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Abstract. In this paper, we present some new results obtained for the traveling salesman problem (TSP) by using 
the iterated tabu search (ITS) meta-heuristic. ITS is a promising extension to the ordinary tabu search scheme. It seeks 
near-optimal solutions by combining intensification (standard tabu search) and diversification (perturbation of solu-
tions) in a proper way. For the TSP, the main effect is achieved due to decomposition of the solution neighbourhood 
structure and considerably speeding-up the tabu search process, which is used, namely, in the role of intensification. 
This fast-iterated tabu search (FITS) technique resulted in quite encouraging solutions for the TSP instances from the 
TSP instance library TSPLIB. FITS obviously outperformed the other heuristic algorithms used in the experimentation, 
especially, on the smaller TSP instances. 
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Indroduction 

The traveling salesman problem (TSP) can be 
formulated as follows. Given an integer matrix 
D = (dij)n×n and a set Π of permutations of the integers 
from 1 to n, find a permutation π = (π(1), π(2), ..., 
π(n))∈Π that minimizes 
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The solution sopt is called a globally optimal solu-
tion (global optimum), and Sopt ⊆ S denotes the set of 
optimal solutions. In addition, a neighbourhood func-
tion Θ: S→2S is defined: it attaches for every s in S a 
set Θ(s)⊆S − the set of neighbouring solutions of s. 
Each solution s′∈Θ(s) can be reached from s by an 
operation called a move, and s is said to move to s′ 
when such an operation is performed. 

In the case of the TSP, Π plays the role of S, and z 
corresponds to f. An example of the neighbourhood 
function for the TSP is the 2-exchange neighbourhood 
Θ2: }2),(  , | {)(2 =′Π∈′′= ππρπππΘ , where π ∈ Π 
and ρ(π,π ′ ) denotes the distance between permuta-
tions π and π ′ . As to the TSP, the distance between 
two permutations (tours) is usually described as the 
number of pairs of elements (edges) that are contained 
in the first permutation but not in the second one [3]. 
Formally, a transition from the permutation π to the 
neighbouring one )(2 ππ Θ∈′  may be defined by an 
operator move(π,i,j): Π→Ν×Ν×Π , which gives π ′  
such that π′(i)=π(i), π′(i+1)=π(j), π′(j)=π(i+1), π′((j  
mod n)+1)=π((j mod n)+1), where 1≤i, j≤n ∧1<j−i< 
n−1; in addition, if j−i−2≥1, then π′(i+k+1)=π(j−k) for 
every k∈{1, ..., j−i−2} (that is, two edges at the 
positions i and j are removed and two different edges 
are added (see Figure 1)). The above operator is often 
referred to as a 2-opt(imal) move, because it enables 
to obtain an optimal solution with respect to the 2-
exchange neighbourhood Θ2. Similarly, higher order 

The interpretation of n, D  and π  is as follows: n is 
the number of cities; D  is the matrix that contains 
distances between all the pairs of cities; j = π(i) 
denotes city j to visit at step i. Usually, permutations 
are called tours, and the pairs (π(1),π(2)), ..., 
(π(i),π(i+1)), ..., (π(n),π(1)) are referred to as edges. 
Thus, solving the TSP means searching for the 
shortest closed tour in which every city is visited 
exactly once. 

The TSP is a representative example of combinato-
rial optimization (CO) problems. In a general case, an 
instance of a CO problem is described as a pair (S, f), 
where S is the set of feasible solutions (solution 
space), and f: S→ℜ is the objective (cost) function 
which assigns a real value to each solution. The goal is 
to find a solution sopt ∈ S  such that 
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(we assume that f seeks a global minimum).  
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moves may be defined: 3-opt, 4-opt, and so on. For a 
2-opt move, we will also use a compact notation mij. 
The expression ijm⊕=′ ππ  would mean that π ′  is 
obtained from π by applying move(π,i,j). 

π(j+1  ) 
 

π(j) 
 
 

existing edge 
 
 

edge to be
deleted 

 

edge to be
added

 
 
 
 
 

π(i+1)  π(i) 
Figure 1. An example of 2-exchange move 

For many years, the TSP serves as a "platform" for 
investigation of the artificial intelligence techniques. 
Since the TSP is NP-hard [8] and cannot be solved to 
optimality within polynomial computation time, 
heuristic algorithms have widely been used. Heuristics 
are not able to guarantee optimality, instead they often 
allow to find near-optimal solutions at a reasonable 
computational cost. Both specific, "tailored" procedu-
res (for example, tour construction heuristics [2, 29], 
Lin-Kernighan algorithm [17], "elastic nets" [5]) and 
general purpose methods (like simulated annealing 
[26], tabu search [6, 15], genetic algorithms [7]) have 
been tried for solving the TSP. (More exhaustive 
overviews of the heuristic algorithms for the TSP can 
be found in [14, 16, 25, 28].) 
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[26], tabu search [6, 15], genetic algorithms [7]) have 
been tried for solving the TSP. (More exhaustive 
overviews of the heuristic algorithms for the TSP can 
be found in [14, 16, 25, 28].) 

