
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.4

REPRESENTATION OF INTEGRITY CONSTRAINTS
IN CONCEPTUAL MODELS1

Elita Miliauskaitė, Lina Nemuraitė
Kaunas University of Technology, Department of Information Systems

Studentu St. 50-308, LT-51368 Kaunas, Lithuania

Abstract. Integrity constraints are incident part of conceptual models, including part of semantics of problem do-
main. Analysis of the most important methods of conceptual modelling has revealed that none of them analyze the
complete set of integrity constraints needed for making semantically meaningful model. In our previous work the taxo-
nomy of integrity constraints relevant for design of well-formed conceptual models was established. The goal of this
paper is to extend capabilities of UML for required types of integrity constraints introducing stereotypes or reusing
them from other methods. In contrast with current practice of deferring description of constraints to detailed design,
modelling of constraints in the phase of conceptual analysis makes them reusable in various activities: not only in
generating DB schema, but also in early verification, validation, transformation to other types of schemas and program
code.

Keywords: information systems, integrity constraints, UML, OCL, profile, stereotypes, tags.

1. Indroduction

The raised level of abstraction of presentation of
data and precision of modelling are gaining more and
more meaning in nowadays. Growing volumes of data
and possibilities of automatic dealing with data in e-
Business, Data Warehouses, On-Line Analytical Pro-
cessing, Data Mining and Semantic Web services
require for more careful capturing of semantics of
problem domain. OMG has defined Business Seman-
tics of Business Rules 0 bringing the capability to
express formally the meaning of expressions used in
business (business vocabulary and business rules)
independently of language. Conceptual model with
derivation rules and integrity constraints serves as re-
presentation of business terms at the conceptual level
of information system, where transformations to logi-
cal and physical representations are carried-out for
processing and returning results to the business level.
These transformations must be two-way and lossless,
from business to physical level, as at current rate of
business change, hand-written triggers or procedures
untraceable from business are not acceptable for majo-
rity of organizations. This is today’s vision of bridging
business and information technologies.

The presentation of information on the logical and
physical levels is well defined today in comparison
with representation on conceptual and business level.

We have accepted 0 UML 0, 0 as the most suitable
language for conceptual modelling. The ontological
foundations for UML conceptual models are
considered in 0, 0, where high-level stereotypes
(kinds, subkinds, phases, roles, categories, mixins and
role mixins) are proposed for well-founded conceptual
modelling. Nevertheless, the precise definition of
identities, relationships and other constraints essential
for conceptual modelling, is not involved yet in re-
lated UML research. In this paper, the possibilities to
obtain precise conceptual model are of main impor-
tance. Essentially, the problematic elements of con-
ceptual models are integrity constraints that are often
unfoundedly deferred to the phase of detail design.
Such a situation is typical for existing not standard
UML Data Modelling Profiles (e.g. 0), where only
fundamental constraints are considered for logical data
models on purpose of generation of database schema.

Integrity constraints are incident part of conceptual
models intensively used during analysis and design of
information systems 0. They are essential for ensuring
correctness of information model, and its ability to
represent adequate semantics of problem domain.
Integrity constraints may be implemented in data sto-
rage system or become a part of software code, in
order to protect against unallowable changes in data or
invoking behaviour that may raise undesirable situa-
tions in functioning information system.

1 The work is supported by Lithuanian State Science and Studies Foundation according to Eureka programme project

„IT-Europe” (Reg. No 3473)

355

E. Miliauskaitė, L. Nemuraitė

In conceptual model, integrity constraint is logical
formula, dependent on problem domain, and it must
be held true for all meaningful states of information
system 0. Conceptual model with integrity constraints
is semantically meaningful if constraints are
consistent, and it is effective if constraints are not
redundant. Inconsistent constraints raise errors and in-
finite cycles in running software, and redundant const-
raints worsen operation. Integrity constraints are
consistent if system when performing transitions
during its life cycle remains in consistent state. Cons-
traints are redundant if they are overlapping or never
can be violated. It is not possible to validate absolute
consistency of integrity constraints, but it is possible
to find and remove some kinds of inconsistencies.

Therefore to create semantically meaningful con-
ceptual model of good quality we should be able to
capture required variety of integrity constraints and to
validate them. During analysis of the most important
methods of conceptual modelling (ER, EER, HERM,
ORM, UML, xUML) the types of constraints that are
important for well-formed conceptual models, and
situations, when these constraints should be used,
were established 0. The aim of this paper is to extend
UML-related conceptual modelling method for
capturing the whole important types of constraints.
The design of data and behavioural schemas of va-
rious forms (relational, object-relational, object-orien-
ted, XML, or XML-based) of information system
must be founded on the same conceptual model, and
integrity constraints should be first class entities in it
0, 0.

The UML specification prescribes both a diagram
notation and a metamodel. The notation is comparati-

vely complete, capable to document the structural and
behavioural characteristics of problem domain and
software. However, modelling persistent storage struc-
tures has not been the strong point of UML. The UML
notation neglects constructs useful for precise analy-
sis, design, development and management of relatio-
nal schemata. Data modelling-specific notations and
techniques have generally been stronger at this task
than those oriented around UML. The UML meta-
model, however, provides a structure that accommo-
dates semantic information beyond what is typically
expressed in the UML notation. UML extension
mechanisms (profiles) based on stereotypes, tagged
values and constraints provide a basis for expansion of
its applicability. Types of integrity constraints estab-
lished in 0 could be accurately expressed in terms of
the UML metamodel and its extensions.

