
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.4

MOVEMENT OF FLOCKED SUBPOPULATIONS IN DISTRIBUTED
GENETIC PROGRAMMING

Giedrius Paulikas, Dalius Rubliauskas
Department of Multimedia Engineering, Kaunas University of Technology

Studentų St. 50, LT−51368 Kaunas, Lithuania

Abstract. The rules of swarming intelligence can be applied to govern migration in the distributed genetic prog-
ramming (DGP) algorithm, but they require modifications. Initial rules are taken from the flocking algorithm and
adapted for DGP. As the rule for the alignment of direction is completely discarded and the remaining rules operate on
implicit data of subpopulation locations, the resulting joint search technique must be reevaluated. This article presents
the pragmatic coupling of flocking and DGP algorithms. The experiment of visualizing the movement of DGP sub-
populations through the search space provides a graphic overview of the behavior of DGP subpopulations. The results
confirm a typical influence of the modified flocking rules to the flockmates represented by the subpopulations.

1. Indroduction

Genetic programming (GP) is an evolutionary
algorithm for automatic creation of computer prog-
rams. It allows getting the program to solve the given
problem without specifying the algorithm itself. The
roots of this automatic programming method lies in
Darwinian natural selection and mimics the hypothesis
of the evolution of living beings by the survival of the
fittest.

Historically the first thoughts of using evolution
for artificial intelligence date back to year 1948, when
Turing [1] described the genetic, or evolutionary,
search as one of the approaches to the machine intelli-
gence. The foundation for GP were laid in 1975 by the
research of cellular automates by Holland, that led to
the formation of genetic algorithms (GA). Genetic
programming emerged as the specification of GA that
was suited to create the computer programs. While the
first GP the papers of Smith report research in 1980
and Cramer in 1985 [2], J.R. Koza is considered as the
inventor of genetic programming due to his extensive
work in this field in the nineties. GA and GP falls to
the same group of evolutionary algorithms (EA), that
are based on applying selection and reproduction to
the set of individuals according to their performance.
The evolutionary algorithms also contain such related
artificial intelligence techniques as evolutionary prog-
ramming, evolution strategies and classifier systems.

As suggested by A. H. Turing, search and optimi-
zation is the core of artificial intelligence. The task of
finding the solution of the problem to the computer
means literally finding the best solution of all possible

solutions. There are numerous search methods and
while are more general than others, there is no univer-
sal method for all occasions ("No Free Lunch"
theorem [3]). An interesting example of the search
technique that theoretically is of good in all domains
is Levin search [4]. If some search algorithm finds the
solution in O(f(n)) steps, it is proved that Levin search
can solve the problem in at most O(f(n)) steps. The
practical application of Levin search is hindered by
the constant factor in O(f(n)) notation which becomes
crucial for real life problems with enormous search
spaces.

The last years of GP research have brought some
theoretical insight to the principals of the operation of
genetic programming algorithm. The schemata theory
existed since the early days of GA research and is as
well applicable to GP. The substantial progress was
made by exploring Markov chain models to describe
processes of GP algorithm [5]. The GP theory research
has revealed that GP is a more general search tech-
nique than GA, GA being the simpler case of genetic
programming.

2. Distributed GP

The algorithms of evolutionary search depend on
having the big population of possible solutions that
covers as much of the problem search space as pos-
sible. The search space is defined at the start of search
and in order to get the solution faster should be
defined as small a possible. This is the task for the
search algorithm programmer and selecting the right
representation of the solution does it. In case of GP,

338

Movement of Flocked Subpopulations in Distributed Genetic Programming

where solutions are usually represented as program
parse trees, the most important to successful search are
the selection of tree nodes and the initial/maximal tree
sizes. The first one denotes the allowed terminal and
functional items of the parse tree and define the
abstraction level of the search. The second slices some
finite region of the infinite search space that is
expected to have the sought solution. The adaptive
representation (e.g., Automatically Defined Functions)
gives the GP algorithm the ability to manipulate the
levels of abstraction during the execution. Such a
technique helps to narrow the search space according
to the results of the search and usually speed up the
search [6].

Another way to accelerate search is the
parallelization of GP algorithm. The biggest portion of
computations is conducted independently for each
member of the population of solutions, so GP
algorithm can be easily adapted to parallel execution.
A big number of potential solutions provide the
opportunity to select the required level of parallelized
nodes: from fine-grained, where each solution can be
assigned to separate node, to several large subpopula-
tions. The empirical results show that coarse-grained
division of the population to big almost independent
subpopulations is the most beneficial: it minimizes the
communication among computational nodes and mat-
ches the most popular architecture of (affordable) pa-
rallel systems. Moreover, such distribution finds a
solution faster even if executed on a single non-
parallel machine. This coarse-grained paralellization is
called the "island model" (by similarity to the evolu-
tion of individuals of the separated islands), or simply
distributed genetic programming (DGP). The only
thing that is added to standard GP is the migration of
solutions among subpopulations. The migration adds
new parameters for the customization of the algo-
rithm. As with any other configuration, changing the
values of the migration parameters can lead either to
improvement of deterioration of the search characte-
ristics. Besides the number of subpopulations, the
main additional parameters of DGP are:
1. migration frequency - how many generations are