In this paper, an improved tabu search (TS) algo-
rithm version for the TSP is proposed. The paper is 
organized as follows. Firstly, we outline the iterated 
tabu search (ITS) framework, which is based on 
intensification and diversification (I&D) policy. In 
Section 2, an enhanced ITS procedure (called fast ite-
rated tabu search (FITS)) for the traveling salesman 
problem is described. Computational results are pre-
sented in Section 3. Finally, Section 4 completes the 
paper with concluding remarks. 
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1. The iterated tabu search framework 1. The iterated tabu search framework 

Before describing the iterated tabu search frame-
work, let us remind the basic features of the "cano-
nical" tabu search. The central idea of TS is allowing 
climbing moves when no improving neighbouring 
solution exists, i.e. a move is allowed even if a new 
solution s′ from the neighbourhood of the current 
solution s is worse than the current one. Naturally, the 
moves resulting in going back to the previous solu-
tions are to be prohibited in order to avoid cycling. 
Such moves become "tabu" − hence the name of the 

method. The TS algorithm starts from an initial solu-
tion s° in S. At each step of the procedure, a subset 
Θ (s) ⊆ Θ(s) of the neighbouring solutions of the 
current solution s is considered, and the move to the 
solution s′ ∈ Θ (s) that improves most the objective 
function value f is chosen. s′ must not necessary be 
better than s: if there are no improving moves, the 
algorithm chooses the one that least degrades the 
objective function. In order to eliminate an immediate 
returning to the solution just visited, the reverse move 
must be forbidden. This is done by storing the cor-
responding solution/move (or its "attribute") in a 
memory called a tabu list, which keeps information on 
the last h moves that have been done during the search 
process (h is called a tabu list size (or tenure)). If a 
move is actually contained in this list, it is considered 
as tabu. This way of proceeding hinders the algorithm 
from going back to a solution reached within the last h 
iterations. The straightforward prohibition, however, 
may lessen the efficiency of the search; so, an aspi-
ration criterion is introduced to permit the tabu status 
to be ignored under certain circumstances. Typically, a 
move to s′ is permitted if f(s′) < f(s∗), where s∗ is the 
best solution found so far. The process is stopped as 
soon as a termination criterion is satisfied, for 
example, an a priori number of iterations have been 
performed. For more details on the principles of TS, 
the reader is addressed to [9, 11, 12]. 
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Figure 2. Illustration of the extremely rugged "landscape" 

The ordinary tabu search implementations usually 
face some difficulties, first of all, a huge number of 
locally optimal solutions over the solution set. Isolated 
optima and highly rugged landscapes of the objective 
function make things even more complicated (see 
Figure 2). This is why the standard tabu search algo-
rithms suffer from the stagnation phenomenon despite 
the fact that these algorithms are capable of escaping 
separate local optima. In addition, the repeating 
sequences of the search configurations, i.e. cycles may 
occur frequently, especially in the cases when the tabu 
list size is too small. There is a third situation where 
getting stuck in local optima and the cycles are absent 
but the search trajectories are still confined in limited 
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portions of the search space. This situation is known 
as "chaotic attractors" (or "deterministic chaos"). 

In order to try to overcome these barriers, an ex-
tension of the straightforward TS − the iterated tabu 
search − can be proposed. Basically, ITS relies on the 
intensification and diversification (I&D) policy. This 
concept is more than fifteen years old and goes back 
to Baum [1]. Later, various enhancements of the basic 
idea have been proposed, among them, iterated Lin-
Kernighan [13], large step Markov chains [19], vari-
able neighbourhood search (VNS) [24], "ruin and 
recreate" (R&R) principle [30], iterated local search 
(ILS) [18]. Note that most of these methods have been 

applied with success to the traveling salesman 
problem. 

The heart of I&D is to obtain better optimization 
results by a perturbation (reconstruction) of an exis-
ting solution and a following improvement procedure. 
The rationale is that continuing the search from the 
reconstructed solution may allow to find new solu-
tions that are better than those obtained in the previous 
iterations. By applying this type of process in an 
iterative way, one seeks for high quality solutions. The 
I&D framework is distinguishing for three main com-
ponents (factors): intensification, diversification, and 
candidate selection (see Figure 3). 

 
 
 
 
 
 
 
 
 
 
 
 

candidate selection 

diversification 

intensification  
(tabu search)

end

saving the best  
so far solution

start 

 
 
 
 
 

I&D is initiated by the local improvement of an initial solution. As a result, the first optimized solution, say s•,
is achieved. Further, a given solution undergoes a "destruction", and a new solution, say s~, is obtained. The
reconstructed solution s~ serves as an input for the subsequent intensification procedure, which starts
immediately after the reconstruction is finished. This procedure returns a new optimized solution s•, which (or
some other local optimum), in turn, is reconstructed, and so on. The new better solution (s∗) found at the
current iteration is saved in a memory. The process continues until a stopping condition is met. 

Figure 3. Basic flowchart of I&D 

The goal of intensification is to concentrate the 
search in a localized region, i.e. the neighbourhood of 
the current solution. Mathematically, intensification 
can be viewed as a mapping ψ: S → S such that 
f(s) ≤ f(ψ(s)), where s ∈ S is the current solution. If 
this intensification is performed by means of the stan-
dard tabu search, one just gets the ITS method. (TS 
seems to be an ideal local optimizer, because the 
power of TS has been demonstrated for plenty of opti-
mization problems.) Intensification is always applied 
to the solution just reconstructed (i.e. the "output" of 
diversification), except the first iteration only, at 
which intensification is applied to the initial solution. 