2. Classification of integrity constraints

Integrity constraints categorized according to seve-
ral criteria were suggested in 0. By constrained ele-
ment, the integrity constraints were divided into 2
groups: integrity constraints on attribute and groups of
attributes (Figure 1) and integrity constraints on rela-
tionship and groups of relationships (Figure 2).

The fundamental constraints on attribute or at-
tribute groups like primary identifier, mandatory,
uniqueness constraints are used in all the most popular
conceptual modelling methods and implemented in
DBVS. The possibility to use constraints on relation-
ships depends on what types of relationships are
considered in particular method. For relationships, on-
ly multiplicity constraints are common to all methods.

 Constraint on Attributes

Mandatory/
Optional

Internal
Uniqueness

External
Uniqueness

Primary
Indentifier

Identifier

Referential
Constraint Constraint on

Value(s)

Single
By number

Group

By type

Figure 1. Integrity constraints on attributes

 Constraint on Relationships

ReflexiveRelationshipMultiplicity

CompleteAcyclic IreflexiveAntisymmetricIntransitive Symmetric Disjoint

Generalization

Group Single

Constrained
Path

Loop

Figure 2. Integrity constraints on attributes and relationship

356

Representation of Integrity Constraints in Conceptual Models

357

 Constraint on Sets of Objects

Exclusion DisjunctiveMandatory EqualSetSubset

Figure 3. Integrity constraints on sets of objects

3. Stereotypes for modelling of integrity
constraints

By scope for which the constraint is applied integ-
rity constraints where categorized into constraints on
single object, constraints on a set of objects, const-
raints on sets of objects and constraints on sequences
of sets of different types of objects. A constraint on
sets of objects (Figure 3) consists of set comparison
constraints that restrict the way the population of one
set of objects compares with that of another com-
patible set of objects. There are several kinds of set
compatible (subset, exclusion, equal set, disjunctive
mandatory) constraints that will be defined and ana-
lyzed in the following sections.

There are alternative options for representation of
constraints using UML: natural language, stereotypes
and OCL expressions. Stereotypes are useful as pat-
terns not only for discovering constraints, but also for
succeeding generation of implementation code, as part
of stereotypes directly map to functionality of data-
base, avoiding dealing with complicated expressions.
Notation for stereotypes in UML models (part of them
are extensions to standard UML) is presented in the
next sections, where some of them are illustrated by
examples. Looking from perspective of visual modelling of

constraints, the ORM 0 – 0 model is quite powerful
but also it is rather complex and suitable only to
analysis phase. Despite there are methods and capabi-
lities to transform ORM models to (and from) envi-
ronments of Analysis&Design phase CASE tools (for
example, Microsoft Visio-Based Database Modelling
in Visual Studio .NET Enterprise Architect), it is
difficult to imagine that ORM could be used in prac-
tical Information System Engineering projects. Also, it
fails to discover cycles and redundancies in long
sequences of roles (relationships) comprising loops 0.
These constraints are captured in xUML (extended
UML) methodology 0. In xUML, the stereotypes are
proposed well suited for modelling constraints during
development of Information Systems but there are
lacking some kinds of constraints on attributes that are
practised in EER, ORM and other methods. So it is
advisable to unify constraints from different methods
to obtain the best expressiveness.

UML profiles are lightweight mechanism for its
extensions that do not make additions to the UML
metamodel, on the contrary to heavyweight extensions
requiring for adaptation of model repository interfaces
(e.g. JMI interfaces) and interchange formats (e.g.
XMI schema's). UML profile is a collection of stereo-
types (possibly having tagged values as their attri-
butes) and constraints. Using of profiles is based on
the relationships between model elements and stereo-
types; it may aim at highlighting the semantics of
particular model and/or processing it in a special way.
Many standard and non-standard UML profiles are
proposed; nevertheless there is a need for precise
representation of concepts aiming at development of
models of state and behaviour of information systems.
In this paper, the main attention is given to modelling
that leads to development of data models and schemas
of databases, though integrity constraints described as
invariants of UML models considered here may
evenly be realized by functionality of database as soon
as operations of programming language.

In contrast to ORM, UML is well supported by
many CASE tools and widely accepted as standard
modelling language, having possibility to describe
constraints formally in conceptual language (OCL 0,
0). Because UML is easy extendable, it is possible to
extend UML model with stereotypes for visual
modelling of whatever constraints that may be defined
in other models. It enables transformation of
constraints to software code or DBMS functionalities
like check functions, triggers or stored procedures.
Unfortunately, CASE tools for automatic transforma-
tion from OCL to SQL and even OCL parsers are still
under development or in early release phases (e.g. 0,
the most promising one), so they are still unacceptable
for wide use in practical projects.

 A stereotype defines how an existing metaclass
may be extended, and enables the use of platform or
domain specific terminology or notation in place of or
in addition to the ones used for the extended metaclass
0. Just like a class, a stereotype may have properties,
which may be referred to as tag definitions. When a
stereotype is applied to a model element, the values of
the properties may be referred to as tagged values.

Any UML model element can be extended by one
or more stereotypes. In conceptual modelling of
constraints, stereotypes are applied for constrained
elements. Constrained elements of conceptual model
may have more than one constraint and, consequently,
more than one stereotype. For example, a referential
attribute may comprise the part of primary key.
Stereotypes may comprise hierarchy. In UML 2.0, it is
possible to omit the symbol or label of stereotype in

E. Miliauskaitė, L. Nemuraitė

visual representation and to use tagged values (diffe-
rently from the earlier versions, tags now cannot exist
without stereotypes). When applying stereotypes to
constraints, in some cases it is advisable to replace the
stereotype with the value of tag, so we omit labels of
stereotypes and attach tagged values to constrained
elements. The tags and tagged values are concatenated
for compact representation. Further, as tagged values
are (meta) attributes, they may be typed and their
values may be derived on the base of standard or cus-
tomer defined types of UML model. For example, in 0
the Tag Value Language is proposed as a subset of Perl
language for calculating the values of tags. Our work
demonstrates how OCL expressions may be used on
metamodelling level for definition of profile-related
constraints and tagged values in cases when they must
be derived from model elements.

