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Abstract. Eye trackers have been used as pointing devices for a number of years. Due to the inherent limitations in 
the accuracy of eye gaze, however, interaction has been limited to targets that are at least one degree of visual angle in 
size. Consequently, targets in today’s gaze-based interfaces have sizes and layouts quite distant from what is perceived 
as “natural settings”. To cope with the accuracy constraints, we developed a multimodal pointing technique combining 
eye gaze and speech inputs. The technique was tested in a user study on pointing at multiple targets. Results suggest 
that pointing accuracy is 93% for targets subtending 0.85 degrees and 0.3-degree gaps between them. User perfor-
mance is thus shown to approach the limit of practical pointing. Effectively, developing a user interface that supports 
the hands-free style of interaction and has a design similar to that of today’s common interfaces seems a feasible task. 
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1. Indroduction In the field of eye gaze-based interfaces, there 
were some successful implementations manifesting 
the ability of eye gaze to function as a pointing device 
[1]. Nevertheless, the design of those user interfaces 
renders them quite distant from what is perceived as 
“natural settings” (i.e., today’s standard GUIs with 
their widgets). One of the major differences is the size 
of objects interacted with.  

Within the community of HCI researchers and sys-
tem designers, developing an efficient user interface 
alternative to the traditional manually operated inter-
faces has been a major challenge for a number of 
years. Such an interface should not be dependent sole-
ly on inputs from the keyboard and conventional 
pointing devices such as a mouse. Instead, the inter-
face should be able to employ as inputs other, more 
natural, communication abilities of the user. Speech, 
gestures and eye gaze are considered most frequently 
as candidates for the new type of interface. Despite the 
fact that each of these inputs alone is inherently ambi-
guous, interaction can still be made feasible by com-
bining two or more inputs in an appropriate way.  

Most of the standard GUI widgets (e.g., icons in a 
toolbar, checkboxes, etc.) are less than one degree of 
visual angle in size. For instance, a toolbar’s icon in a 
standard MS Windows application (e.g., MS 
Word) is 24 by 24 pixels in size, which translates to 
approximately 0.7 degrees for a 17-inch monitor with 
a resolution of 1024 x 768 and a viewing distance of 
70 centimeters. Meanwhile, the size of a button in a 
window’s title bar is even smaller (only 16 by 16 
pixels, or 0.46 degrees). Moreover, icons in a toolbar 
are usually aligned side by side – there are no spaces 
between them. 

Among the options used in novel designs, speech 
and eye gaze became the most popular couple. This 
could be attributed to the strong synergetic effect ob-
tained through combining these two input modalities. 
With eye gaze employed in spatial location of objects 
and speech as the entry mode for commands, a fully 
functional input device can be built. Indeed, several 
workers demonstrated that integrating eye tracking 
and speech recognition technologies allowed achiev-
ing a reasonable amount of hands-free control over a 
graphical user interface [2, 5]. Practical application of 
such multimodal interfaces, however, still presents a 
challenge as described below. 

From the traditional viewpoint of applied eye 
tracking research, however, targets below the one-de-
gree limit are considered too small for facile eye gaze 
interaction [1, 3]. Consequently, gaze-operated objects 
are made substantially bigger to ensure facile inter-
action (i.e., bring gaze pointing to the level of prac-
tical accuracy). This measure is undertaken to accom-
modate the calibration errors of the eye tracker as well 
as the inherent limitations in the accuracy of eye gaze. 
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For the same reason, objects are also spaced on the 
screen at relatively large distances one from another. 
In turn, this poses problems in managing the real 
estate of the screen. 

Given the constraints on the accuracy of gaze-
based pointing, it is intriguing to explore to what ex-
tent user performance could be pushed towards the 
level of practical pointing when eye gaze is 
supplemented with other input modality such as 
speech. Despite the high interest of recent workers in 
multimodal applications, there are only few empirical 
studies aiming to evaluate user performance in multi-
modal pointing tasks. 