Diversification is responsible for escaping from 
the current local optimum and moving towards new 
regions in the solution space. It may be viewed as a 
certain kind of perturbation of solutions. (Instead of 
saying "perturbation", other terms may be utilized: 
"mutation", "reconstruction" [20], "ruin" [30], or "kick 
move" [19].) Perturbation can formally be defined as 
an operator ζ: S → S such that ζ(s) ∈ S and ζ(s) ≠ s, 
where s ∈ S is the solution that undergoes the pertur-
bation. It is important that a proper strength of pertur-
bations is kept up: if the perturbations are too strong, 
the resulting algorithm might be similar to a random 

multistart, whereas if they are too weak, the process 
would cyclically return to the previous solutions. Per-
turbations are applied to locally optimal solutions on-
ly, as a result, ITS is the "walking" over an optimized 
search space, which consists solely of local optima. 
Such a process appears to be much more effective than 
when searching in a pure random solution space. 

Regarding the candidate selection, two main alter-
natives exist: a) an exploitation and b) an exploration. 
The exploitation is achieved by choosing only the cur-
rently best local optimum − the best so far (BSF) solu-
tion − as a candidate for the reconstruction. In the case 
of exploration, a variety of policies exist. In fact, each 
locally optimized solution (not necessary the best lo-
cal optimum) can be considered as a potential pertur-
bation candidate. An example of exploration strategies 
is a "where you are" (WYA) approach: in this case, 
every new local optimum (no matter its quality) is ac-
cepted for perturbation. However, more sophisticated 
strategies are available, for example, selection from a 
memory of locally optimal solutions, like in the popu-
lation-based algorithms. Even generation of a new so-
lution from scratch (i.e. random restarts of the search) 
could be considered as a very special case of the 
candidate selection. The selection may be formalized 
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by introducing an operator ξ: 2S → S. If exploitation is 
used, then the following equation holds: ξ(⋅) = s•, 
where s• (s• ∈ S) is the BSF solution. 

ITS is a high level meta-heuristic − not a pure heu-
ristic. The structure of this meta-heuristic is surpri-
singly simple. However, such a generalized method, 
like ITS, succeeds in search if only it involves the 
specific problem knowledge. The algorithm designer 
must be very careful by implementing both the tabu 
search and diversification procedures. These proce-
dures should be as much problem-oriented as possible. 
The examples of such "tailored" algorithms are dis-
cussed in the next section. 

2. An improved iterated tabu search 
algorithm for the TSP 

2.1. Initial solutions for the iterated tabu search 
During the preliminary experimentation, we tried 

the well-known insertion heuristic [29] for the const-
ruction of the initial solutions. However, we didn't ob-
served any improvement neither in the quality of the 
final results of ITS, nor in the total computation time 
when comparing with a pure random generation of the 
initial solutions. In particular, the last variant was used 
in the main experiments. 

2.2. Intensification (local improvement) 
By designing the intensification algorithm, our 

attention was turned to the reducing the computational 
cost. This improvement does not directly refer to the 
ITS paradigm but to the tabu search itself (in particu-
lar, the way the tabu search explores the neighbour-
hood). As a rule, the tabu search explores the whole 
neighbourhood of the current solution and selects the 
best available solution that is not forbidden. This can 
be quite time consuming, especially if we are dealing 
with large problems. We present the fast tabu search 
(FTS), which considerably speeds up the neighbour-
hood search process. 

FTS is founded on the fast local search (FLS) [31] 
and "don't look bit" [4] methodologies. The key idea is 
that the current neighbourhood is broken down into a 
number of small sub-neighbourhoods (SNs)1. The type 
of the neighbourhood and the number of sub-neigh-
bourhoods are arbitrarily chosen by the user (we use 
the 2-exchange neighbourhood Θ2, which is divided 
into 0.1n sub-neighbourhoods). The information 
needed by FTS is saved in a sub-neighbourhood 
memory (SNM), which can be thought of as an ana-
logue of frequency-based (long-term) memory and 
candidate lists [10]. The structure of SNM is very 
simple. It is organized as three one-dimensional ar-
rays. The entries of these arrays contain the following 
data: starting location (position) of the current sub-

neighbourhood within the whole neighbourhood (a 
pair of indices (i, j) is enough to unambiguously de-
fine this location), the size of the sub-neighbourhood 
(it is equivalent to the number of steps to be perfor-
med by exploring the current SN), and the tabu tenure 
for the current sub-neighbourhood. 

Our FTS method can be seen as a two-level pro-
cess. The higher level process maintains the set of the 
sub-neighbourhoods in the given order and guides the 
lower level tabu search procedure, which, in turn, is 
responsible for the exploration of the current sub-
neighbourhood. 

The following are the main features of the high le-
vel process. At the beginning, all the tabu tenures are 
set to zero, i.e. all sub-neighbourhoods are active. The 
idea is to scan continuously the sub-neighbourhoods, 
searching only those that are active (not tabu), i.e. the 
actual tabu tenure is less or equal to the current ite-
ration number. The sub-neighbourhoods that do not 
meet this criterion are not being searched. If a sub-
neighbourhood is examined − this is done by means of 
the lower level tabu search − and does not contain any 
improving moves, then it becomes tabu (the non-im-
proving move, however, is still performed). Other-
wise, it remains active and the improving move is 
performed. In both cases, the tabu search process does 
not restart but it continues with the next sub-neigh-
bourhood. As the search progresses, more and more 
SNs become inactive (if the tenure is sufficiently 
large) until all the sub-neighbourhoods are tabu. If no 
active sub-neighbourhood exists, then a perturbation 
based on a double-bridge move (see Section 2.3) takes 
place and all the tabu tenure are again set to zero. The 
overall process is continued until a termination 
criterion is satisfied, for example, a pre-defined num-
ber of iterations have been executed. The solution ob-
tained to this point serves as the current locally 
optimal solution, which is to be reconstructed if WYA 
strategy is applied. 