4. Integrity constraints on attribute or
attributes

Primary identifier is used for unique identification
of instance of class (object of object type) among set
of all objects of the same type 0, 0, 0. It requires that
identifying attribute or attributes group always would
have values and that values would be unique. UML
does not have special graphical notation for capturing
primary identifier constraints, because in object-
oriented methodology it is assumed that every class is

supported with object identifier (oid), e.g. a memory
address assigned by system 0. However, we need
visible, attribute-based identifier, defining existence of
individuals in problem domain, and these identifiers
must be presented in conceptual model. Alternative
identifier or oid could be introduced in im-
plementation phase, but nevertheless creation of new
objects must be restricted by primary identifier const-
raint. The primary identifier should be used in concep-
tual model to capture all the conceptual semantics
about a class. To do this we need to introduce exten-
sions to the UML notation. Halpin 0, 0 suggested
marking identifying attributes with constraint {P}
(Figure 4). The primary identifier in conceptual model
does not force to use these attributes as primary key in
database, but it sets business requirement that primary
identification (and, consequently, uniqueness) of
object might be based on this property. If primary
identifier was not defined, by default it would be arti-
ficial identifier (oid) generated by system (Figure 4).
UML provides the Object Constraint Language (OCL)
for definition of constraints. OCL expression for
constraint of primary identifier comprised of attributes
 c1,…,cn for object type A :
context A
 inv: self exists
 (a1,a2:A|a1.c1=a2.c1,…,a1.cn=a2.cn
 implies a1=a2)

Employee
firstName : String
lastName : String
address[0..1] : Address
countryCode{R1} : String
personalCode{I1}{EU1} : String
passportNo[0..1]{D1} : String
socialSecurityNo[0..1]{D1} : String
sex : Sex
birthday : Date
/age : Integer

Country
countryCode{P} : String
partOfPersonCode{EU1} : String
name : String 0..n1 0..n1

R1 Sex
M
F

<<enumeration>>

context Employee
inv: self.age=Date::now - self.birthday

Address
Street : String
City : String
ZipCode : String

<<DataType>>context Country
inv: self.partOfPersonCode.size()=2

Figure 4. Example of notation of integrity constraints on attributes in UML class diagram

Every object must have one primary identifier, for
alternative identification identifier constraint is used.
The object may have several identifiers; each of them
may consist of several identifying attributes, and
identifying attribute may be part of more than one
identifier. In UML class diagram the tagged value {In}
is used for every identifying attribute (group of attri-
butes) to denote an identifier. For example class Emp-
loyee besides primary identifier has and identifying
attribute personalCode (Figure 4). For alternative
identifier constraint, OCL expression is the same as
for primary identifier because these constraints have
the same meaning but different purpose.

Referential constraint on attribute (group of attri-
butes) identifies that attribute is the identifier of one or
more associated objects 0, 0. 0 suggested using the tag
for the referential attribute constraint with {Rn},
where Rn is the name of the corresponding

association. For example, the attribute Employ-
ee.countryCode refers to the primary identifier of
Country through the association named R1 (Figure 4).
OCL expression for referential constraint of object
type A that has mandatory relationship with object
type B (and referential attribute c1 referencing to
primary identifier of B – d1):
context A
inv: self.B exists(b:B|b.A=self and
 self.c1=b.d1 and b.d1.oclIsKindOf
 (PrimaryIdentifier))

Mandatory constraint on attribute is used to indi-
cate that attribute must have value 0, 0, 0. In UML all
class attributes are mandatory by default. Appending
[0..1] after attribute name means that attribute is
optional 0. In Figure 4, class Employee has optional
attributes: passportNo, socialSecurityNo and Address,
the rest attributes are mandatory. Mandatory constraint

358

Representation of Integrity Constraints in Conceptual Models

on attribute can be expressed graphically therefore we
don’t need OCL expressions.

Disjunctive mandatory constraint indicates that
disjunction of class attributes is mandatory. It means
that in all allowable states of information system at
least one of class attributes constrained by disjunctive
mandatory constraint must have value 0, 0, 0. UML
does not have graphical notation for disjunctive
mandatory constraint so this kind of constraint needs
to be expressed textually in an attached note 0, 0 or in
OCL. OCL expression for disjunctive mandatory
constraint on attributes a1,…,ai,…,an of object type
A:
context A
 inv:not(self.a1 isUndefined()) … or
 not(self.ai isUndefined()… or
 not(self.an isUndefined())

In order to capture this constraint graphically we
need to extend UML notation adding tagged value like
{Dn} where in the case of class having several attri-
bute groups constrained with disjunctive mandatory
constraint, index n indicates the number of attribute
group constrained by this type of constraint. For
example, in Figure 4 class Employee has one attribute
group {passportNo and socialSecurityNo} constrained
by disjunctive mandatory constraint (the number equal
to one may be omitted).

