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Abstract. Tabu search (TS) is a modern highly effective meta-heuristic for solving various optimization problems. 
In this paper, we discuss some enhancements of TS for one of the difficult combinatorial optimization problems − the 
quadratic assignment problem (QAP). We implemented five variants (modifications) of TS for the random QAP 
instances from the library of the QAP instances QAPLIB. These random QAPs pose a real challenge for the 
researchers. A number of the experiments were carried out on these instances. The results obtained from the 
experiments demonstrate the outstanding efficiency of the modifications proposed. These modifications seem to be 
superior to the earlier TS algorithms for the QAP. In addition, the new best known solution has been achieved for the 
instance tai100a. 
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Indroduction 

The quadratic assignment problem (QAP) can be 
formulated as follows. Let two matrices A = (aij)n×n 
and B = (bkl)n×n and the set Π of all possible permu-
tations of {1, 2, ..., n} be given. The goal is to find a 
permutation π = (π(1), π(2), ..., π(n)) ∈ Π that mini-
mizes 
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One of the interpretations of the QAP is the facility 
layout problem [12]. In this case, n is the number of 
facilities, the entry aij can be seen as the flow of 
materials from facility i to facility j, and bkl denotes 
the distance between location k and location l. The 
permutation π = (π(1), π(2), ..., π(n)) represents an 
assignment of n facilities to n locations. 

It has been proved that the QAP is NP-hard [19]. 
Various heuristic approaches have been applied for 
solving this problem. For a survey of heuristics for the 
QAP, see, for example, [2, 4, 17]. 

Tabu search (TS) meta-heuristic was introduced by 
Hansen and Jaumard, 1987 [10], and Glover, 1989, 
1990 [7,8]. Since that time, it has been proven to be a 
powerful technique for difficult optimization prob-
lems, among them, the QAP (see, for example, [1, 14, 
18, 20, 22, 23]). Before describing briefly the basic 
idea of TS, let us introduce some definitions related to 
combinatorial optimization (CO). A CO problem P 

can be defined as a pair (S, f), where S = {s1, s2, ...} is 
a finite (or countable infinite) set of feasible solutions 
(a "solution space") and f: S → R1 is a real-valued 
objective (cost) function. Without loss of generality, 
we assume that f seeks a global minimum. Thus, to 
solve the CO problem one has to search for a solution 
sopt ∈ S such that 
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The solution sopt is called a globally optimal solu-
tion (global optimum) of (S, f). A neighbourhood 
function Ν: S → 2S assigns for each s ∈ S a set 
Ν(s) ⊆ S − the set of neighbouring solutions (neigh-
bours) of s (or simply the neighbourhood of s). (The 
2-exchange function Ν2 is a commonly used neigh-
bourhood structure for the case where the solutions are 
permutations (like in the QAP). In this case, 
Ν2(s ) = { s ′ | s ′ ∈ S, ρ(s , s ′) ≤ 2 }, where s  ∈ S, and 
ρ(s , s ′) is a distance between permutations s  and s ′: 

)}()(|{),( isisiss ′≠=′ρ .) The solution slocopt ∈ S is 
said to be a locally optimal solution with respect to the 
neighbourhood Ν if f(s′) ≥ f(slocopt) for every 
s′ ∈ Ν(slocopt). 

The remaining part of this paper is organized as 
follows. In Section 1, we concern the basic features, 
principles, and extensions of the tabu search. The new 
modifications (enhancements) of TS for the QAP are 
discussed in Section 2. In Section 3, we present the 
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results of the computational experiments with the va-
rious variants of the modifications proposed. Finally, 
Section 4 completes the paper with concluding re-
marks. 