run between two subsequent migrations;
2. migration rate - how many individuals migrate

each time;
3. migration topology - which subpopulations

participate in the exchange.
There are some issues that must as well be con-

sidered in the DGP implementation, though their con-
figuration is not as important as the three parameters
of migration. The first one is selection of the indivi-
duals for migration. Basically, it may be left the same
as the selection for the genetic operators (crossover,
mutation and replication) since each subpopulation
should use the information about the exploration of its
search space domain and send good genetic samples to
neighboring subpopulations. The other matter is the
exchange type: copy, move or even some form of
crossover of the emigrants. Either one of them is

suitable as far as genetic material reaches the intended
target.

This article focuses on setting of the migration
parameters of the DGP algorithm. The goal is to set
migration in the way that the performance of the DGP
algorithm is at least better than the one of the standard
GP (best case scenario is achieving the results com-
parable with the human optimized migration parame-
ters) while keeping the need to set parameters by hand
at the minimal level. In other words, the parameters
should be set dynamically during run time.

3. Swarm intelligence

Swarm intelligence (SI) is another search and opti-
mization technique that comes from the field of
biology. SI system consists of the number of indepen-
dent agents that interact with each other. There is no
central control for the behavior of the agents. The
emerging behavior of the whole system typically is
predictable only in the short term. Each agent has the
common goal (e.g. finding food in natural environ-
ment, or optimizing some values in the search task) as
well as the responsibility to observe the conduct of
neighboring agents. If the agents dispose the informa-
tion about global status of the whole group (e.g. the
optimal spot in the search space so far) depends on the
implementation of SI. The best known SI methods are
Particle Swarm Optimization (PSO) [7] and Ant
Colony Optimization (ACO) [8].

One can notice some similarity between SI and
DGP: both have a number of interacting entities that
explore a problem search space. For DGP this entity,
or agent, is a subpopulation that covers a portion of
common search space and communicates with neigh-
boring subpopulations. Application of the SI rules to
the DGP algorithm gives the opportunity to influence
the movement of the subpopulations through the
search space. The rules are adapted from one of the
earliest successful implementations of the SI -
flocking. Flocking can be described as a case of PSO
without the knowledge of the global results (that is,
each agent communicates only with its neighbors).
The flock members follow three main rules [9]:
1. Separation – avoiding crowding/collisions with

neighbors;
2. Alignment – moving to the same direction as

most of the neighbors;
3. Cohesion – moving to the average position of

neighbors.
These rules can be summarized as the desire of

each agent to keep a constant formation, or grid, of the
whole flock. Since rule 1 and rules 2+3 drive the agent
to the opposite directions, it stays in more or less
stable position to its neighbors while moving through
the search space.

339

G. Paulikas, D. Rubliauskas

340

4. Adapting flocking rules to DGP

7

5

6

4

3 2

1

 Figure 1 shows an overview of the DGP algorithm
that includes flocking rules. The important part is the
dynamic migration that adds calculations of location
and neighbors, while standard DGP only executes the
described exchange of individuals.

 Initialize random

solutions

 Evaluate fitness

 Solution found?

No more
generations?

 Find locations

 Find neighbors

Exchange
solutions with

some neighbors

Breed new
solutions

Dynamic
migration

Solution not found

Solution found

No

Yes

No

Yes

Figure 2. Example of the required migration

The main challenges of using DGP and flocking
together arise from the different notions of the search
space and movement of the search agents through it.
These differences are summarized in Table 1.

As the domain (search space) and the way of con-
ducting the search (movement) differ, it is impossible
to apply the flocking rules directly. The arising diffi-
culties are given below:
• Search space. While working with locations and

distances in the Euclidean space is trivial, com-
parison of two trees that represent the solutions in
DGP is not. The matter is even more complicated
because of heterogeneity of tree nodes (various
functions and terminals) and different arity of
nodes (from 0 to infinity). Direct mapping from
the tree to linear dimension is impossible (or re-
quires intensive use of computational resources,
what would annul the benefit of applying flocking
to the DGP).

• Movement. The current location and velocity of
the flockmate in Euclidean space fully describes
the subsequent location, so altering the velocity is
enough to drive the agent in the desired direction.
But the changes made to the parse trees by the
selection and genetic operators have the probabi-
listic nature and can't be predicted. So there's no
way to anticipate the next form of the parse tree
of a group of them (subpopulation).