Recently, Zhang et al [5] experimented with a 
multimodal system involving eye gaze and speech. 
Their setup included a 6 x 5 grid of geometric figures 
used as targets to be selected. The figures varied in 
shape (rectangle, oval, and triangle), size (two levels), 
and color (10 levels). The size of the smaller figures 
was 13 x 9 mm (1.1 x 0.74 degrees of arc at a viewing 
distance of 70 cm).  

This presents an interesting case as the target’s size 
approaches the critical one-degree barrier. On the 
other hand, the distance between the centers of adja-
cent targets in the grid was substantially bigger than 
that: 40 mm (3.27 degrees) horizontally and 27 mm 
(2.19 degrees) vertically. In turn, this makes the over-
all layout used in [5] not very suitable for modeling 
interactions similar to those present in conventional 
GUIs.  

To obtain a more relevant model, we developed a 
gaze-based interface featuring tightly spaced targets 
reasonably close in size to that of the smallest GUI 
widgets. To meet the challenge of pointing at targets 
smaller than the one-degree limit, eye gaze input was 
augmented by speech.  

This paper presents an experiment conducted to 
compare user performance in a point-select task using 
two modes of interaction: unimodal (i.e., gaze-only) 
and multimodal (gaze and speech). 

2. Method 
2.1. Participants 

Twelve unpaid volunteers (6 male, 6 female) parti-
cipated in the study. All were employees at a local 
university aged 22 to 43. All but one had prior expe-
rience with eye tracking, whereas only one of them 
had ever used speech as computer input before. One 
participant specified English as her first language, 
whereas all the rest were non-native speakers of Eng-
lish. Six participants wore glasses, whereas the other 
six required no correction of vision. 

2.2. Apparatus 

A remote eye tracking system iViewX from 
SensoMotoric Instruments was used for collecting 
gaze data. Eye gaze input and associated events were 

recorded using experimental software developed in 
our laboratory. Speech input was recorded with a con-
ventional microphone and processed using Microsoft 
SAP Interface 5.0. 

2.3. Procedure 

Participants were seated at a viewing distance of 
approximately 70 cm. The experiment used a point-
select task. At the onset of each trial, a 30-by-30-pixel 
home box appeared on the screen (Figure 1). In motor 
space, however, the home box was expanded to 100 
pixels on each side to facilitate homing.  

 
Figure 1. Home box at the onset of trial 

Upon fixating on the home box for one second, a 
matrix of 5 x 5 squares appeared to the right of the 
home box (Figure 2). One of the squares was the 
target to be selected (marked with a cross). Partici-
pants were instructed to look at the target as quickly as 
possible (timing started), and fixate upon it until 
selection (timing ended). A window of five seconds 
was given to complete a trial. If no selection occurred 
within five seconds, an error was recorded. Then, the 
next trial followed. 

 
Figure 2. Matrix of 5 x 5 squares. The target for selection is 

the square marked with a cross 

We defined the eye’s region of interest (ROI) 
representing the focus of visual attention as a 100-by-
100-pixel square with its center attached to the current 
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gaze point location. As the gaze approached the target, 
the ROI began to overlap with the matrix area. The 
squares within the matrix that were encompassed by 
the overlapping area became highlighted in different 
colors (Figure 3). 

The color-coding scheme included fifteen colors 
listed in the following order: red, green, blue, yellow, 
purple, aqua, orange, brown, pink, lime, gray, olive, 
magenta, sky-blue (vocally referred to as “sky”), and 
black. The coding was arranged so that the first color 
in the list (i.e., red) was assigned to the first square in 
the matrix to enter the ROI. Then, the second square 
encompassed by the ROI was highlighted in green, 
and so on. If more than fifteen squares got into the 
ROI (this quite often being the case for the smallest 
target size used in the experiment), only the first fif-
teen were highlighted in corresponding colors, whe-
reas the remaining ones stayed unchanged. 