1. Tabu search meta-heuristic and its 
extensions 

TS is based on the neighbourhood search with lo-
cal-optima avoidance but in a rather deterministic 
way. The key idea of tabu search is allowing climbing 
moves when no improving neighbouring solution 
exists, i.e. a move is allowed even if a new solution 
from the neighbourhood is worse than the current one. 
More formally, TS starts from an initial solution s° in 
S. The process is then continued in an iterative way − 
moving from a solution s to a neighbouring one s′. At 
each step of the procedure, a subset Ν (s) ⊆ Ν(s) of 
the neighbours of the current solution is considered, 
and the move to the solution s′ ∈ Ν (s) that improves 
most the objective function value f is chosen. Natural-
ly, s′ must not necessary be better than s: if there are 
no improving moves, the algorithm chooses the one 
that least degrades the objective function. In order to 
eliminate the returning to the solution just visited, the 
reverse move must be forbidden. This is done by stor-
ing the corresponding solution (move) (or its "attri-
bute") in a memory (called a tabu list (T)). The tabu 
list keeps information on the last h = | T | moves which 
have been done during the search process. h is called a 

tabu tenure (tabu list size). Thus, a move from s to s′ is 
considered as tabu if s′ (or its "attribute") is contained 
in T. This way of proceeding hinders the algorithm 
from going back to a solution reached within the last h 
steps. However, the straightforward prohibition may 
lessen the efficiency of the algorithm. For this reason, 
an aspiration criterion is introduced to permit the tabu 
status to be dropped under certain circumstances. 
Usually, a move from s to s′ (no matter its status) is 
permitted if f(s′) < f(s∗), where s∗ is the best solution 
found so far. The resulting decision rule can thus be 
described as follows: replace the current solution s by 
the new solution s′ if 

f(s′) < f(s∗) or ( )(minarg
)(
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         (or "attribute" of s′) is not tabu). (3) 

The search process is stopped as soon as a termina-
tion criterion is satisfied. The best solution found ser-
ves as a result of the algorithm. For a more thorough 
discussion on the principles of TS, the reader is ad-
dressed to [5,6,9,11]. 

The straightforward implementation of TS typical-
ly faces severe difficulties: a huge number of local 
optima over the solution space, isolated local optima, 
presence of cycles (i.e. repeating sequences) of the 
search configurations, and the so-called "deterministic 
chaos" phenomenon. The last one is characterized by 
the situation in which "getting stuck" in local optima 
and cycles are absent but the search trajectory is still 
confined in a limited part of the solution space. 

 
Figure 1. Generalized framework of I&D 

In order to try to overcome these complications, a 
so-called iterated tabu search (ITS) strategy may be 
helpful. Roughly speaking, ITS is based on the 
intensification and diversification (I&D) policy (see 
[13,14,15]). The I&D methodology is distinguishing 
for four main components: intensification, diversifi-
cation, exploitation, and/or exploration (see Figure 1). 
The intensification (local improvement algorithm) 
concentrates the search in localized portions of the 
solution space. (The standard tabu search algorithm 
outlined above actually plays the role of the inten-
sification in the ITS approach.) The diversification is 
responsible for escaping from the current local 

optimum and moving towards unvisited so far solu-
tions. Finally, exploitation and exploration may be 
viewed as alternative strategies for the selection of a 
candidate for the reconstruction (partial destruction), 
i.e. diversification. (The exploitation is achieved by 
choosing only the currently best local optimum as a 
candidate for the reconstruction, while in the case of 
exploration, each locally optimized solution can be 
considered as a potential candidate for the diversifi-
cation.) 

The intensification component remains one of the 
critical things by constructing competitive I&D-based 
algorithms. For this reason, we propose in the next 
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section some improvements (enhancements), namely, 
to the intensification phase, i.e. the tabu search pro-
cedure within the ITS framework. 

2.  Modifications (enhancements) of tabu 
search for the QAP 

In this section, we describe some modifications 
(enhancements) of the tabu search for the quadratic 
assignment problem. We will concern only the 
modifications related to the tabu search procedure it-
self, while the details of the ITS (I&D) paradigm can 
be found in [13,14,16]. The slightly modified version 
of the robust tabu search algorithm [20] serves as a 
"platform" ("starting point") for these enhancements. 
The new enhancements are as follows. 