It should be noted that our approach is quite diffe-
rent from that proposed by Fiechter [6], in which tours 
are divided in a number of separate open sub-tours 
(slices) and the tabu search is done completely inde-
pendently on these sub-tours. 

The low level tabu search procedure deals with ra-
ther short-term (recency-based) memory. It is orga-
nized as an n×n integer matrix STM. Initially, all the 
entries of STM are set to zero (the initialization is 
performed once before starting the high level process). 
As the search progresses, the entries STM[i][j] store 
the current number of the iteration plus the tabu tenure 
hSTM. Thus, a move mij (this is equivalent to adding the 
edges (π(i), π(j)), (π(i+1), π(j+1)) and deleting the 
edges (π(i), π(i+1)), (π(j), π(j+1))) is tabu if the value 
of STM[i][j] is equal or greater than the current 
iteration number. By using this type of the tabu list, 
testing whether a move is tabu or not requires only 
O(1) time − this fact is very important for the fast tabu 
search. 

                                                           
1  Remind that the technique of using small portions of the 

neighbourhood was also tried in [21], but without 
maintaining a sub-neighbourhood memory. 
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function FTS(π, n, τ); // fast tabu search procedure for the TSP // 
  // input: π − the current permutation (tour); n − the problem size; τ − the number of iterations; // 
  //     hSTM, hSNM − the tabu tenures for STM and SNM; ω − the alternative intensification factor // 
  //     γ − the expected mild stagnation period (emsp) factor // 
  // output: π• − the best solution found // 
  SNM_Size := 0.1n; // SNM_Size denotes the size of the sub-neighbourhood memory // 
  initialize the sub-neighbourhood memory (SNM); 
  SNM_Pointer := 0; // set the SNM pointer to an initial value // 
  STM := 0; A := 0; c := 1; c′ := 1; c′′ := 1; 
  α:= 0.05, r := ω⋅hSTM; emsp := γ τ; improved := FALSE; 
  π• := π; 
  while (c ≤ τ) or improved = TRUE then begin // main cycle // 
    repeat 
      SNM_Pointer := (SNM_Pointer mod SNM_Size) + 1; 
      if SNM.Tenure[SNM_Pointer] ≤ c then break 
    until all the SNM entries are scanned; 
    if (all SNM tenures are greater than c) or (c − c′ ≥ emsp) then begin 
       apply double-bridge mutation to π; 
       re-initialize the sub-neighbourhood memory; 
       SNM_Pointer := 1; 
       c′ := c 
    end; 
    // the search will be performed in the current active sub-neighbourhood defined by the SNM pointer // 
    i:= SNM.I[SNM_Pointer]; // indices i, j define the sub-neighbourhood to be explored // 
    j:= SNM.J[SNM_Pointer]; 
    n ; ),1,1(: nni −==′ IF
    θ:= SNM.Iter_N[SNM_Pointer]; // θ  is the size of the current sub-neighbourhood // 
    ∆zmin := ∞; 
    for w := 1 to θ do begin // find the best non-tabu move in the current sub-neighbourhood // 
      ))1,1,2(,,(: +−<′<= iniinji IFIF ; ),1,1(: nnin −==′ IF ; )2,1,(: ++′<= ijnjj IF ; 
      ∆z := z( ijm⊕π ) − z(π); 
      tabu := IF(STM[i][j] ≥ c and RANDOM() ≥ α, TRUE, FALSE); 
      aspired := IF((z(π) + ∆z < z(π•)) or (z(π) + ∆z < A[i][j]), TRUE, FALSE); 
      if ((∆z < ∆zmin) and NOT(tabu)) or aspired then begin ∆zmin := ∆z; u := i; v := j     
               end 
    end; // for // 
    improved := IF(∆zmin < 0, TRUE, FALSE); 
    if improved 
       then SNM.Tenure[SNM_Pointer] := 0   // the sub-neighbourhood stays active // 
       else SNM.Tenure[SNM_Pointer] := c + hSNM; // the sub-neighbourhood becomes inactive // 
    if ∆zmin < ∞ then begin 
      π := uvm⊕π ;  // replace the current permutation (tour) by the new one // 
      STM[u][v] := c + hSTM; // make the move mij tabu // 
      A[u][v] := z(π)  // update the corresponding position in the aspiration list // 
    end; // if // 
    if (improved = TRUE) and (c − c′′ ≥ r) then begin 
      apply the alternative intensification (two-opt) procedure to π; 
    c′′ := c    
    end; 
    if z(π) < z(π•) then begin π• := π; c′ := c end; // save the best so far solution // 
    c := c + 1 
  end; // while // 
  return π• 
end. 

 
Figure 4. Template of the fast tabu search algorithm for the TSP 
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The basic steps of the low level tabu search proce-
dure are as follows:  
• find a neighbour π ′  of the current solution π in 

such a way that )(minarg
)(2

ππ
ππ

′′=′
∈′′

z

?

 and the cor-

responding move from π to π ′  is not tabu or the 
aspiration criterion holds; 

• update the short-term memory (matrix STM) by 
including the move muv, where muv is the move 
from the solution π to the solution π ′ ; 

• replace the current permutation π by the neigh-
bour π ′ , and use as a starting solution for the 
future steps; 

• save the current solution if it appears better than 
the best solution found so far. 