Internal uniqueness constraint indicates that the
value of one or more attributes of any two instances of
class is different from the set of all other instances of
that class 0, 0, 0. UML does not have special graphical
notation for uniqueness constraint. Hainaut 0
suggested to bold unique attributes, but such solution
is not appropriate for unique attribute groups, because
one class could have several groups. Halpin 0 has
introduced {Un} notation to append as textual
constraints to the constrained attributes. The index
indicates a group of attributes having unique values
for all instances of class. Figure 4 illustrates example
of unique attribute for class Country. OCL expression
for uniqueness constraint on attributes c1,…,cn of
object type A:
context A
 inv: self exists
 (a1,a2:A|a1.c1=a2.c1,…,a1.cn=a2.cn
 implies a1=a2)

External uniqueness constraint could be informally
defined like internal uniqueness constraint on attri-
butes of external object type 0, 0 0. The values of
attribute (or conceptual join of constrained attribute
values) must be different for every instance of class.
Figure 4 presents UML class diagram with suggested
UML notation extension for graphical representation
of external uniqueness constraint, where tag {EUn}
marks external attributes that must be unique:
Employee.personalCode is alternative identifier
defined using external uniqueness constraint EU1 that
means pairs Country.partOfPersonalCode and Emp-
loyee.personalCode have unique value Constraints on

Employee. In general case, external uniqueness
constraint on attribute c1 of object A and attribute c2
of related object B:
context A
inv: self exists (a1,a2:A|
 a1.B.c1=a2.B.c1 and a1.c2=a2.c2 and
 c1=c2 and c1.oclIsKindOf
 (ExternalUniqueness) implies a1=a2)

In UML, the type of attribute constrains its value
(for example, in Figure 4 Employee.address has user
defined type Address). Value constraint restricts the
value of attribute to a finite set of values specified
either explicitly (by enumeration), by start and end
values (range), or some combination of both. Enume-
ration types may be modelled as classes, stereotyped
as enumeration, with their values listed as attributes 0,
0 (Figure 4). Then type of attribute defined by class
with stereotype <<enumeration>> sets constraint on
its value (for example, Employee.sex in Fig. 4 may
have value “M” or “F”). OCL expressions may specify
ranges or other value constraints.

 Derived attribute is an attribute whose value can
be computed from other attributes already in the mo-
del. Such attributes are redundant and generally they
are not included in the model. However, there are
situations when a clear understanding of a domain is
best served by capturing the dependency between
attributes explicitly. In UML the derived attribute is
denoted by tagged value '/' before derived attribute and
the derivation rule is added in the note. In Figure 4
this rule is specified in OCL:
context Employee
 inv: self.age = (now -
 self.birthday).toInteger()

5. Integrity constraints on relationship or
relationships

Multiplicity constraints on relationships are used
in all analyzed methods. They define the number of
class instances that participate in a relationship. There
are two multiplicity indicators for every relationship –
one at each end of the line. Sometimes “*” is used as
abbreviation of “0..*” meaning “zero or more”; "1" as
abbreviation of "1..1" meaning "exactly one"; and
"0..1" means "at most one". In general, a multiplicity
constraint can be written in the form [i…j], where 0 ≤ i
< N, 1 ≤ j ≤ N, i ≤ j, and symbol N stands for infinity.
Therefore the number of relationships in which an
object participates in this role must be, for any
instance, between i and j. Role names ra and rb in the
diagram (Fig. 5) implies that the role name identifiers
can be used as operations ra: B Set(A) and rb: A
Set(B).

A Bra rb
la .. ha lb .. hb

Figure 5. General case of multiplicity constraints on

association

359

E. Miliauskaitė, L. Nemuraitė

360

 For example, ra returns for an object of type A the
set of B objects related to the argument. The constraint
requires that, for a single A object, the size of the set
of related B objects is restricted by the lower bound lb
and by the upper bound hb (analogously, for the other
side of the association).
context A
inv: self.rb size>=lb
 and self.rb size<=hb)
context B
inv: self.ra size>=la
 and self.ra size<=ha)

Generalization/specialization relationship may
have several types of constraints 0, but only few of
them must be implemented in information system.
<<Complete>> constraint on specialization/generali-
zation relationship means that instances of subtypes
include all instances of super type. Disjoint constraint
means that sets of instances of subtypes do not
overlap. In UML, constraint tags may be added in bra-
ces beside lines connecting the relevant subtypes, as
shown in Figure 6. The following four keywords are
predefined in UML for this purpose: "overlapping"
(the subtypes overlap), "disjoint" (the subtypes are
mutually exclusive), "complete" (all subtypes have
been declared), and "incomplete" (some more sub-
types may be introduced later). If generalization rela-
tionship is not constrained, then subtypes may overlap
and do not include all instances of super type.
“Complete” constraint on generalization/specialization
relationship connecting two subclasses B and C with
super class A can be expressed using the following
expression:
context A
inv: self.B exists(b|b.A=self
 or C exists(c|c.A=self))

The following OCL expression captures disjoint const-
raint between subclasses B and C of super class A:
context A
inv: B forAll(b:B|
 C forAll(c:C|b.self<>c.self))

P e r s o n

E m p l o y e e M a n a g e r

{ c o m p l e t e , d i s j o i n t }

Figure 6. Notation for integrity constraints on generalization

relationship

Reflexive associations often have constraints.
There are six types of constraints for reflexive rela-
tionship analyzed in 0 (where they are named as “ring
constraints”):

“Irreflexive” constraint prevents an instance from
participating on both sides of a relationship at the
same time, i.e., any instance of class A cannot have
association with itself. “Asymmetric” constraint

prevents the inverse of the relationship between two
different instances, i.e. an instance of A has associa-
tion with instance of B and inverse relationship cannot
exist. “Acyclic” constraint prevents a “cycle” such
that an instance cannot be the parent, grandparent etc
of itself. An acyclic constraint implies asymmetric and
irreflexive. “Intransitive” means nobody is a parent of
any of his/her grandchildren, i.e. alternative links bet-
ween instances cannot exist. “Symmetric” constraint
requires the existence of inverse association. “Anti-
symmetric” constraint prevents from inverse relation-
ship as “asymmetric” one, but differently from it al-
lows the same instance to participate in both constraint
roles.