2. 1. Randomization of tabu search 

The tabu search forbids some solutions (moves) 
from time to time. This fact means that certain por-
tions of the search space are excluded from being visi-
ted. This can be seen as a serious disadvantage of the 
tabu search. One of the possible ways to get over this 
weakness is to minimize the restrictions, that is, it is 
desirable that the number of the tabu moves is as small 
as possibly. We propose a simple trick: the tabu status 
is ignored with a (very) small probability (even if the 
aspiration criterion does not hold). As to the QAP, we 
empirically found that the optimal value of this prob-
ability, α, is somewhere between 0.05 and 0.1 (we 
used α = 0.07). As the tabu status is ignored randomly 
with a negligible probability, there is no danger that 
the cycles (cyclic trajectories of the search configu-
ration) will occur. 

2. 2. Tabu search with delay 

It is obvious that in the early stages of the search 
(provided that the process starts from the statistically 
mean quality solution) the cycles are unlikely. For this 
reason, there is no need to restrict moves at the early 
iterations of the tabu search. That is the central idea of 
the approach. So, at the beginning, the tabu list stays 
unchanged, i.e. the tabu tenure is equal to zero. After 
K iterations are performed, the tabu search is conti-
nued in the standard way. K is defined as β ⋅n, where 
β is a user-defined parameter (delay factor) (we used 
β = 0.7). 

2. 3. Relaxation 

The tabu moves are the heart of the TS method. 
However, these tabu moves may also be viewed as a 
limitation of the search, especially in the cases when 
the search progresses and many moves are forbidden. 
As a consequence, some promising regions of the 
solution space remain unexplored. In order to try to 
diminish this negative effect, the strategy called a re-
laxation may be proposed. In the most effortless case, 

the relaxation is achieved by the simple clearing out 
the tabu list. For example, the tabu list is emptied each 
time a new locally optimal solution is encountered. 
After this, TS goes on in the ordinary way. The other 
variants of relaxation are possible, for example, the ta-
bu list is cleared out periodically (with no taking into 
account the local optima). In our implementation, we 
applied the second variant. We wipe out the tabu list 
every γ ⋅τ iteration, where τ is the number of the tabu 
search iterations (defined a priori by the user) and γ is 
a parameter (relaxation factor) from the interval (0, 1) 
(we used γ = 3

1 ). 

2. 4. Alternative intensification 

It was observed that TS yields slightly better 
results if it embeds an improvement mechanizm of the 
other kind. We call this policy as an alternative inten-
sification. We obtained quite satisfactory results by 
using a pure descent local search (DLS) in the role of 
such kind intensification (the details of the DLS pro-
cedure are described in [16]). The idea of alternative 
intensification is to temporally interrupt the basic 
intensification procedure, i.e. the TS procedure and 
switch to the alternative procedure. After a while (for 
example, a local optimum is found) one returns to the 
basic procedure, and so on. The difference between 
the relaxation and alternative intensification is that, in 
the last case, the tabu list is not emptied (it is updated 
while in the alternative procedure, i.e. all the moves 
performed during the descent local search are stored in 
the tabu list); it is simply ignored during the execution 
of the DLS procedure, but it is taken into account 
again after returning to the basic procedure. The 
frequency of the alternative intensification is control-
led by a special parameter, which depends on the tabu 
list size; in particular, the value of this parameter is 
equal to δ ⋅h, where h is the tabu tenure and δ = 3. 

Encouraged the good results, we also tried another 
intriguing idea: we used the tabu search procedure 
(with a very limited number of iterations) instead of 
the DLS procedure, so we obtained something like 
using two tabu lists and switching between them 
periodically. So far, we unfortunately get the slightly 
worse results than in the case of DLS. 

2. 5. Avoiding stagnation 

At the beginning of the search process, the new 
(record-breaking) locally optimal solutions are en-
countered frequently; thus, the search converges very 
rapidly. However, as the search progresses the records, 
i.e. new local optima become more and more rare; it 
takes an extremely long time to find a new better solu-
tion in the later phases. This phenomenon is known as 
a stagnation of the search. A naive but seemingly 
helpful trick is introduced to try to lessen a detrimen-
tal influence of the stagnation. In fact, we only imitate 
the stagnation avoidance (prevention). So, the idea is 
based on the assumption that the stagnation intervals 
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are quite small in the early periods of the search. Thus, 
the probability of finding of new (better) solutions in 
these cases is approximately the same. Let I1, I2, ..., Ik, 
Ik+1, ... be some (time) intervals of the search with L 
being an interval length. If, occasionally, a new (bet-
ter) solution was not found during the interval Ik, then 
we assume that it will be found very likely during the 
interval Ik+1. If Ik is the last interval, we simply extend 
the search, i.e. increase the number of the iterations by 
some value. For example, if the current iteration num-
ber is equal to M, we add a value of ε to M, obtaining 

