
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.3

RULE-BASED ANNOTATION OF LITHUANIAN TEXT CORPORA

Jurgita Kapočiūtė, Gailius Raškinis
Vytautas Magnus University

Vileikos 8, LT-3035 Kaunas, Lithuania

Abstract. In this paper we present an algorithm that automatically recognizes and annotates person and place
names, contractions, acronyms, foreign language phrases, dates and sentence boundaries in Lithuanian texts. The
algorithm is based on a set of manually developed template matching rules and a few specialized lexicons. The
algorithm performs annotation by making several passes over the text. It can operate in automatic and semi-automatic
annotation modes. In the semi-automatic annotation mode, the user is allowed to intervene in cases where automatic
decision is uncertain. Users’ feedback is memorized and stored in the lexicons. Rules and lexicons were developed
after a careful examination of the text corpus of 600 thousand words. The algorithm was evaluated on a separate corpus
of 400 thousand words and achieved ~93% annotation accuracy.

Keywords: text corpora, automatic annotation, tagging.

1. Indroduction

Text corpora are large text collections that store
many millions of running words [7]. They are used as
a basis for verification of hypotheses about language.
Complex hypotheses related to language modeling,
speech synthesis, morphological disambiguation and
machine translation require annotated corpora, i.e.
corpora to which additional linguistic, morphological,
and/or syntactic information is added. Although text
corpora can be annotated manually, such annotation
requires many person-months of human labor.

In this paper we describe a rule-based approach to
automatic recognition and annotation of text entities,
such as: proper nouns, dates, sentence boundaries,
contractions, acronyms, and foreign words. The recog-
nition of these entities is complex due to the ambi-
guity inherent to all natural languages. Specific ambi-
guities also arise due to the highly inflected nature and
free word order of Lithuanian.

The rest of the paper is organized as follows.
Section 2 describes existing approaches to automatic
annotation. In section 3 annotation problems are
exemplified and the structure of the proposed
algorithm is outlined. Section 4 provides experimental
results. Section 5 contains some concluding remarks.
Appendix provides more formalized description of
annotation rules.

2. Related work

The methods of automatic annotation of various
text entities can be divided into those based on

empirically stated rules and those based on probabi-
listic models estimated on annotated text corpora.

Simple template matching rules are described by
Wang and Huang [12]. Authors suggest that the pat-
tern consisting of a lower-case string, followed by any
of the symbols “.”, “?”, “!” and further by a capital
letter accounts for the most part of sentence bounda-
ries in the text. Grover at al. [4] and Ignat at al. [5]
present simple templates for date detection. Their
templates are enriched by the references to the lexicon
of month names and check for prepositions and words
frequently occurring in date phrases. Gawronska [3]
recognizes nouns of inflected Polish with the help of
the list of possible noun endings for all genders, num-
bers and cases. Pouliquen at al. [9] and Dimitrova and
Dicheva [1] detect foreign language phrases that are
inserted in the text, referring to the foreign language
lexicons.

Kiss and Strunk [6] use rather sophisticated tem-
plate matching rules for sentence boundary vs. cont-
raction disambiguation. The authors use parameterized
rules, where parameters are extracted from annotated
text corpora. Rules are based on many features such
as: length of a word, number of internal periods it has,
number of times each word goes at the end of a
sentence in the training corpus, number of times each
word begins with a capital or lower-case letter; list of
words that most frequently go at the beginning of a
sentence. Candidate pattern is classified either as a
contraction or as a sentence boundary depending on
whether the rule applied to the candidate pattern re-
sults in a value exceeding specified threshold.

290

Rule-Based Annotation of Lithuanian Text Corpora

Wang and Huang [12] are addressing sentence
boundary detection problem within a probabilistic
framework. The authors compare Hidden Markov Mo-
dels (HMM) trained on an annotated text corpus and
the maximum entropy approach. In the latter case,
word collocations and their frequencies at the
beginning and at the end of a sentence are used as
features and integrated into the formula of maximum
entropy that is used for identifying sentence
boundaries in a text. Tajima et al. [10] use similar
probabilistic methods for identifying sentence
boundaries: phrases are analyzed, examining how
often certain words, phrases or morphological tags can
go at the end of a sentence. Pham and Tran [8] present
N-gram based language recognition method capable of
assigning whole text documents to some particular
language.