Our aspiration criterion is as follows: a move mij is 
allowed (even if it is tabu) if the best so far solution 
has been found, or mij results in the objective function 
value that is less than the appropriate value in the 
aspiration list, i.e. ]][[)( jiAmz ij <⊕π . The aspiration 
value A[i][j] is updated each time the move mij is 

performed, that is, it is equivalent to the objective 
function value at the moment of performing mij. 

We are also using a trick proposed in [23]: the tabu 
status is ignored (rejected) with a small probability 
even if the aspiration criterion does not hold. In our 
experimentation, the value of this rejection probabi-
lity, α, was set to 0.05. 

Another enhancement of the low level TS is the 
embedding of an alternative intensification mechanism 
[22]. 2-opt based steepest descent (SD) procedure is 
tried in this role. The rationale of applying 2-opt algo-
rithm is to prevent an accidental miss of local optima 
and to intensify the search even more at the moments 
of decreasing of the values of the objective function. 
The alternative intensification procedure is omitted if 
it already took place within the last r iterations 
(r = ωhSTM, where ω is the alternative intensification 
frequency factor). 

The detailed template of the FTS algorithm is gi-
ven in Figure 4. 

 

function ITS(π, n, Q, τ, hSNM, hSTM, ω, η, γ, ξ1, ξ2); // iterated tabu search procedure for the TSP // 
  // input: π − the current (initial) permutation (tour); n − the problem size; // 
  //     Q − the total number of iterations; τ − the number of iterations for the TS procedure; // 
  //     hSTM, hSNM − the tabu tenures for STM and SNM; ω − the alternative intensification factor // 
  //     η − the expected deep stagnation period (edsp) factor, γ − the mild stagnation period factor // 
  //     ξ1, ξ2 − the perturbation strength factors // 
  // output: π∗ − the best permutation found // 
  π• := FTS(π, n, τ); // improve the initial solution // 
  π := π•; π∗ := π•; 
  q′ := 1; µa := MAX(4,ξ1⋅n); µb := MAX(4,ξ2⋅n); µ := µa−1; edsp := η⋅n; 
  for q := 1 to Q do begin // main cycle // 
    )(IF πππππ ,),()(: •• <= zz ;// choose the candidate for the perturbation // 
    )(IF ab µµµµµ ,1,: +<= ;  // update the perturbation strength // 
    if (q − q′ ≥ edsp) then begin // deep stagnation condition is met // 
         apply NN-reconnect procedure to π with the strength 1.5µ, 
         get resulting solution π~; 
         apply random 5-opt moves to π~; 
         q′ := q 
       end 
       else apply NN-reconnect procedure to π with the strength µ, 
            get resulting solution π~; 
    π• := FTS(π~, n, τ); // try to improve the reconstructed solution by fast tabu search // 
    if z(π•) < z(π∗) then begin 
      π∗ := π•; // save the best so far permutation // 
      µ := µa−1; // reset the perturbation strength // 
      q′ := q // q′ denotes the iteration at which the new better solution is found // 
    end // if // 
  end; // for // 
  return π∗ 
end. 

Figure 5. Template of the fast iterated tabu search algorithm for the TSP 
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2.3. Diversification (solution perturbation) 

For the diversification, we use three different sort 
perturbations of solutions: a nearest-neighbour-recon-
nect (NN-reconnect) procedure, double-bridge (4-opt) 
moves, and random 5-opt moves. 

In FITS, the NN-reconnect algorithm serves as a 
main diversification instrument. This algorithm (in 
[21], it is entitled as a randomized greedy reconnect 
procedure) consists of three main steps (see also Figu-
re 6): 1) disintegration; 2) nearest neighbour (NN) 
procedure; 3) recreation. In more details, the current 
solution is ruined (destroyed) in a stochastic way − so 
that two sub-tours (segments) are obtained. Further, 

the cities of one segment are reconnected by using the 
nearest neighbour heuristic [29]; consequently, a new 
sub-tour is created. Finally, this locally optimized seg-
ment is copied back to its original position, i.e. the 
tour is recreated. The only control parameter for the 
NN-reconnect procedure is the size of the tour seg-
ment to be reconnected. We let this size vary in some 
interval [µa,µb] ⊆ [4,n]; here, the values of µa, µb are 
related to the problem size n, i.e. µa = max(4,ξ1n) and 
µb = max(4,ξ2n), where ξ1, ξ2 (0<ξ1≤ξ2≤1) are user-
defined coefficients. The detailed template of the NN-
reconnect procedure can be found in [21]. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. The graphical interpretation of the NN-reconnect perturbation 

The NN-reconnect perturbation cannot be undone 
easily by 2-opt based local (tabu) search. Furthermore, 
this perturbation does not increase the tour length 
significantly, since it incorporates the intelligent NN 
heuristic instead of a blind random mutation. These 
two properties − fundamentally different change na-
ture and small strength (low degree of disruptiveness) 
− makes the NN-reconnect procedure a robust diversi-
fication operator. 