M + ε iterations; hopefully, a new solution will be 
found during these extra iterations (see Figure 2). Of 
course, if the new local optimum was found during the 
last Ik iterations, the number of iterations M remains 
constant. In our algorithm, L = ω ⋅τ and ε = 0.3τ, 
where τ is the number of iterations of the tabu search 
and ω (ω ∈ (0, 1)) is an a priori parameter (we used 
ω = 0.4). The scheme described seems to bring effect 
only if M is relatively small. Fortunately, this is just 
the case in the iterated tabu search approach. 

f

Ik+1 = M Ik 

f

Ik Ik+1 = M M + ε 

Figure 2. Avoiding stagnation: illustration of a possible situation 

The following short notations will be used for the new 
modifications: 
• ETSRa (enhanced tabu search (ETS) with ran-

domization); 
• ETSD (ETS with delay); 
• ETSR (ETS with relaxation); 
• ETSAI (ETS with alternative intensification); 
• ETSAS (ETS with avoiding stagnation). 

We also implemented the additional variant that 
covers all the above components (i.e. the randomiza-
tion, delay, relaxation, alternative intensification, and 
stagnation avoidance). The resulting algorithm is cal-
led a combined enhanced tabu search − ETSC. The de-
tailed template of ETSC is presented in an algorithmic 
language like form in Figure 3. Recall that the skele-
ton of this template is very similar to the one of the 
robust tabu search algorithm due to Taillard [20] 
slightly modified by Misevicius [14]. 

3. Computational experiments 

In this section, we present the results of the expe-
rimental comparison of the algorithms outlined above. 
In the experiments, the instances (benchmarks) of the 
QAP taken from the well-known library QAPLIB [3] 

are used. We handle only the random instances since 
these problems are most difficult for the heuristics. 
The random instances were generated by Taillard in 
1991 [20], but still remain a great challenge for the 
designers of the heuristic algorithms (this is especially 
true for the larger problems; to this date, they seem to 
be not practically solvable even to pseudo-optimality). 
The random instances are generated randomly 
according to the uniform distribution. In QAPLIB, 
they are denoted by tai20a, tai25a, tai30a, tai35a, tai40a, 
tai50a, tai60a, tai80a, and tai100a (or briefly tai∗a) (the 
corresponding numeral (20, 25, and so on) in the 
instance name denotes the size of the problem). Based 
on Taillard's classification [21], these instances belong 
to the class of regular, unstructured problems. The 
regularity of the instances tai∗a are due to the regular, 
i.e. uniformly distributed values of the data matrices. 
On the other hand, these instances are unstructured in 
that sense that there is no "structureness" in the 
solution space. The landscapes of such problems are 
extremely rugged with narrow basins of attractions 
and a huge number of isolated local optima. This is a 
contrast to the structured problems with wide basins of 
attractions ("big valleys") (see Figure 4). 
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function CombinedEnhancedTabuSearch(π°, n, τ, h, α, β, γ, δ, ω); 
  // input: π° − the initial solution, n − the problem size, τ − the number of iterations, h − the tabu tenure, // 
  //     α, β, γ, δ, ω − the control parameters // 
  // output: π• − the best solution found // 
  delay_interval := β ⋅ n; relaxation_interval := γ ⋅ τ; intensification_interval := δ ⋅ h; 
  stagnation_interval := ω ⋅ τ; 
  π := π°; π• := π°; 
  for i := 1 to n−1 do  
    for j := i+1 to n do calculate objective function difference dij := ∆z(π,i,j); 
  T := 0; i := 1; j := 1; k := 1; k′ := 1; k′′ := 1; klocopt := 1; improved := FALSE; 
  while (k ≤ τ) or improved = TRUE then begin // main cycle // 
    dmin := ∞; 
    for l := 1 to |Ν2| do begin // find the best move that is not tabu or aspired // 
      ; ))1,1,1(,,(: +−<<= iniinji IFIF )1,1,(: ++<= ijnjj IF ; 
      tabu := IF(tij ≥ k and RANDOM() ≥ α, TRUE, FALSE); 
      aspired := IF(z(π) + dij < z(π•) and NOT(tabu), TRUE, FALSE); 
      if (dij < dmin and NOT(tabu)) or aspired then begin dmin := dij; u := i; v := j end 
    end; // for l // 
    improved := IF(dmin < 0, TRUE, FALSE); 
    if k − k′ ≥ relaxation_interval then begin // relaxation //  T := 0; k′ := k end; 
    if dmin < ∞ then begin     if dmin < ∞ then begin 
              uvp⊕= uvp⊕= ππ : ; // replace the current permutation by the new one // 
       for l := 1 to n−1 do for m := l+1 to n do update difference dlm; 
       if k > delay_interval then tuv := k + h // make the move puv tabu // 
    end; // if // 
    if z(π) < z(π•) then begin π• := π; klocopt := k end; // save the best so far solution // 
    if (improved and (k − k′′ ≥ intensification_interval)) or  
       ((z(π) = z(π•) and (k − k′′ ≥ 2