Figure 1. DGP algorithm with dynamic

Table 1. Main differences between DGP and flocking

 Search space (agent position) Movement
DGP Hierarchical (program parse tree) Probabilistic selection and genetic operations
Flocking Euclidean (location in multidimensional space) Current location and velocity

These inadequacies of search methods require sub-

stantial modifications in order to use them together. As
we seek just to control the migration of the DGP
algorithm, the modified part must be the flocking
rules, not the GP algorithm. The changes are as
follows:

• Location in the search space. Though the real
search space of DGP is a heap of program parse
trees, they are too complicated to be used as loca-
tions of the flockmates. The remaining choice for
the location is a phenotype, i.e. the fitness of the
solution. While the single fitness value that is

Movement of Flocked Subpopulations in Distributed Genetic Programming

341

usually employed in the selection procedures of
the DGP has very little data about the solution,
the results of all fitness evaluations for the parti-
cular parse program can be used. The array of the
evaluations of each fitness case supplies just the
right format of data for the flocking algorithm.
The following presumptions justify the use of fit-
ness evaluations as the reflection of the positions
in the search space:

Typically there are at least several test cases. This
gives the greater variety of possible location values (as
opposed to the single value of final fitness).

Different test cases cover some specific collections
of input values. So, if the programs showed good
results with those particular test data, they probably
share some common genetic material.
• Movement through the search space. There isn't

a notion of direction in the DGP search space.
Even if the history of the parse tree was collected,
it does not affect the genetic operators and the
modifications they make to the tree. So the rule
alignment to the neighbors must be discarded. As

of the location – the way to "move" the parse tree
must be done by changing its genetic information.
In case of using test case evaluations as the
location measures, moving means altering the
genotype to have more genes that lead to the re-
quired results. This means that it is impossible to
move a program to the arbitrary location, we can
only move toward the program with the desired
location. Such a procedure would cause problems
to move a single program parse tree, as it would
intersect with the operation of the genetic opera-
tors (crossover and mutation). But the flockmates
are not single individuals, but subpopulations of
the DGP, so the exchange of the genetic data
means just passing some individuals among the
subpopulations – the migration. The example of
this migration is given in Figure 2, where subpo-
pulation 4 tries to move closer to subpopulations
1 and 2, while subpopulation 3 – to 4 and 5.
These actions are expected to assist in avoiding
the collision with close subpopulations (6 and 5
for 4, 2 for 3).

 2

 5

31

4 6

 8

 A

7 9

4 5 3 4 5 3
1 1

6 6
7 78 8

2 29 9

CB
Figure 3. Migration schemes: A – conceptual grid, B – connections in static migration topology, C – connections in flocked

migration topology

5. Movement visualization

In order to gain a better understanding of the in-
fluence of the flocking rules to the DGP, a simple
experiment was carried out. The main goal was to
track the movement of the DGP subpopulations
through the search space and compare the track of the
DGP algorithms with and without flocking.

The GP algorithm was used to solve the trivial
problem of symbolic regression: while having only
inputs and outputs, the function that yields the given
results must be deduced. The function is x4+x3+x2+x,
test cases consist of 200 random values from range [-
1;1). Half of each subpopulation is replaced at every
generation. Most other parameters (population size,
tree sizes, e.t.c.) were not important for this

G. Paulikas, D. Rubliauskas

experiment and were kept at low level to decrease the
number of required calculations.

The population was divided to 9 subpopulations.
This number is close to the reported optimal values in
various DGP research papers [10]. This is also
convenient for our task, because the subpopulations
are the entities that will be tracked and presented for
visual evaluation – too many subpopulations would be
hard to comprehend, while just a few wouldn’t
disclose the dispersion of the flocking subpopulations.
The static migration scheme has the grid structure
where each subpopulation interacts with adjacent sub-
populations. There are 24 migration channels (12, if
counting only unique pairs of communicating subpo-
pulations, but information is exchanged both ways, so
actually it is 12x2=24) and approximately 3 neighbors
(24/9=2.7). 10% of the subpopulation migrates every
second generation.

When flocking rules are employed, the neighbors
are selected by the locations of the subpopulations and
migration is conducted from the most distant neigh-
bors (that should move the current subpopulation clo-
ser to the source of the immigrants). The location is
measured as the array of the fitness case evaluations.
Normally, the 200 fitness cases wouldn’t be a prob-
lem, but this is far too much for the visualization. The
most suited for representation for human comprehen-
sion is 2-dimensional space. Therefore the results of
fitness cases are split to 2 roughly equivalent groups:

one with input x<0, the other with x>0. Neighbors are
selected dynamically (3 neighbors for each subpopula-
tion), and decisions about the directions of migration
are carried out according to the location of the neigh-
bors (so there is a possibility to skip migration). The
conditions of migration are checked every 2 genera-
tions and 10% of individuals are transferred if migra-
tion is required (parameters are similar to static migra-
tion). The imaginary migration topologies of static and
flocked migration control schemes are shown in
Figure 3. Flocked subpopulations try to communicate
with adjacent subpopulations, while statically linked
subpopulations do not take the current arrangements
of subpopulations in the search space.