In addition to the NN-reconnect procedure de-
scribed, the alternative perturbations (the so-called 
double-bridge (DB) and random 5-opt moves) are 
applied under certain conditions; in particular, we 
employ these perturbations when the stagnation of the 
search is observed. The stagnation is said to take place 
if the best so far solution remains unchanged for a 

relatively long time. Depending on this time, we dis-
tinguish between a mild and deep stagnation. 

The double-bridge perturbation cuts four edges 
(thus, it is a particular case of a 4-opt move) and intro-
duces four new edges as shown in Figure 7a. Most of 
the I&D-based algorithms for the TSP have incorpo-
rated this kind of perturbation. Surprisingly, it has 
been found almost equally effective for different ins-
tance sizes. We apply the DB perturbation in the case 
of the mild stagnation being detected during the exe-
cution of the low level TS procedure. In addition, the 
DB move is utilized if all the sub-neighbourhoods be-
come inactive while in the higher level TS process 
(see Section 2.2). 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. Examples of double-bridge (a) and 5-opt (b) moves 
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Finally, we also make use of random 5-opt moves 
(coupled with the NN-reconnect perturbation) in the 
cases where the situation of the deep stagnation is 
identified. 5-opt moves are in similar spirit with DB 
moves, except that one deals with five edges chosen in 
a pure random way (see Figure 7b). 

2.4. Candidate selection 
As to the candidate selection, we have chosen the 

exploitation strategy. That is, only the currently best 
solution (BSF-solution) has a chance to be accepted 
for the subsequent perturbation. We found that, at least 
for the smaller TSP instances, the exploitation strategy 
yields better results than the alternative exploration 
(WYA) strategy. However, the other intelligent candi-
date selection schemes (for example, combination of 
exploitation and exploration) are worth examining, es-
pecially at the longer ITS runs. 

The template of the resulting fast iterated tabu 
search algorithm is presented in Figure 5. The default 
values of the control parameters for this algorithm are 
as follows: Q = 100; τ = 0.5n; hSNM = 0.05n; 
hSTM = 0.1n; ω = 0.8; η = 0.08; γ = 0.2; ξ1 = 0.2; 
ξ2 = 0.25. 

3. Computational experiments 
To examine the effectiveness of the fast iterated 

tabu search algorithm, a number of experiments have 
been carried out. We used the TSP instances taken 
from the publicly available library of the TSP 
instances, TSPLIB [27]. In the experiments conducted, 
the following five heuristic algorithms were tried: 
• the random multi-start (RMS) algorithm based on 

2-opt moves; 
• the simulated annealing (SA) algorithm; 
• the straightforward tabu search (STS) algorithm 

(without diversification mechanism); 
• the iterated tabu search (ITS) algorithm (with 

NN-reconnect based diversification procedure); 
• the fast iterated tabu search (FITS) algorithm. 
All the algorithms are coded by A. Misevicius in the 
programming language Free Pascal. 

Our standard performance measures of the 
algorithms are used: a) the average deviation of 
solutions from a provably optimal solution − δ  
( %][ )(100 optopt zzz −=δ , where z  is the average 
objective function value (i.e. the tour length) over 10 
independent runs of the corresponding algorithm, and 
zopt is the optimal objective function value (values zopt 
are from [27])); b) the number of solutions that are 
within 1% optimality (over 10 runs) − C1%; c)  the 
number of the optimal solutions − Copt. 

In the experiments, the similar conditions are gua-
ranteed for all the algorithms tested: they use the 
identical initial solutions, runs on the same computer, 
and require approximately equivalent execution (CPU) 
time. 

The results of the comparison are presented in 
Table 1. They confirm the relatively high efficiency of 
the new proposed algorithm with respect to the perfor-
mance measures used (especially, the average devia-
tion). It can be seen that FITS obviously outperforms 
RMS, STS, and SA, in particular, for the smaller 
instances. It also appears to be superior to the earlier 
iterated tabu search algorithm version presented in 
[21]. To achieve more fairness, the experiments on the 
larger instances, as well as comparison with the other 
powerful algorithms would be useful. 

Although the results of FITS for the TSP seem to 
be quite encouraging, there is still a room for the 
further improvements. 

Firstly, the quality of the results could be increased 
by a more careful tuning of the control parameters to 
the particular problems. This is especially true for the 
tabu tenure, the perturbation strength, and the number 
of sub-neighbourhoods. We may also expect to im-
prove the results by increasing the total number of 
tabu search iterations. However, there is always a dan-
ger of encountering deep stagnations if the run time is 
augmented. During our experiments, we observed that 
even in the cases of the moderate run times, stagnation 
still reveals itself, especially, for the larger problems 
(n > 200) (see Figure 8). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Illustration of the stagnation situation for different TSP instances.  
Note. Tick marks correspond to the moments (iterations) at which a new (better) objective function value is found 
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Table 1. Comparison of the algorithms for the TSP (Part I). The best results obtained are printed in bold face.  
 CPU times per one run are given in seconds. (900 MHz PENTIUM computer was used in the experimentation) 