1 ⋅ intensification_interval)) then begin 
       switch to the alternative intensification; 
       k′′ := k 
    end; // if //  
    k := k + 1; 
    if (k > τ) and (k − klocopt ≥ stagnation_interval) then begin // extending the search // 
       τ := 1.3 ⋅ τ; klocopt := k 
    end // if // 
  end; // while // 
  return π• 
end. 

Figure 3. Template of the combined enhanced tabu search algorithm for the QAP.  
Note. puv (u, v = 1, 2, ..., n) denotes a move which simply swaps the u-th and v-th element in the given permutation;  

thus, uvp⊕=′ ππ ∈ Ν2(π ) and π ′(u) = π (v), π ′(v) = π (u), 1 ≤ u, v ≤ n ∧ v−u ≥ 1,  
where π  is the current permutation, and π ′ − the neighbouring permutation 
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Figure 4. Fragments of the illustrative landscapes for the structured (a) and unstructured (b) problems 
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The algorithms used in the experimentation are as 
follows: the robust tabu search (RoTS) [20]; the 
reactive tabu search (ReTS) [1]; the original iterated 
tabu search (in [14], it is entitled as enhanced tabu 
search (ETS)), as well as the actual modifications: 
ETSRa, ETSD, ETSR, ETSAI, ETSAS, and ETSC (remind 
that the last six variants are within the ITS frame-
work). RoTS, ReTS, and ETS are chosen as the com-
petitors because they belong to the most powerful 
heuristic algorithms, in particular, for random QAPs. 

The efficiency measure for the algorithms is the 
average deviation of solutions obtained from the best 

known solution − δ  ( %][ )(100 zzz ((−=δ , where z  
is the average objective function value over 10 restarts 
(single applications of a given algorithm to a given 
instance), and z(  is the best known value (BKV) of the 
objective function). In the experimental comparison, 
equated conditions are created: all the algorithms use 
the identical initial solutions and require approxima-
tely the same execution (CPU) time. For the sake of 
more fairness, we carried out three sets of experiments 
(namely, short time runs, medium time runs, and long 
time runs). The results of comparison of the algo-
rithms are presented in Tables 1−3. 

Table 1. Comparison of the tabu search algorithms for the random QAPs: shorter run results.  
 The best results obtained are printed in bold face. CPU times per restart are given in seconds.  
 3 GHz PENTIUM computer was used in the experiments 