 
Figure 3. Highlighted squares signaling overlap of the eye’s 
region of interest with the matrix. The black dashed outline 

shows the current gaze point location 

Moreover, the color-coding scheme used was tole-
rant to instabilities in the gaze point location caused 
by the inherent eye jitter (see Jacob, 1991). As the 
ROI is centered on the current gaze point, random 
shifts in the spatial location of the ROI are also inevi-
table. In turn, this would cause the squares in the mat-
rix looked at to flicker in different colors, were no 
measures taken.  

To avoid this, the same color stayed with a target 
for the rest of the trial once mapped initially as long as 
the attention was not shifted to other areas of the 
screen (i.e., no saccade – sudden motion of the eye – 
occurred in between). If at any point during the trial 
the attention was directed away from the current selec-
tion of the matrix squares, the squares were de-high-
lighted releasing the colors for subsequent selections. 

No visual feedback was provided for the gaze 
point unless it entered the matrix. Whenever the gaze 
point landed on a square in the matrix, the square was 
highlighted with black dashed outline (Figure 3).  

Prior to the first session, participants were shown a 
table displaying all the fifteen colors used in the color-
coding of the matrix squares (Figure 4). They were 

asked to memorize the colors along with their names 
needed for the experimental condition involving 
speech input. After this initial introduction, partici-
pants practiced one block using speech commands. 
Then, data recording began. 

Participants were given an opportunity to look at 
the table with the colors to refresh their memory when 
needed before a block of trials started. 

The strategies to be used by participants for target 
selection depended on the available input modalities. 
In the combined gaze and speech condition, if the 
square with the dashed outline was other than the 
target, participants were to say aloud the color of the 
target’s highlight. 

 
Figure 4. Table shown to participants with the fifteen colors 

used in the color-coding of the matrix squares 

This way they were given an opportunity to com-
pensate for the inherent limitations in the accuracy of 
eye gaze, as well as the drift in the eye tracker’s calib-
ration encountered most of the time. Meanwhile, in 
the gaze-only condition, participants could do very 
little to prevent an erroneous selection if the.  

2.4. Design 

The experiment was a 2 x 3 x 3 x 3 x 9 repeated 
measures factorial design. The factors and levels were 
as follows: 

Pointing modality gaze & speech, gaze-only 
Dwell time (DT) 1000, 1500, 2000 ms 
Target size (S) 20, 30, 40 square pixels 
Inter-target gap (G) 0, 10, 20 pixels 
Trial 1, 2…9 
Here, G denotes the gap between the sides of adja-

cent squares in the matrix. 
Participants were randomly assigned to one of 

three groups. Each group received the dwell time con-
ditions in a different order using a Latin square. Order 
of presenting the pointing modality conditions was 
also counterbalanced among participants. 

For each DT condition, participants performed 6 
blocks of trials (3 blocks per modality) in one session. 
The three sessions were run over consecutive days 
with each lasting approximately 20 minutes. Each 
block consisted of the 9 S-G conditions presented in 
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random order. For each S-G condition, 3 trials were 
performed in the same block (in total, 3 trials x 3 
blocks = 9 trials). Thus, a block consisted of 27 trials. 
The conditions above combined with 12 participants 
resulted in 5832 total trials in the experiment. 

The dependent measures were movement time 
(MT) and error rate (ER). 

3. Results 
3.1. Pointing Performance 

The grand means on the two dependent measures 
were 3029 ms for MT and 34.3% for ER. The main 
effects and interactions on each dependent measure 
are presented below. 

3.1.1. Speed 

The mean MT was 3449 ms in the gaze-only con-
dition and 2609 ms in the gaze & speech condition. 
Thus, with addition of speech, MT decreased on the 
average by 24%. The difference was statistically signi-
ficant (F1,11 = 45.3, p < .001).  