The track is made up of ten subsequent genera-
tions. The full pictures of both migration schemes are
shown below (Figure 4). The subpopulations are en-
coded by the shape of figures: five subpopulations are
circles with different radius, four – squares with diffe-
rent width. The generations are marked by the color of
figures: the darker the color, the bigger the generation
number (10th generation if black). Quick observation
of these images shows the preference of flocked DGP
to keep the search more dispersed. The dark figures of
the static migration scheme gather to the upper left
corner, while flocking rules support the exploration of
more search space (presumably the effect of separa-
tion rule).

A B

Figure 4. The combined traces of static (A) and flocking (B) migration schemes

The next sets of images show the snapshots of the
arrangement of subpopulation at certain generations.
They are presented to give the better overview of the
locations of the members of the group of subpopula-
tions at discrete time moments. The subpopulations
are encoded as in previous figure (circles and squares
with various sizes). The snapshots are taken every
second generation.

Comparing the images in Figure 5, we can notice
the same effect of greater dispersion of flocked
subpopulations (subpopulations in the highest image

in the right column are crowded, but this image is at
the start of the run, so it’s mostly random genetic
data). The crowding in statically controlled migration
scheme becomes more obvious as GP algorithm run
reaches the later generations.

6. Conclusions

The article looks at the blending of distributed
genetic programming with the modified version of
swarm intelligence (flocking). The modifications are
needed to unify the approach of these search

342

Movement of Flocked Subpopulations in Distributed Genetic Programming

343

techniques to the search space. Unmodified flocking
rules have no ability to cope with the complex prog-
ram parse trees that are governed by the probabilistic
selection and genetic operators. In short, the proposed
way is to use the results of fitness evaluations as the
reflection of the real search space (parse trees) and
discard the precise directions of movement by just
moving flockmates toward each other.

Since the adoption of flocking requires a consider-
able amount of simplifications, it is desirable to check
the flocking rules still work. The purpose of the flock
(apart of the goal of finding food or some other
search) is to keep the flexible but constant grid of the

flock: no lost flockmates and no collisions. The pre-
sented tracks of DGP subpopulations display the de-
sired characteristic of avoiding the crowded search.
This should prevent some cases of premature conver-
gence to the suboptimal solution.

The results of the experiments that were used for
the visualization of search didn’t reveal any substan-
tial differences of the effectiveness of static and flock-
ing schemes of migration control. Further research is
required to confirm that flocking scheme will have the
higher success rate for problems where futile search is
common.

2nd generation

4th generation

6th generation

8th generation

10th generation

Figure 5. Generation snapshots of static (A) and flocking (B) migration schemes. The upper images are the oldest generations

G. Paulikas, D. Rubliauskas

References
 [1] J. R.Koza. Genetic Algorithms and Genetic Prog-

ramming. http://www.genetic-programming.com/
c2003lecture1modified.ppt, 2003.

 [2] J. Schmidhuber. Program Evolution / Genetic Prog-
ramming. http://www.idsia.ch/~juergen/gp.html, 2005.

 [3] GA or GP? That is not the question. Proceedings of
UK Workshop on Computational Intelligence, 2003, 8.

 [4] J. Schmidhuber. Levin search.
http://www.idsia.ch/~juergen/mljssalevin/node4.html,
2003.

 [5] R. Poli, J. E. Rowe, N. F. McPhee. Markov Chain
Models for GP and Variable-length GAs with Homo-
logous Crossover. Proceedings of The Genetic and
Evolutionary Computation Conference, 2001, 8.

 [6] J.P. Rosca, D. H. Ballard. Genetic Programming with
Adaptive Representations. The University of Roches-
ter, New York, 1994, 30.

 [7] J. Madar, J. Abonyi, F. Szeifert. Interactive Particle
Swarm Optimization. Proceedings of the 5th Inter-
national Conference on Intelligent Systems Design
and Applications, 2005, 314-319.

 [8] M. Dorigo, L.M. Gambardella. Ant colonies for the
traveling salesman problem. BioSystems, 1997, 10.

 [9] C.W. Reynolds. Flocks, Herds, and Schools: a Distri-
buted Behavioral Model. Proceedings of Conference
ACM SIGGRAPH '87, Anaheim, California, 1987.

[10] F. Fernandez, M. Tomassini, W.F. Punch III, J.M.
Sanchez. Experimental Study of Multipopulation Pa-
rallel Genetic Programming. Lecture Notes in Com-
puter Science, Vol.1802, 2000, 283-293.

344