Many of the abovementioned approaches claim to
be language-independent. Kiss and Strunk [6] applied
their method to 8 Indo-European languages as well as
to Estonian and Turkish and reported 98.93% –
99.72% and 90.52% – 99.92% annotation accuracy for
sentence boundaries and contractions respectively.
Ignat at al. [5] applied methods to English, French,
German, Spain, Italian, Portuguese, and Romanian
and reported 64-100% recall and 86-100% precision.
Accuracy of annotating English sentences boundaries
reported by Wang and Huang [12] varies from 91.43%
to 99.56%. Tajima et al. [10] report 77.24% accuracy
for annotating Japanese texts.

Automatic detection of Lithuanian text entities has
never been attempted. In this paper, we present the
first attempt to build such an algorithm using the rule-
based approach and a few specialized lexicons. The
algorithm aims at recognizing sentence boundaries,
contractions, acronyms, proper nouns, foreign langua-
ge insertions, and dates. The algorithm is also de-
signed to distinguish between 2 subcategories of
proper nouns (person names and place names), 3 types
of foreign language phrases (English, Russian, Other),
4 types of dates (simple dates, date sets, time intervals,
ages of an individual).

3. Automatic annotation
3.1. Annotation problems

Automatic recognition and annotation of text enti-
ties faces the following major problems:
Ambiguity problems
a. Person name vs. place name ambiguity (word

“Roma” can stand for both person and place
name).

b. Proper noun vs. generic noun ambiguity (word
“Eglė” at the beginning of a sentence can stand
for person name and generic noun).

c. Dash separated place name ambiguity (words
“Kaunas” and “Vilnius” represent two place
names within “Autostrada Kaunas – Vilnius”,

while “Adis-Abeba” represent one composite
place name).

d. Period “.” related ambiguity. Period may indicate
sentence boundary, contraction, or both.

e. Language ambiguity (“bet” – may be Lithuanian
or English word). Language ambiguity also re-
sults from international words, especially Slavo-
nic words, spelled in Latin (“echo” may be
Lithuanian, English, or Russian word).

f. Ambiguities related to categorization of short
dates if no context is available (“50 metų” may be
a simple date – “50 metų [įvykiai]”, a time inter-
val –“[truko] 50 metų” and the age of an indivi-
dual – “[sukako] 50 metų”).

Problems of recognizing single/compound entities
a. Some entities can occur only in isolation (“Lie-

tuva”; “psl.”).
b. Some entities always constitute a part of a com-

pound entity (“Saudo” is always the part of
“Saudo Arabija”; “habil.” is the part of “habil.
dr.”).

c. Some entities can occur both in compound phra-
ses and in isolation, depending on the context
(“Britanija” may occur in isolation or as a part of
the compound proper noun “Didžioji Britanija”).

Problems of notational variety:
a. Contractions may start both with capital and

lower-case letter (“Ha”, “ha”); they can end with
or without an external period (“psl.”, “psl”). Cont-
ractions aren’t necessarily short (“tūkstm.”,
“apskr.”).

b. Person names, especially person names of foreign
origin, are spelled in many different ways. They
can contain short lower-case particles, apostro-
phes and hyphens (“Liudvigas van Bethovenas”,
“O’Neal”, “Bush’as”, “Vitkutė-Adžgauskienė”).
They can be preceded or succeeded by a variable
number of name contractions (“Dž. Bušas”,
“M.K. Čiurlionis”, “Petras I”, “Kenedis Dž.”).
Composite person names should be annotated as
one entity in all abovementioned examples.

c. Dates belonging to all four subcategories may be
written in many different formats: simple dates
(“2005 m. sausio 1 diena”, “1980 10 08”); date
sets (“1991, 1992 ir 1993 metai”, “7-as ir 8-as
šimtmečiai”); time intervals (“Nuo 2001 metų va-
sario iki 2003 vasaros pradžios”, “Nuo VII am-
žiaus pr. Kr. iki XI amžiaus po Kr. IX septinto
dešimtmečio pirmos pusės”); ages of an indi-
vidual (“25-erių metų” asmuo, “1,5 mėnesio”
kūdikis, “4-5 metukų” vaikas).

