn’t reveal any substan-
tial differences of the effectiveness of static and flock-
ing schemes of migration control. Further research is 
required to confirm that flocking scheme will have the 
higher success rate for problems where futile search is 
common. 
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Figure 5. Generation snapshots of static (A) and flocking (B) migration schemes. The upper images are the oldest generations 
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