Instance n zopt 
δ , C1%/Copt 

 RMS SA STS ITS FITS 
CPU time 

a280 280 2579 7.984, 0/ 0 0.314, 9/ 2 3.715, 0/ 0 0.305, 9/ 1 0.136, 10/ 7 7.8 
att48 48 10628 0.810, 6/ 0 0.436, 9/ 3 0.472, 9/ 0  0  0 0.06 
bayg29 29 1610 0.335, 10/ 4 0.031, 10/ 9 0.120, 10/ 6 0.031, 10/ 9  0 0.02 
bays29 29 2020 0.069, 10/ 8 0.059, 10/ 8  0  0  0 0.02 
berlin52 52 7542 0.959, 7/ 5  0 1.003, 7/ 6  0  0 0.08 
bier127 127 118282 2.390, 0/ 0 1.277, 2/ 0 1.644, 3/ 0 0.064, 7/ 2 0.030, 10/ 9 0.6 
brazil58 58 25395 0.120, 10/ 4  0  0  0  0 0.09 
brg180 180 1950 10.205, 0/ 0 13.077, 0/ 0  0  0  0 2.3 
burma14 14 3323  0  0  0  0  0 0.003 
ch130 130 6110 3.231, 0/ 0 0.453, 8/ 1 2.132, 6/ 0 0.136, 10/ 3 0.049, 10/ 9 1.0 
ch150 150 6528 4.884, 0/ 0 0.695, 9/ 0 2.032, 3/ 0 0.129, 10/ 4 0.050, 10/ 8 1.5 
d198 198 15780 2.404, 0/ 0 0.181, 10/ 1 0.770, 9/ 0 0.091, 10/ 3 0.069, 10/ 8 3.8 
d493 493 35002 5.575, 0/ 0 0.737, 9/ 0 3.176, 7/ 6 0.656, 3/ 0 0.597, 7/ 1 58 
dantzig42 42 699 0.129, 9/ 9 0.072, 10/ 9  0  0  0 0.04 
eil51 51 426 2.653, 0/ 0 0.093, 10/ 7 0.657, 7/ 0  0  0 0.06 
eil76 76 538 3.941, 0/ 0 0.376, 9/ 3 1.281, 2/ 0  0  0 0.2 
eil101 101 629 4.897, 0/ 0 0.493, 8/ 2 2.005, 0/ 0 0.107, 9/ 2 0.017, 10/ 9 0.4 
fl417 417 11861 2.300, 0/ 0 1.139, 5/ 0 1.117, 4/ 0 0.129, 10/ 2 0.138, 10/ 1 31 
fri26 26 937  0  0  0  0  0 0.012 
gil262 262 2378 5.938, 0/ 0 0.538, 9/ 0 3.990, 0/ 0 0.344, 5/ 1 0.236, 9/ 1 6.8 
gr17 17 2085  0  0  0  0  0 0.004 
gr21 21 2707  0  0  0  0  0 0.007 
gr24 24 1272 0.003, 10/ 9  0  0  0  0 0.01 
gr48 48 5046 0.404, 10/ 0 0.220, 9/ 7 0.421, 10/ 3  0  0 0.07 
gr96 96 55209 2.068, 0/ 0 0.594, 9/ 2 2.172, 2/ 0 0.013, 10/ 9  0 0.4 
gr120 120 6942 3.755, 1/ 0 0.964, 3/ 0 1.229, 3/ 0 0.056, 7/ 6 0.100, 10/ 9 0.7 
gr137 137 69853 3.175, 0/ 0 0.879, 6/ 0 1.422, 2/ 0 0.008, 10/ 9  0 1.2 
gr202 202 40160 4.421, 0/ 0 0.513, 10/ 0 2.790, 0/ 0 0.099, 10/ 5 0.098, 9/ 7 3.2 
gr229 229 134602 4.439, 0/ 0 0.780, 8/ 0 3.200, 0/ 0 0.345, 9/ 0 0.198, 8/ 4 4.9 
gr431 431 171414 5.724, 0/ 0 1.300, 2/ 0 4.524, 0/ 0 0.820, 3/ 0 0.546, 5/ 0 42 
hk48 48 11461 1.587, 1/ 0 0.031, 10/ 6 0.218, 10/ 3  0  0 0.07 
kroa100 100 21282 1.257, 4/ 0 0.429, 10/ 2 0.808, 7/ 1  0  0 0.5 
kroa150 150 26524 3.921, 0/ 0 0.658, 8/ 0 2.038, 2/ 0 0.013, 10/ 9  0 1.5 
kroa200 200 29368 4.679, 0/ 0 0.725, 7/ 1 2.378, 1/ 0 0.022, 10/ 6 0.002, 10/ 9 3.5 
krob100 100 22141 2.331, 1/ 0 0.364, 6/ 0 1.366, 5/ 0 0.036, 10/ 5  0 0.5 
krob150 150 26130 3.182, 0/ 0 0.840, 3/ 1 1.081, 2/ 0 0.024, 10/ 6 0.021, 10/ 9 1.5 
krob200 200 29437 4.974, 0/ 0 0.916, 3/ 0 3.890, 0/ 0 0.509, 7/ 2 0.143, 10/ 5 3.4 
kroc100 100 20749 2.204, 1/ 0 0.697, 10/ 1 0.478, 10/ 1  0  0 1.5 
krod100 100 21294 2.421, 1/ 0 0.547, 7/ 2 1.285, 5/ 1 0.019, 10/ 8  0 1.5 
kroe100 100 22068 2.390, 1/ 0 0.601, 6/ 1 1.110, 5/ 0 0.001, 10/ 9  0 1.5 
lin105 105 14379 1.376, 3/ 0 0.189, 10/ 4 0.974, 5/ 1  0  0 1.55 
lin318 318 42029 5.075, 0/ 0 1.288, 0/ 0 3.812, 0/ 0 0.769, 3/ 0 0.433, 7/ 1 13.6 
pcb442 442 50778 7.848, 0/ 0 1.029, 7/ 6 2.392, 0/ 0 0.699, 6/ 0 0.487, 9/ 0 40 
pr76 76 108159 1.203, 6/ 0 0.187, 10/ 6 0.379, 10/ 4  0  0 0.2 
pr107 107 44303 1.236, 3/ 0 0.103, 10/ 8 0.442, 9/ 3  0  0 0.6 
pr124 124 59030 0.733, 8/ 1 0.225, 6/ 1 0.718, 8/ 2  0  0 1.0 
pr136 136 96772 3.819, 0/ 0 0.752, 4/ 1 1.046, 2/ 0 0.005, 10/ 9  0 1.1 
pr144 144 58537 0.241, 10/ 0 0.404, 10/ 2 0.182, 10/ 3 0.000, 10/ 9  0 1.4 
pr152 152 73682 0.981, 5/ 0 0.297, 9/ 3 1.093, 4/ 0 0.029, 10/ 8  0 1.6 
pr226 226 80369 1.365, 2/ 0 0.947, 3/ 0 1.437, 1/ 0 0.032, 10/ 7 0.005, 10/ 9 5.3 
pr264 264 49135 5.463, 0/ 0 0.099, 8/ 3 1.002, 6/ 0 0.009, 10/ 9  0 8.0 
pr299 299 48191 5.684, 0/ 0 0.612, 7/ 2 3.184, 1/ 0 0.066, 10/ 3 0.043, 8/ 8 10.4 
pr439 439 107217 5.978, 0/ 0 2.179, 0/ 0 2.792, 0/ 0 0.572, 7/ 0 0.335, 10/ 1 42 
rat99 99 1211 4.550, 0/ 0 0.429, 7/ 4 0.533, 9/ 1  0  0 0.4 
rat195 195 2323 7.645, 0/ 0 0.908, 5/ 1 2.361, 0/ 0 0.075, 10/ 1 0.006, 10/ 7 3.0 
rd100 100 7910 3.195, 0/ 0 0.939, 3/ 0 2.100, 3/ 0 0.001, 10/ 9  0 0.4 
rd400 400 15281 6.746, 0/ 0 0.777, 6/ 0 3.759, 0/ 0 0.714, 7/ 0 0.512, 8/ 1 41 
si175 175 21407 0.515, 10/ 0 0.044, 10/ 8 0.112, 10/ 2 0.004, 10/ 4  0 2.2 
st70 70 675 0.889, 6/ 0 0.415, 9/ 2 0.596, 7/ 1  0  0 0.18 
swiss42 42 1273 0.110, 9/ 8  0  0  0  0 0.05 
ts225 225 126643 2.139, 1/ 0 1.360, 1/ 0 1.207, 6/ 0  0  0 4.8 
tsp225 225 3916 5.789, 0/ 0 1.147, 1/ 0 3.244, 1/ 0 0.380, 7/ 2 0.230,      10/5 4.6 
u159 159 42080 3.506, 0/ 0 0.689, 8/ 0 1.651, 4/ 1 0.003, 10/ 9  0 1.8 
ulysses16 16 6859  0  0  0  0  0 0.003 
ulysses22 22 7013 0.002, 10/ 9  0  0  0  0 0.007 
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Secondly, the new conceptual enhancements of the 
basic ITS idea may be investigated. We can optimize 
separately each of the three components of the inten-
sification and diversification framework (not counting 
the construction of the initial solutions). That is, if we 
are considering the important characteristics of one 
component, we are keeping the other components 
fixed. But, obviously, the optimization of one compo-
nent depends on the choices made for the others. For 
example, a good perturbation must have the property 
that it cannot be (easily) undone by the intensification 
algorithm. This should be taken into consideration 
when we investigate new enhancements of ITS. 