3.2. Annotation algorithm

Our algorithm is based on the assumption that the
abovementioned annotation problems can be solved
by the carefully designed set of annotation rules.
Rules must specify the template against which running

291

J. Kapočiūtė, G. Raškinis

texts are matched as well as additional conditions,
which may refer to an external linguistic knowledge
stored in lexicons. For instance, “is the text token a
word form of standard Lithuanian?”, “does the text
token is known to be a person name?” are typical
examples of knowledge the templates may require. A
typical annotation rule is illustrated by Figure 1.

... šie M.K.Čiurlionio paveikslai ...

 (<n>$PNE</n>){1,3}(<n>$PEN</n>){1,}

 ...šie <n>M.</n><n>K.</n>

 <n>Čiurlionio</n> paveikslai...

Figure 1. Illustration of a template matching rule

The rule sounds: “Search text for the pattern
consisting of two parts, such that the first part consists
of an abbreviated first name ($PNE) repeated no more
than 3 times ({1,3}) and the second part consists of at
least one ({1,}) token that matches some entry in the
lexicon of person names ($PEN). For every such
pattern found in the text put labels at the beginning
(<n>) and at the end (</n>) of each text token”.

Figure 2. The architecture of the text annotating algorithm.
Dotted lines represent human-computer communications in

a semi-automatic annotation mode

The proposed algorithm can operate in automatic
and semi-automatic processing modes. When ope-

rating in semi-automatic processing mode, the algo-
rithm may ask humans to provide the correct decision.
This happens if lexicon lookup fails and its own pro-
cessing templates cannot achieve required certainty.
Human’s answers are always stored in lexicons, thus
extending linguistic knowledge and reducing the
number of appeals for human help in the future
(Figure 2).

The algorithm of automatic text annotation con-
sists of a few consecutive text processing steps:

Input

Labeling of standard Lithuanian word forms.
During the first pass over the text, all text tokens are
tested for being possible word forms of standard
Lithuanian1. Tokens failing this test are tested for
being vernacularisms, which are recognized by a
simple replace-match rule. Typical endings of verna-
cularisms (“on”, “oj”, “im”, etc.) are replaced by the
appropriate standard Lithuanian endings (e.g.,
“on”→“a” “rankon”→“ranka”) and are tested for
being possible word forms of standard Lithuanian
again.

Rule

Output

Lexicon lookup stage. All text tokens found in the
specialized lexicons of person names, place names,
acronyms, contractions and foreign words are corres-
pondingly labeled. Lexicon lookup procedure takes
into account the fact that proper nouns in the text may
have another inflection than the ones stored in the
lexicon. Foreign words are assigned to English, Rus-
sian and Unknown categories. As lexicons of place
names and contractions directly store compound enti-
ties (e.g. “Dramblio Kaulo Krantas”, “t.y.”) no
additional processing is required for “assembling”
them from individual tokens. Compound place names
and sequences of foreign language tokens still need to
be “assembled” into a single entity before their anno-
tation can take place.

Morphological
lemmatizer

Annotated
text

Detection of four types of
dates

Labeling of standard
Lithuanian word forms

and vernacularisms.

Labeling of person and
place names, acronyms,
contractions and foreign

words
Lexicons:

Person names
Place names
Foreign
language
Contractions

Raw text

Grouping of compound
person names and of

foreign language phrases

Detection of sentence
boundaries

User’s
interface

At this point, the majority of text tokens are
labeled, i.e. their role in the text is known. When
operating in the semi-automatic annotation mode, a
user is queried about the role of remaining text tokens.