As expected, the 1000-ms DT condition was the 
fastest with a mean MT of 2605 ms. The 1500-ms DT 
condition was slower by 17% (3041 ms), and the 
2000-ms DT condition by 32% (3442 ms). The main 
effect for DT was statistically significant (F2,22 = 94.4, 
p < .001), as was the input modality x DT interaction 
(F2,22 = 5.9, p < .01). The main effects and interaction 
are illustrated in Figure 5. 

Figure 5. MT vs. DT for the two input conditions 

As seen in Figure 6, the target size also significant-
ly influenced pointing time (F2,22 = 63.3, p < .001). 
The input modality x target size interaction was 
significant as well (F2,22 = 25.0, p < .001). For the 
largest target (40 x 40 pixels), MT was on average 
3132 ms in the gaze-only condition, whereas with 
addition of speech it dropped to 2515 ms (a reduction 
by 20%). As expected, the benefit of combined input 
was the highest for the smallest target (20 x 20 pixels): 
3793 ms vs. 2741 ms (a reduction in MT of 28%). 

3.1.2. Accuracy 

The mean ER was 51.1% in the gaze-only condi-
tion and 17.4% in the gaze & speech condition. Thus, 
with addition of speech, ER dropped on the average by 

as much as 66%. The difference was statistically 
significant (F1,11 = 48.8, p < .001). 

The lowest error rate was in the 1500-ms condition 
(32%). It was followed by the 2000-ms condition at 
35.2% errors, and the 1000-ms condition at 35.6%. 
The differences were not significant (F2,22 = 0.8, ns). 
The input modality x DT interaction, however, was 
significant (F2,22 = 5.8, p = 0.01). In the gaze-only 
condition, more errors occurred as dwell time in-
creased (Figure 7). With addition of speech, however, 
error rate decreased markedly as dwell time increased 
from 1000 ms to 1500 ms, and then remained at the 
same level with a further increase in dwell time by 
500 ms. 
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Figure 6. MT vs. target size for the two input conditions 
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Figure 7. ER vs. DT for the two input conditions 

As with pointing time, target size had a significant 
effect on error rate, too (F2,22 = 77.6, p < .001). The 
input modality x target size interaction was significant 
as well (F2,22 = 27.3, p < .001). For the largest target 
(40 x 40 pixels), error rate was on average 34.2% in 
the gaze-only condition, whereas with addition of 
speech it dropped to 12.1% (a reduction by 65%). For 
the two smaller sizes, a similar reduction in error rate 
was observed with speech employed (Figure 8). 
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Figure 8. ER vs. target size for the two input conditions 

In the combined input condition, inter-target gap 
also significantly affected error rate (F2,22 = 14.3, 
p < .01). It is not surprising that pointing accuracy was 
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relatively poor when targets were side by side (0-pixel 
gap). Interestingly, however, there was no significant 
difference between the error rates obtained for the 10-
pixel and 20-pixel gap conditions (Figure 9). In other 
words, for the purpose of practical pointing, a 10-pixel 
gap between targets is almost as good as a gap twice 
that size. 

A further insight into the extended limits of point-
ing accuracy with speech-augmented eye gaze input 
can be obtained when error rate is plotted as a function 
of target size and inter-target gap for the three DT 
conditions separately (Figure 10). When the shortest 
dwell time (1000 ms) was used for target selection, 
error rates for different combinations of target size and 
inter-target gap levels ranged from 15% to 50%. Error 
rates obtained for the other two DT conditions are 
much lower and do not significantly differ from one 
another between the conditions. They range from 2% 
to 26% and from 7% to 24% for the 1500-ms and 
2000-ms conditions, respectively. 
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3.2. Performance by Colors 

Some additional information on the factors con-
tributing to the occurrence of the errors in the present 
study can be obtained by taking a closer look at the 
performance of the color-coding scheme for target 
identification. Figure 9. ER vs. target size and inter-target gap (in pixels) 

 Error Rate
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DT = 1000 ms DT = 1500 ms  
 

DT = 2000 ms 

Figure 10. Error rate vs. dwell time, target size, and inter-target gap for the gaze & speech condition 

The five colors most frequently mapped to the tar-
get for selection were: green, blue, yellow, purple, and 
aqua. They each had a share of over 8% with the total 
share equal to 51.7%. The remaining 48.3% were split 
between the other ten colors (Figure 11). 