4. Concluding remarks 

The purpose of this paper was to introduce a new 
improved version of the iterated tabu search (ITS) me-
thod for the well-known combinatorial optimization 
problem, the traveling salesman problem. 

ITS is a promising extension to the ordinary tabu 
search scheme. It seeks near-optimal solutions by 
combining intensification (standard tabu search) and 
diversification (perturbation of solutions) in a proper 
way. The goal of the intensification is the search for a 
(better) locally optimal solution in the neighbourhood 
of the current solution, while the diversification is 
responsible for escaping from the current local 
optimum and exploring new regions of the solution 
space. For the TSP, the essential improvement is 
achieved due to decomposition of the neighbourhood 
of solutions, which allows significant speeding-up of 
the tabu search process. The fast tabu search used, 
namely, in the role of intensification within ITS frame-
work resulted in quite encouraging solutions, especial-
ly for the smaller TSP instances taken from the TSP 
instance library TSPLIB. 

During the experiments, it was observed that, in 
most cases, the simulated annealing algorithm pro-
duces better results than the straightforward imple-
mentation of the tabu search. This fact implies the idea 
of combining the simulated annealing and tabu search, 
for example, the SA algorithm could be examined in 
the role of the robust diversification (perturbation) 
procedure within the FITS framework. Moreover, it 
may also be worthy trying the intensification and di-
versification paradigm with TS being substituted by 
SA. 

These enhancements coupled with the additional 
ones (such as implementing other innovative perturba-
tion operators, or incorporating new stagnation avoi-
dance techniques) could be a proper subject for the 
future work. Another research direction may be related 
to the investigations of hybridization of FITS and 
population-based (genetic) algorithms. 
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