Employee
+reviewed by

+reviews
{irreflexive}

0..n
1

Employee
+managed by

+managers
{asymmetric}

0..n

1

Figure 7. Notation for irreflexive and asymmetric
constraints on reflexive associations

A
+rb

+ra R {acyclic}

Figure 8. Reflexive relationship with acyclic constraint

UML does not provide built-in constraints for ref-
lexive associations, except possibility to specify them
as textual constraints in chosen language. As in other
cases, for graphical notation we add corresponding
tags to reflexive association relationships (Figure 7):
“Irreflexive“, “Asymmetric“, “Acyclic“, “Intransi-
tive“, “Symmetric“, and “Antisymmetric“. Before de-
fining OCL expression for acyclic constraint on refle-
xive relationship (the general case is represented in
Figure 8) we have to introduce the transitive closure
operation 0:

6. Integrity constraints on sets of objects

Equality constraint is used for groups of optional
relationships or attributes. If used between two or
more relationships it specifies equal dependency bet-
ween them. This means that if class instance partici-
pates in one relation, so it must participate in all other
relationships constrained by this constraint; instances
participating only in one relation could not exist 0, 0,
0, 0, 0. Analogously, equality constraint between
attributes indicates that if one of attributes has value
other attributes constrained by this constraint also
must do so. UML specifies equality constraint as
textual constraint in a note for class. Figure 9 presents
suggested extension of UML graphical notation for
equality constraints. Tagged value {equn} is proposed
to mark optional attributes or relationships constrained
by equality constraint. Equality constraint on group of
optional attributes c1,…, cn of object type A can be
defined by OCL expression:
context A

Representation of Integrity Constraints in Conceptual Models

inv: (self.c1.isUndefined() implies (not(self.c1.isUndefined()) implies
 self.c2.isUndefined() … and not(self.c2.isUndefined()) … and
 self.ci.isUndefined() … and not(self.ci.isUndefined()) … and
 self.cn.isUndefined())) not(self.cn.isUndefined()))
 and and
 (self.c2.isUndefined() implies (not(self.c2.isUndefined()) implies
 self.c1.isUndefined() and not(self.c1.isUndefined()) and
 Self.c3.isUndefined() … and not(self.c3.isUndefined()) … and
 self.ci.isUndefined() … and not(self.ci.isUndefined()) … and
 self.cn.isUndefined()) not(self.cn.isUndefined()))
 … and … and
 (self.ci.isUndefined() implies (not(self.ci.isUndefined()) implies
 self.c1.isUndefined() and not(self.c1.isUndefined()) and
 Self.ci-1.isUndefined() … and not(self.ci-1.isUndefined()) …and
 self.ci+1.isUndefined() … and not(self.ci+1.isUndefined()) …and
 self.cn.isUndefined()) not(self.cn.isUndefined()))
… and … and
 (self.cn.isUndefined() implies (not(self.cn.isUndefined()) implies
 self.c1.isUndefined() and (not(self.c1.isUndefined()) and
 self.ci.isUndefined() … and not(self.ci.isUndefined()) …and

 not(self.cn-1.isUndefined())) self.cn-1.isUndefined())
or

Task
name
performer{R2}
inspector{R3}

Em ployee
firstName{s ubset1}
lastName{s et1}
address[0..1]{equ1}
countryCode{R1}{equ1}
personalCode{I1;EU1}
passportNo[0..1]{D1}
socialSecurityNo[0..1]{D1}
sex
birthday
/age

0.. n1

+inspects

0.. n

+inspector

1

0.. n1

+performs

0.. n

+performer

1
{OR}

<<subset>>

R2

R3

Figure 9. Example of notation of integrity constraints on set of objects

Subset constraint between two relationships indi-
cates that set of class instances participating in both
relationships is subset of class instances participating
in one relationship 0, 0, 0, 0, 0. In other words, an
instance of class must participate in one relationship
before it can participate in another relationship.
Analogously subset constraint can be defined on
optional attributes. UML allows to specify subset
constraints between associations by attaching the
tagged value "{subset}" to the dependency arrow bet-
ween the associations 0, 0 (for unification of
representation, we rename “constraint label” used in
original source with value of tag, defined by stereo-
type of constrained element). Direction of the arrow is
from subset to set. However UML does not provide a
graphic notation for subset constraints defined by
attributes. To present these subset constraints graphi-
cally we introduce reflexive dependency for class with
tag {subset} and tagged values {setn}/{subsetn} for
attributes (groups of attributes) defining subset
constraint on set of instances (Fig. 9). Let have object
A with subset constraint on attributes v1,…,vn mar-
ked with tag {subsetn} and p1,…, p2 marked with
tag {setn}. This means that the set of object A

instances with defined values for attributes v1,…,v2
is a subset of the set of object type A instances with
defined values for attributes p1,…,p2. OCL
expression for this constraint can be the following:
context A
inv: not(self.v1.isUndefined()) and
 not(self.v2.isUndefined()) … and
 not(self.vi.isUndefined()) … and
 not(self.vn.isUndefined())
implies
 not(self.p1.isUndefined()) and
 not(self.p2.isUndefined()) … and
 not(self.pi.isUndefined()) … and
 not(self.pn.isUndefined())

Subset constraint on optional relationships can be
expressed graphically therefore we don’t need OCL
expressions.