Instance BKV 
δ  

 RoTS ReTS ETS ETSRa ETSD ETSR ETSAI ETSAS ETSC 
CPU time 

tai20a  703482 a 0.279 0.272 0.362 0.312 0.216 0.242 00..118855  0.273 0.174 0.1 
tai25a  1167256 a 0.547 0.686 0.438 00..333388  0.464 0.408 0.255 0.420 0.352 0.2 
tai30a  1818146 a 0.717 0.554 0.314 0.182 0.276 0.371 00..119900  0.335 0.330 0.3 
tai35a  2422002 a 1.011 0.857 0.609 0.578 0.621 00..446655  0.482 0.448 0.481 0.4 
tai40a  3139370 a 1.028 0.926 0.836 0.653 0.636 00..660099  0.762 0.623 0.571 0.6 
tai50a  4941410 a 1.507 1.076 1.075 0.881 0.961 1.009 0.998 0.983 00..992266  0.9 
tai60a  7205962 b 1.502 1.183 1.167 0.852 1.082 1.135 1.041 1.086 00..996699  1.2 
tai80a  13546960 b 1.162 0.840 0.918 00..666655  0.755 0.721 0.712 0.772 0.639 2.3 
tai100a  21123042 b 1.016 0.684 0.800 00..663399  0.700 0.652 0.697 0.653 0.550 3.6 

Average:  0.877 0.708 0.652 00..551100  0.571 0.561 0.532 0.559 0.499  

a comes from [3]; b comes from [14]. 

Table 2. Comparison of the tabu search algorithms for the random QAPs: medium run results.  
 The best results obtained are printed in bold face. CPU times per restart are given in seconds.  
 3 GHz PENTIUM computer was used in the experiments 

Instance BKV 
δ  

 RoTS ReTS ETS ETSRa ETSD ETSR ETSAI ETSAS ETSC 
CPU time 

tai20a  703482 0.061 0.061 0 0 0.030 0.091 0.030 0.030 0 0.5 
tai25a  1167256 0.242 0.298 0.043 0.037 0.067 0.073 0 0.037 00..001155  1.0 
tai30a  1818146 0.347 0.187 0.151 00..004422  0.078 0.057 0.149 0.083 0.041 1.5 
tai35a  2422002 0.521 0.354 0.326 0.300 0.228 00..118899  0.151 0.217 0.205 2.0 
tai40a  3139370 0.731 0.598 0.551 0.446 0.466 0.497 0.394 00..442277  0.441 3.0 
tai50a  4941410 1.206 0.789 0.882 0.674 0.746 0.750 00..664433  0.613 0.695 4.5 
tai60a  7205962 1.219 0.925 0.909 00..668866  0.681 0.749 0.858 0.719 0.726 6.0 
tai80a  13546960 0.940 0.549 0.749 0.455 0.481 0.438 0.457 00..444444  0.454 11.6 
tai100a  21123042 0.960 0.494 0.652 0.395 00..338888  0.470 0.501 0.513 0.356 19.0 

Average:  0.623 0.426 0.426 00..330044  0.317 0.331 0.318 0.308 0.293  
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Table 3. Comparison of the tabu search algorithms for the random QAPs: longer run results.  
 The best results obtained are printed in bold face. CPU times per restart are given in seconds.  
 3 GHz PENTIUM computer was used in the experiments 

Instance BKV 
δ  

 RoTS ReTS ETS ETSRa ETSD ETSR ETSAI ETSAS ETSC 
CPU time 

tai20a  703482 0 0 0 0 0 0 0 0 0 2.5 
tai25a  1167256 0 0 0 0 0 0 0 0 0 5.0 
tai30a  1818146 0.057 0 0 0 0 0 0 0 0 7.5 
tai35a  2422002 0.242 0.189 0.061 0 0.025 0 0 0 0 10.0 
tai40a  3139370 0.536 0.398 0.324 0.300 0.307 0.297 0.293 00..227755  0.264 15.0 
tai50a  4941410 0.976 0.692 0.612 0.513 0.476 0.528 0.465 0.439 00..446633  23.0 
tai60a  7205962 1.059 0.763 0.749 0.427 0.519 0.535 0.536 0.410 00..441166  30 
tai80a  13546960 0.807 0.411 0.534 00..225511  0.284 0.255 0.338 0.316 0.216 58 
tai100a  21123042 0.837 0.269 0.446 0.224 0.195 0.164 00..114422  0.226 0.139  100 

Average:  0.451 0.272 0.273 0.172 0.181 0.178 0.177 00..116677  0.150  

 during the experimentation with ETSC, we were successful in discovering new record-breaking solution for the instance tai100a; 
the new objective function value is equal to 21087588. 