Grouping of compound person names and of fo-
reign language phrases. The application of specific
rules for assembling compound person names and
foreign language phrases is followed by the appli-
cation of one general rule of merging sequences of
tokens of the same type into a single entity. Specific
rules for compound person names incorporate the first
name contractions (“Dž. Bush”), typical lower case
particles (“Emanuelis de la Costa”), extra additions
(“O’Neal’as”) and multiple standalone person names
(“Valdas Adamkus”) into a single compound person
name. Specific rules for foreign language incorporate
digits, acronyms, person names making up the same
foreign language phrase. Rules take into account
language-ambiguous words. For instance, tokens “to”

292

1 Text token is identified as a word form of standard

Lithuanian if it is recognized by the morphological
lemmatizer of Lithuanian [13].

Rule-Based Annotation of Lithuanian Text Corpora

and “be” can be both English and Lithuanian words,
but the phrase “to be or not to be” is correctly re-
cognized as an English phrase.

Date identification. Initially, date detection rules
check for the presence of digits accompanied by some
date-related text strings, such as: names of months,
years, centuries, days, weeks, etc. Thereafter, date
components are assembled into one entity. Finally,
dates are assigned to subcategories, the decision being
based on the context, i.e. on the presence of certain
prepositions (“nuo” … “iki”), conjunctions (“ir”,
”arba”, ”ar”), punctuation signs (“,”) endings (“25-
erių”, “14-metė”). The user may be queried about ca-
tegory assignment decisions.

Detection and annotation of sentence boundaries is
performed by the set of specific rules as the last step
of automatic annotation.

Appendix provides more formalized description of
annotation rules.

4. Results

The algorithm described above was investigated
on the manually annotated test corpus containing 400
thousand words extracted from the VMU Lithuanian
text corpus. While operating in automatic annotation
mode the algorithm was allowed to skip "risky" anno-
tation decisions. Human-annotated texts were com-
pared with the machine-annotated texts on a tag-by-
tag basis. The performance was estimated by using the
recall and precision metrics. The recall R was
estimated as the number of decisions that were actual-
ly taken (A) divided by the number of decisions that
were required to be taken (Q). The precision P was
estimated as the ratio of the number of correct deci-
sions to the total number of decisions:

100%×=
Q
AR , 100%×

−−
=

A
DIAP ,

where I, and D denote false (inserted), and missed
(deleted) annotations respectively.

While operating in semi-automatic annotation
mode the algorithm made 15-52 and 0.68-12 queries
per 1000 tokens on test and development corpora res-
pectively (depending on the functional style of the
text).

Detailed analysis of annotation errors revealed
they are due to the following main reasons:

Lack of semantic analysis. Annotation rules are
based on surface word forms and partially on morpho-
logical and syntactic templates. This information alone
is not sufficient to disambiguate all annotation deci-
sions. For instance, the token “Saulė” (case-sensitive)
occurring in the middle of a sentence is annotated as a
person name by default. Nevertheless, this token could
also be a proper name of the star (“The Sun”) in some
cases.

While operating in semi-automatic annotation mo-
de the algorithm made 15-52 and 0.68-12 queries per

1000 tokens on test and development corpora res-
pectively (depending on the functional style of the
text).
Table 1. Recall and precision of automatic annotation mea-
sured per entity type. Rows marked by T and D give the re-
sults on test and development corpora respectively.

Semi-
automatic

Automatic Entity
Type

P P R
Proper
nouns

T
D

97.61
99.57

89.70
90.78

99.14
99.31

Acronyms T
D

99.07
99.98

96.82
98.67

100.00
100.00

Contractions T
D

95.52
99.45

94.80
96.28

100.00
100.00

Sentence
boundaries

T
D

99.07
99.89

91.50
93.11

100.00
100.00

Dates T
D

97.34
99.89

89.25
93.73

87.21
78.17

Foreign
language

T
D

90.42
94.30

86.30
87.56

100.00
100.00

Detailed analysis of annotation errors revealed

they are due to the following main reasons:
Lack of semantic analysis. Annotation rules are

based on surface word forms and partially on morpho-
logical and syntactic templates. This information alone
is not sufficient to disambiguate all annotation deci-
sions. For instance, the token “Saulė” (case-sensitive)
occurring in the middle of a sentence is annotated as a
person name by default. Nevertheless, this token could
also be a proper name of the star (“The Sun”) in some
cases.