Exclusion constraint between relationships with
other object types indicates that at any given time
every instance of class may participate in at most one
of these relationships. Analogously exclusion const-
raint between class attributes indicates that at most
one attribute can have value 0, 0, 0, 0, 0. To indicate

361

E. Miliauskaitė, L. Nemuraitė

this, UML uses an “or” constraint between the
associations, attaching the constraint tag “{or}” to a
dotted line connecting the corresponding associations.
UML or-constraints can only be used between
associations (Figure 9), and cannot be used between
recursive associations, attributes, or between attributes
and associations. For example, constraint that the
same employee can be performer or inspector can be
expressed as shown in Figure 9. For representation of
exclusion constraint on attributes in diagrams we need
to add constraint tag {orn}. The index indicates a
group of optional attributes that may have at most one
mandatory attribute. In general, exclusion constraint
on a group of object A optional attributes c1,..,cn
can be expressed using the following OCL expression:
context A
inv:(not(self.c1.isUndefined())implies
 self.c2.isUndefined() … and
 self.ci.isUndefined() … and
 self.cn.isUndefined())
and
(not(self.c2.isUndefined()) implies
 self.c1.isUndefined() … and
 self.ci.isUndefined() … and
 self.cn.isUndefined())
… and
not(self.ci data.isUndefined()) implies
 self.c1.isUndefined() … and
 self.ci-1.isUndefined() … and
 self.ci+1.isUndefined() … and
 self.cn.isUndefined())
… and
(not(self.cn data.isUndefined() implies
 self.c1.isUndefined() … and
 self.ci.isUndefined() … and
 self.cn-1.isUndefined())

 Integrity constraints on sets of instances of diffe-
rent object types include constraints on paths on rela-
tionships and, in particular, loops 0, 0. They are the
most complicated constraints that may be expressed
graphically (these types of constraints are considered
in Section 7). Certainly, there are constraints defined
by domain expert that cannot be expressed by
conventional stereotypes. The conceptual language is
needed for description of these constraints, for
example, OCL.

7. Integrity constraints on paths of
relationships

 These constraints are the most complicated const-
raints and are not considered at all in the most popular
conceptual modelling methods. Only authors of 0 and
0 have analyzed paths of relationships trying to find
out redundant, unconstrained and constrained
association loops. In this section we will investigate
constraints on paths of relationships showing the
importance of these constraints enabling to capture

important domain semantics making model more
precise.

During modelling of many classes and relation-
ships we can get relationships path from a class,
through other relationships and classes, back to the
same class where we have started. Such a path of
relationships is called loop 0 (Fig. 10-11). It is
important to find out such loops and to investigate if
association loop means redundant information. Some-
times it doesn’t and therefore we don’t need any
additional constraints, but sometimes it does and it
means that these loops have specific domain rules and
policies such that sets of associations are interrelated.
In this situation one of association from loop requires
constraint like subset or equal set constraint on path of
relationships. It means that not all instances of object
type can participate in relationship but just instances
participating in set of constrained relationships 0.
 UML doesn’t have graphical representation of
this constraint. In 0 and 0 the similar suggestions to
display this constraint are given. The notation of
constraints on relationships paths is shown in Figures
10-12.

Project Department

0..n 1

Task

0..n

1

0..n

1

0..n

11

0..n

10..n

+performedAt

+initiatorR1

R2

R3

 Figure 10. Not-redundant loop (the tasks of the project

may be performed at different departments)

Project

Task

0..n

1

0..n

1

R2

Department

0..n 10..n

+initiator

1

R1

0..n

1

0..n

+performedAt 1

R3 {equ,R1,R2}

Figure 11. Redundant loop with restricted association R3

In Figure 10, the loop is not redundant as sets De-
partment.Task and Department.Project.Task are diffe-
rent: tasks, belonging to Projects initiated by concrete
Department, may be performed at different Depart-
ment. In Figure 11, in contrast, tasks, belonging to
Projects initiated by concrete Department must be
performed at the same Department. In this case, the
equal set constraint means that the set of instances
selected by traversing a loop in one direction
(Department.Task, or R3) has to be the same as the set
of instances selected by traversing the loop in the
opposite direction (Department.Project.Task, or R1,
R2), according to the rules and policies of the domain.
This constraint may be specified in OCL:
context Department
inv: self.Project.Task = self.Task

The same constraint may be expressed in a more
practical way, by the principle of using for context

362

Representation of Integrity Constraints in Conceptual Models

class having the maximum number of instances (this
means that if Project is initiated by some Department,
then instances of Department.Project.Task, having
association path R2, R1 with instance of Department,
must have association R3 with the same instance of
Department):
context Task inv:
self.Project.initiator=self.performedAt

 The subset constraint on path of relationships
may occur in a situation, when the set of instances
found in one direction is a subset of instances obtained
by traversing in other direction.

 The second situation is displayed in Figure 12,
when we have a class with reflexive relationship and
mandatory relationship with other class. In this case
we have to check if reflexive relationship can
associate any instances. If not, besides earlier mentio-
ned constraints for reflexive relationship we need to
add a constraint on relationship path.

Project
startDate
endDate

Task
durat ion
description

1 0..n1 0..nR1

+before

+after

R2
{acyc lic,R1}

Figure 12. Example of notation for constraints on

relationships path for Tasks having reflexive relationship
and mandatory relationship with Project

 In Figure 12 acyclic reflexive association con-
straint, restricted by association R1 denotes constraint
on association between tasks: the concrete task cannot
occur repeatedly after itself or somewhere in the
sequence of tasks of particular Project (R2 {acyclic,
R1}).