It can be seen from Tables 1−3 that our new modi-
fications (enhancements) of the tabu search produce 
very strong results for the random QAPs. In particular, 
it seems that the combined modified tabu search 
(ETSC) evidently outperforms the remaining versions. 
This is true for both short and long runs. So, this indi-
cates a high stability of the ETSC algorithm. Note, 
however, that the results of the randomized tabu 
search (ETSRa) are very close to the ones of ETSC. It 
looks like as if the tabu search with the stagnation 
avoidance yields quite encouraging results, too. On 
the whole, all the new modified algorithms achieved 
better results than the earlier "pure" enhanced (itera-
ted) tabu search algorithm due to Misevicius (ETS in 
Tables 1−3), which, in turn, appears to be slightly 
better than the reactive tabu search due to Battiti and 
Tecchiolli, in particular, at shorter runs; at that time, it 
is much more better than the robust tabu search due to 
Taillard. Note that the results of ETSRa ÷ ETSC could 
be improved by a more accurate tailoring of the cont-
rol parameters. 

The following point should also be stressed. By 
juxtaposing of the proposed variants, one obtains 
additional modifications (hybrids). For example, we 
can get the randomized tabu search with delay, the 
randomized tabu search with delay and relaxation, and 
so on. Totally, we can obtain 25 − 6 = 26 (!) additional 
variants. In this work, these modifications are omitted 
for the sake of brevity. However, we believe that some 
of these hybrids may hide promising solutions (even 
better than those presented in the current paper). 
Therefore, we do hope that the investigation of these 
remaining modifications will be a proper topic for the 
future research. The testing of the performance of the 
new modifications on the other types of the quadratic 
assignment problem, in particular, the real-life (like) 
problems would be worthwhile as well. 

4. Concluding remarks 

In this paper, the issues related to the improvement 
of the tabu search in the context of the QAP are 
discussed. Investigated are five variants, more precise-
ly, extensions to the tabu search, in particular, the ran-
domized tabu search, the tabu search with delay, the 
tabu search with relaxation, the tabu search combined 
with the alternative intensification, and the tabu search 
that involves a mechanism for the stagnation avoi-
dance (prevention). Finally, a combined tabu search 
algorithm which integrates all these features is pro-
posed. The new improvements (modifications) are on 
the basis of the iterated tabu search framework. 

All these variants, together with the earlier tabu 
search algorithms, were tested on the random QAP 
instances, which still remain a challenge for the 
researchers. The results from the experiments show 
high performance of the modifications proposed. All 
the new modifications outperform the pure iterated 
tabu search, probably, one of the most powerful heu-
ristic algorithms for random QAPs so far. So, incorpo-
rating the additional components (features) into the 
standard tabu search has a considerable positive in-
fluence on the resulting efficiency (at least for the ran-
dom QAPs). Also, it can be seen that the combined 
enhanced algorithm is superior to the variants where 
only single components are incorporated. The promis-
ing efficiency of the combined enhanced TS algorithm 
is also confirmed by the fact that the new best known 
solution for the instance tai100a was found. 

Further extensions with the focus on the probabi-
listic behaviour of the tabu search may be proposed, 
among them, 1) using a cascade of the random levels 
(thresholds) instead of the single (stationary) random 
level, 2) applying randomization of the tabu memory 
(instead of the random decision rule). It is also worthy 
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trying a so-called periodic tabu search method, i.e. 
changing the tabu tenure (tabu list size) periodically 
rather than using a purely random (chaotic) way of 
changing (which is the case in the robust tabu search). 
These extensions, as well as the development of addi-
tional innovative components of TS may be the sub-
ject of the future work. 

References 
 [1] R. Battiti, G. Tecchiolli. The reactive tabu search. 

ORSA Journal on Computing, 1994, Vol.6, 126-140. 
 [2] R.E. Burkard, E. Çela, P.M. Pardalos, L. Pitsoulis. 

The quadratic assignment problem. In D.Z.Du, P.M. 
Pardalos (eds.), Handbook of Combinatorial Optimi-
zation, Kluwer, Dordrecht, 1998, Vol.3, 241−337. 