Adaptation to the development corpus. Annotation
rules were empirically designed to deal with
annotation problems found in the development corpus.
As it was finite unseen patterns and contexts occurring
in test corpus fail to be annotated correctly.

Spelling mistakes in the text. The algorithm as-
sumes there are no spelling mistakes in texts. Mis-
spelled contractions, for instance, fail to be annotated.

Erroneous human input. The algorithm assumes
that all human answers to its queries are error-free
(semi-automatic annotation) and stores results of such
queries in appropriate lexicons. For instance, if human
erroneously declared some string to be a person name
instead of the place name, all future occurrences of
this string will be automatically and erroneously
annotated as person names.

5. Conclusions

This paper presents the first algorithm for auto-
matic annotation of various entities in Lithuanian
texts. The precision of the proposed algorithm is

293

J. Kapočiūtė, G. Raškinis

evaluated by comparing machine annotated texts with
texts annotated by a human expert. Working in an
automatic mode the algorithm achieved over 92% of
precision.

The algorithm is adaptive in the sense that in semi-
automatic operating mode human’s answers are al-
ways stored in one of the external lexicon. Thus lin-
guistic knowledge becomes extended and the number
of future appeals reduced.

The processing architecture used for annotating
proper nouns, contractions, acronyms, foreign lan-
guage insertions, dates, and sentence boundaries can
be extended for detection and annotation other lin-
guistically distinct text elements: spelling mistakes,
words, grammatical forms, etc.

References
 [1] V. Dimitrova, D. Dicheva. Learning Terminology in

a Foreign Language. Proceedings of the International
Conference Resent Advances in Natural Language
Processing. Tzigov Chark, Bulgaria, 12-15, 1997.
http://www-it.fmi.uni-sofia.bg/larflast/papers/ranlp97.
pdf.

 [2] Electronic text center. Last updated 17 March, 2005.
http://etext.lib.virginia.edu/.

 [3] B. Gawronska. Extracting Semantic Classes and Mor-
phosyntactic Features for English-Polish Machine
Translation. Proceedings of the 9th International
Conference on theoretical and Methodological Issues
in Machine Translation. Keihanna, Japan, 13-17
March, 2002. http://www.eamt.org/archive/tmi2002/
conference/07_gawronska.pdf.

 [4] C. Grover, C. Matheson, A. Mikheev, M. Moens.
LT TTT – A Flexible Tokenization Tool. Proceedings
of Second International Conference on Language
Resources and Evaluation, 2000. http://www.ltg.ed.ac.
uk/ papers/00tttlrec.pdf.

 [5] C. Ignat, B. Pouliquen, A. Ribeiro, R. Seinberger.
Extending an Information Extraction Tool Set to
Central and Eastern European Languages. Procee-
dings of the International Workshop Information
Extraction for Slavonic and other Central and Eastern
European Languages (IESL‘2003). Borovets, Bulga-
ria, 8 - 9 September, 2003, 33-39.

 http://hosting.jrc.cec.eu.int/langtech/Documents/Euro
Lan-03_Pouliquen-Steinberger-et-al.pdf.

 [6] T. Kiss, J. Strunk. Multilingual Least-Effort Sentence
Boundary Disambiguation. Under review, 2003.
http://www.linguistics.ruhr-uni-bochum.de/~strunk/
ks2003FINAL.pdf.

 [7] R. Marcinkevičienė. Corpus linguistics in theory and
practice. Darbai ir Dienos, VDU 24, 2000, 6-63. http:
//donelaitis.vdu.lt/publikacijos/marcinkeviciene.pdf.