OCL constraint for general case of reflexive
relationship for object type A having mandatory
relationship with object type B (Fig. 13):
context A
inv: self.ra forAll(e:A|e.B=self.B)
 and self.raClosure()
 not(includes(self))

B A1

1 .. n

R1

R2 {acyclic, R1}

rb

ra

Figure 13. Example of constraints on reflexive relationship

for class A having mandatory relationship with class B

8. The summary of stereotypes and tags for
representation of integrity constraints

All proposed stereotypes and tags are listed in
Table 1 (standard UML stereotypes as <<enumera-
tion>>, <<dataType>> are not included here). They
may be considered as potential UML profile for
precise conceptual modelling including integrity con-
straints. Stereotypes proposed for conceptual mo-
delling in 0, 0 have strong semantic issues for

discovering true types of objects in conceptual model,
but they should be merged with stereotypes for integ-
rity constraints for obtaining precise conceptual mo-
dels suitable for transformation to executable software
(every kinds of schemas and code).

The variable values of tags are different for groups
of instances of stereotype (as stereotypes are attached
to constrained elements of group on which integrity
constraint is applied). They may be derived using
OCL constraints included as part of profile. We
accept, for example, that <<Integrity Constraint
Stereotype>> is sub typed to <<Stereotype on
Integrity Constraint>> and <<Stereotype on
Constrained Element>>, and names of these
stereotypes are the same for the same type of Integrity
Constraint:
context IntegrityConstrait
inv: self.constrainedElement
 forAll(ce:Element|ce.Stereotype.name=
 self.Stereotype.name

For tags, meta attribute is introduced for Stereotype-
OnConstrainedElement:
context StereotypeOnConstrainedElement
def: icname:String

The value of tag may be derived from OCL constraint
on metamodel:
Context Class
Let i=self.IntegrityConstraint
 select(i:IntegrityConstraint
 |i.stereotypeName=’EqualSet’)
 asSequence() in
i forAll(ic|ic.ConstrainedElement
 forAll(ce:ConstrainedElement|
 ce.Stereotype.name=’EqualSet’
 and ce.Stereotype.icName=
 ’equ’.concat(i.indexOf(ic))))

9. Conclusion and future work

Precise definition of conceptual model is one step
on the way towards automation of transformation of
business information to the physical level where its’
processing may take place. In this paper UML is ana-
lyzed as the most suitable notation for constructive
conceptual modelling of problem domain and soft-
ware. It is well supported by many CASE tools and
widely accepted as standard modelling language.

For obtaining precise conceptual model, the prob-
lematic elements are integrity constraints. Currently,
they are not comprehensively studied in UML related
methodology of conceptual modelling. In current
practice, constraints are usually deferred to the phase
of detail design. In this work, the stereotypes are
proposed for extension of UML for conceptual
modelling of required variety of integrity constraints
selected from outstanding methods of conceptual
modelling.

363

E. Miliauskaitė, L. Nemuraitė

Table 1. Stereotypes and tags for conceptual modelling

Stereotype Base class Tags Type of tagged value Description

Association Association Rn Variable string (concatenation of “R”
and association number in model)

Association number (tag introduced for
reference)

Constrained
path of
associations

Association {R1,…,
Rn}

Variable sequence (inclusion of tags
of associations)

 Association constrained by path of
associations

Derivation Attribute/
association

 / Constant symbol Derived element. It must be supplemented
with expression for derivation

Disjunctive
mandatory
constraint

Attribute/
association

{Dn} Variable string (concatenation of “D”
and number of disjunctive mandatory
constraint of class/model)

Participation in disjunctive mandatory
constraint on attribute/association

Equal set
constraint

Attributes

{equn}

Variable string (concatenation of
“equ” and number of equal set
constraint of class)

Participation in equal set constraint

Equal set
constraint

Association {equ,
Ri,…Rk}

Variable tuple. The first element is
string “equ”, and the rest elements are
tags of associations of constrained
path

Association derived according to equal set
constraint on path of associations

Exclusion
constraint

Group of
attributes/
associations

{xorn} Variable string (concatenation of
“xor” and number of constrained
group of attributes of
class/associations of model)

Participation in exclusion constraint

External
uniqueness
constraint

Attribute {EUn} Variable string (concatenation of
“EU” and number of external
uniqueness constraint of model)

Participation in external uniqueness
constraint on attribute. Tag is displayed
beside attributes of object types
constrained by external uniqueness
constraint. It must be supplemented with
expression for constraint with expression
for constraint

Identifier Attribute {In} Variable string (concatenation of “I”
and number of identifier of class)

Part of identifier of class

Integrity
constraint

Constraint N/A N/A Integrity constraint, constraining one or
more elements of UML model

Internal
uniqueness
constraint

Attribute {Un} Variable string (concatenation of “U”
and number of internal uniqueness
constraint of object type)

Participation in internal uniqueness
constraint on attribute

Irreflexive,
Acyclic,
Asymmetri
c,
Intransitive,
Symmetric,
Antisym-
metric

Reflexive
association

{irreflexive
}
{acyclic}
{asymmetri
c}{intransiti
ve}{symmet
ric}
{antisym-
metric}

Constant string Constrained reflexive association

Primary
identifier

Attribute {P} Constant string Part of primary identifier of class (if it is
omitted, by default the artificial primary
identifier is accepted)

Referential
attribute

Attribute {Rn} Variable string (tag of corresponding
association)

Referential attribute may be not displayed
in the list of attributes of class if referential
attribute has no other constraints. In such
case it is accepted by default as reference
to primary identifier of corresponding
association member (as in 0).