The percentage of the target highlight colors cor-
rectly specified by participants and recognized by the 
system varied among the colors. The colors with the 
correct selection rate above 90% were: green, blue, 
yellow, orange, brown, lime, sky-blue, and black 
(Figure 12). On the other hand, the most problematic 
colors for the international pool of our participants 
were magenta (65.1%) and purple (64.3%).  
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Out of all the cases involving erroneous identifica-

tion of magenta, pink had the biggest share. This is an 
indication that for participants the less-familiar color 
magenta associated with the better-known pink. 
Meanwhile, purple was most frequently mistaken for 
blue or brown. Moreover, we have noticed that the 
false identifications of purple were quite often due to 
the speech recognition errors, as opposed to the actual 
vocal input from participants. 

These observations demonstrate that there are 
areas of improvement for the color-coding scheme. In 
our future designs we will be more careful when se-
lecting the colors to be used in the scheme, so that the 
challenges for the cognitive and vocal abilities of 
international users are minimized. 

4. Conclusions 

Our results suggest that the best performance (in 
terms of speed-accuracy tradeoff) can be expected 
using the following combination of the factor levels: 
1500-ms dwell time, 30-by-30-pixel target size, and 
10-pixel inter-target gap (shown by dashed circle in 
Figure 10). In our study, this combination yielded an 
average error rate of 7.4% (a mean of 108 trials in 
total: 12 participants x 9 trials). To better visualize the 
geometry on the real scale, Figure 13 displays a frag-
ment of the experimental setup (the lower part) placed 
next to the actual GUI controls in the experimental 
software’s window (the upper part).  
 

 
Figure 13. The size and layout suggested for buttons in a 

gaze-and-speech interface compared to a toolbar’s buttons in 
a common manually operated GUI 

This is a very important finding since user perfor-
mance in a gaze-based selection task is shown to ap-
proach the limit of practical pointing. Moreover, the 
finding is consistent with the level of accuracy 
reported for the gaze-assisted manual pointing [4]. In 
effect, it means that in terms of accuracy there are no 
fundamental limits for combined gaze and speech in-
put to become an alternative pointing technique just as 
good as manual pointing with devices such as an iso-
metric pointing stick in notebook computers [4]. 

The major shortcoming of the speech-augmented 
gaze pointing technique presented in this study is rela-
tively low speed. To match the cognitive demands 
largely associated with recalling the target’s referential 
attribute (color in the current implementation) and 

then producing vocal output, dwell time for selection 
had to be increased substantially.  

According to our data, accuracy becomes satisfac-
tory when dwell time reaches 1500 ms. That is, of 
course, in sharp contrast to the common setting for the 
gaze-only modality, which is of the order of a few 
hundred milliseconds. The cost in speed, however, is 
offset by a dramatic reduction in error rate. As this 
study shows, that employment of speech allows bring-
ing the overall error rate down by almost two thirds 
compared to the outcome for pointing by eye gaze 
alone.  

By improving the scheme for target coding, we ex-
pect to be able to significantly reduce dwell time while 
maintaining pointing accuracy at the level currently 
achieved. In turn, this will allow improving the overall 
speed-accuracy tradeoff. 

Another important issue is an adequate definition 
for the extent of the eye’s region of interest (ROI). In 
the current implementation, we used a fixed value of 
100 by 100 pixels for all target sizes. Intuitively, 
however, the extent of the ROI should depend on 
target size: the smaller the target, the smaller the 
region should be to accommodate the same number of 
objects within the region (in other words, to keep the 
probability of erroneous selection at the same level). 
We intend to find the best solution for defining the 
ROI in our future studies. 
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