 [3] R.E. Burkard, S. Karisch, F. Rendl. QAPLIB – a 
quadratic assignment problem library. Journal of Glo-
bal Optimization, 1997, Vol.10, 391−403. [See also 
http://www.seas.upenn.edu/qaplib/.] 

 [4] E. Çela. The Quadratic Assignment Problem: Theory 
and Algorithms. Kluwer, Dordrecht, 1998. 

 [5] M. Gendreau. Recent advances in tabu search. In 
C.C. Ribeiro, P. Hansen (eds.), Essays and Surveys in 
Metaheuristics, Kluwer, Boston, 2001, 369-377. 

 [6] M. Gendreau. An introduction to tabu search. In F. 
Glover, G. Kochenberger (eds.), Handbook of Meta-
heuristics, Kluwer, Norwell, 2002, 37–54. 

 [7] F. Glover. Tabu search: part I. ORSA Journal on 
Computing, 1989, Vol.1, 190–206. 

 [8] F. Glover. Tabu search: part II. ORSA Journal on 
Computing, 1990, Vol.2, 4–32. 

 [9] F. Glover, M. Laguna. Tabu Search. Kluwer, Dord-
recht, 1997. 

[10] P. Hansen, B. Jaumard. Algorithms for the maxi-
mum satisfiability problem. RUTCOR Research Re-
port, Rutgers University, USA, 1987, 43–87. 

[11] A. Hertz, E. Taillard, D. de Werra. Tabu search. In 
E.H.L. Aarts, J.K. Lenstra (Eds.), Local Search in 
Combinatorial Optimization, Wiley, Chichester, 1997, 
121–136. 

[12] T. Koopmans, M. Beckmann. Assignment problems 
and the location of economic activities. Econometrica, 
1957, Vol.25, 53−76. 

[13] A. Misevicius. Ruin and recreate principle based ap-
proach for the quadratic assignment problem. In E. 
Cantú-Paz, J.A .Foster, K. Deb et al. (eds.), Lecture 
Notes in Computer Science, Vol.2723, Genetic and 
Evolutionary Computation − GECCO 2003, Pro-
ceedings, Part I, Springer, Berlin-Heidelberg, 2003, 
598−609. 

[14] A. Misevicius. A tabu search algorithm for the quad-
ratic assignment problem. Computational Optimiza-
tion and Applications, 2005, Vol.30, 95−111. 

[15] A. Misevičius. Iterated tabu search for the quadratic 
assignment problem. Working Paper, Kaunas Univer-
sity of Technology, Lithuania, 2005. 

[16] A. Misevičius, A. Lenkevičius. A modification of 
tabu search and its application to the quadratic assign-
ment problem. Information Technology and Control, 
2003, No.2(27), 12−20. 

[17] P.M. Pardalos, F. Rendl, H. Wolkowicz. The quad-
ratic assignment problem: a survey and recent deve-
lopments. In P.M. Pardalos, H. Wolkowicz (eds.), 
Quadratic Assignment and Related Problems. 
DIMACS Series an Discrete Mathematics and Theo-
retical Computer Science, Vol.16, AMS, Providence, 
1994, 1-41. 

[18] E. Rolland, H. Pirkul, F. Glover. Tabu search for 
graph partitioning. Annals of Operations Reserch, 
1996, Vol.63, 209–232. 

[19] S. Sahni, T. Gonzalez. P-complete approximation 
problems. Journal of ACM, 1976, Vol.23, 555–565. 

[20] E. Taillard. Robust taboo search for the QAP. Paral-
lel Computing, 1991, Vol.17, 443–455. 

[21] E. Taillard. Comparison of iterative searches for the 
quadratic assignment problem. Location Science, 
1995, Vol.3, 87−105. 

[22] P. Thomas, S. Salhi. A tabu search heuristic for the 
resource constrained project scheduling problem. 
Journal of Heuristics, 1998, Vol.4, 123–139. 

[23] N.A. Wassan, I.H. Osman. Tabu search variants for 
the mix fleet vehicle routing problem. Journal of the 
Operational Research Society, 2002, Vol.53, 768–782. 

244 