Subset
constraint

Group of
attributes/
associations

{setn/
subsetn}

Variable string (concatenation of
“set”/”subset” and number of
constrained group of attributes of
class/associations of model)

Participation in subset constraint

364

Representation of Integrity Constraints in Conceptual Models

In UML 2.0 version, the capabilities for extension
– profiles, stereotypes, tagged values and constraints –
were improved and clarified. Simple stereotypes are
not adequate for representation of all types of integrity
constraints; in such cases the more expressive and
compact tagged values were proposed that not only
serve for visualisation but also may be used for
generation of database schemas and software code.
Values of tags are typed; in complicated cases they are
derived from elements of UML model.

The proposed list of stereotypes, tags and patterns
for OCL constraints may be considered as potential
UML profile for precise conceptual modelling inclu-
ding integrity constraints.

References
 [1] BSBR: Business Semantics of Business Rules. OMG

document bei/2004-01-04, 2004.
 [2] J. Debenham. An analysis of Database Rules. Inter-

national Database Engineering and Applications Sym-
posium (IDEAS '97), August 24−27, Montreal, Cana-
da, 1997, 113−120.

 [3] Dresden OCL toolkit, 2005, Available at:
http://dresden-ocl.sourceforge.net/index.html.

 [4] M. Gogolla, M. Richters. Expressing UML class dia-
grams properties with OCL. Clark, A., Warmer, J.
(eds.): Object Modeling with the OCL, The Rationale
behind the Object Constraint Language, Springer-
Verlag, London, LNCS 2263, 2002, 85–114.

 [5] G. Guizzardi, G. Wagner, N. Guarino, M. Sinde-
ren. An Ontologically Well-Founded Profile for UML
Conceptual Models. In: A.Person and J.Stirna (Eds.):
CAISE 2004, LNCS 3084, 2004, 112-126.

 [6] G. Guizzardi, G. Wagner, M.A. Sinderen. A Formal
Theory of Conceptual Modeling Universals. In: WSPI
'04, Available at: http://sunsite.informatik.rwth-aa-
chen.de/Publications/CEUR-WS//Vol-112/Guizzardi.
pdf, 2004.

 [7] J.L. Hainaut. DB-Main Reference Manual. Version
6.5. Dept. of Computer Science, University of Namur,
Belgium, 2002.

 [8] T.A. Halpin, A. Bloesch. Data modeling in UML and
ORM: a comparison. In Journal of Database Manage-
ment, Vol.10, No.4, 1999, 4−13.

 [9] T.A. Halpin. Integrating fact-oriented modeling with
object-oriented modeling. In: Information Modeling in
the New Millennium. Idea Group, 2001, 150−166.

[10] T.A. Halpin. Join Constraints. In: Proc. EMMSAD'02:
7th Int. IFIP WG8.1 Workshop on Evaluation of Mo-
deling Methods in Systems Analysis and De-
sign. Toronto, 2002, 121−131.

[11] T.A. Halpin. UML Data Models from an
ORM Perspective (part 1–10). In: Journal of
Conceptual Modeling, No.1, April 1998 till 10 August
1999, Available at: http://www.inconcept.com.

[12] T.A. Halpin. Verbalizing Business Rules (part 1-11).
In: Business Rules Journal, Volumes from 4, No.4,
April 2003 till 6, No.6 July 2005, 2003-2005.

[13] ISO/TR 9007. Concepts and Terminology for the Con-
ceptual Schema and Information Base. ANSI, New
York, 1987, 120.

[14] I. Jacobson et al. The unified software development
process. Addison-Wesley Professional, Boston, 1999.

[15] S.J. Mellor, M.J. Balcer. Executable UML. A foun-
dation for model-driven architecture. Addison-Wesley,
Boston, 2002.

[16] E. Miliauskaite, L. Nemuraite. Taxonomy Of Integ-
rity Constraints In Conceptual Models. In: Procee-
dings of IADIS Database Systems 2005, http://www.
iadis.org/multi2005/program_multi2005.htm.

[17] L. Nemuraite, B. Paradauskas. From Use Cases to
Well Structured Conceptual Schemas. O. Vasilecas, et
al. (eds): Information Systems Development: Advances
in Theory, Practice and Education, Springer, 2005,
303-314.

[18] B. Paradauskas, I. Nemuraitė L. Duomenų bazės ir
semantiniai modeliai. Technologija, ISBN 9955-09-
436-2, 2002, 13-45.

[19] T. Pender. UML Bible. Willey Publishing, Inc, India-
napolis, Indiana, 2003.

[20] L. Starr. Executable UML. How to build class mo-
dels. Prentice Hall, Upper Saddle River, 2002.

[21] Tag Value Language. In: UMLTM Profile for Schedul-
ability, Performance, and Time Specification, OMG
document formal/05-01-02, 2005, A1-A5.

[22] B. Thalheim. Entity-Relationship Modeling Founda-
tions of Database Technology. Springer, Berlin, 2000.

[23] J. Ullman, J. Widom. A first course in database
systems. 2nd ed. Prentice-Hall, 2002.

[24] Unified Modeling Language. Superstructure Specifi-
cation Version 2.0. OMG document ptc/04-10-02,
2004.

[25] Unified Modeling Language. OCL Version 2.0. OMG
document ptc/03-08-08, 2003.

[26] Using Rose Data Modeler. VERSION: 2001A.04.00.
The Rational Development Company, 2001.

[27] J.B. Warmer, A.G. Kleppe. Object Constraint
Language, The: Getting Your Models Ready for
MDA. Addison Wesley, Boston, 2003.

365