 [8] T. Pham, D. Tran. VQ-Based Written Language
Identification. Proceedings of the Seventh Interna-
tional Symposium on Signal Processing ant its Appli-
cations. Paris, France, 2003, 513-516. http://www.
ise.canberra.edu.au/DatT/Publications/1032.pdf.

 [9] B. Pouliquen, R. Steinberger, C. Ignat. Automatic
Annotation of Multilingual Text Collections with a
Conceptual Thesaurus. Proceedings of the Workshop
Ontologies and Information Extraction at the Summer

School The Semantic Web and Language Technology -
Its Potential and Practicalities (EUROLAN’2003).
Bucharest, Romania, 28 July - 8 August, 2003.
http://www.jrc.cec.eu.int/langtech/Documents/EuroLa
n-03_Pouliquen-Steinberger-et-al.pdf.

[10] S. Tajima, H. Nanba, M. Okumura. Detecting Sen-
tence Boundaries in Japanese Speech Transcriptions
Using a Morphological Analyzer. Proceedings of the
First International Joint Conference on Natural
Language Processing, 2004, 207-212.

.
http://www.nlp.

its.hiroshima-cu.ac.jp/~nanba/pdf/ijcnlp_tajima.pdf
[11] TEI-Text Encoding Initiative. Last updated 7 March,

2002. http://helmer.aksis.uib.no/tonemerete/foreles-
ninger/Datalingvistikk/om_tei_2002_03_07.html

[12] H. Wang, Y. Huang. Bondec – a sentence boundary
detector. CS224N/Ling237 Final Projects, 2003.

 http://nlp.stanford.edu/courses/cs224n/2003/fp/huangy
/final_project.doc.

[13] V. Zinkevičius. Lemuoklis – tool for morphological
analysis. Darbai ir Dienos, VDU 24, 245-274, 2000.

 http://donelaitis.vdu.lt/publikacijos/zinkevicius. pdf.

Appendix

Formalized description of the annotation algorithm

Let:
\A denote the beginning of a new line2;
\Z denote the end of a new line;
\B denote the beginning of a new sentence;
\M denote position other than beginning of a new

sentence;
DD be the set of digits (written in digital form)

{0,1,…9};
DL be the set of digits (written in literal form)

(“vienas”, “du”…)3;
RD be the set of Roman numerals {I, II, III,…}.

 # Definitions for detecting proper nouns,
abbreviations and foreign language words:

ACR be the lexicon of acronyms;
AMW be an ambiguous word (GR any text token);
CAT be the set of known contractions occurring

anywhere in the text (with external period);
CON be the lexicon of contractions (other than the

first name and paragraph numbering
contractions);

FLW be the set of foreign language words
(English, Russian or others);

PEN be the lexicon of standalone person names;

2 The algorithm is presented in a slightly simplified form

using Perl inspired notation. Lexicon names are prefixed
by ‘@’, variable names are prefixed by ‘$’, i.e. $LEX is
any element from lexicon @LEX.

3 Lexicon lookup procedure takes into account the fact
that inflected words in the text may have another
inflection than the ones stored in the lexicon.

294

Rule-Based Annotation of Lithuanian Text Corpora

Let the functions: PLN be the lexicon of standalone and compound
place names; Length(x) return the length of an argument x in

characters; PNE denote the first name contractions (ending
with an external period); Count(x) return the number of occurrences of x

(including all its inflected forms) in the
current text (Count(x)=0 meaning x is
absent from the current text);

PNW denote the first name contractions (ending
without an external period);

SWN denote the set of lower case particles proper
to compound person names (“van”, “fon”,
“de”, etc.);

LCase(x) return the lower-case equivalent of x;
ID(x) return 0, if x can be both generic and

proper noun and 1, if x can be just a
proper noun;

TT denote the set of text tokens of standard
Lithuanian.

X{nmin, nmax} denotes that the string/variable X is
allowed to be adjacently repeated from
nmin to nmax times. If X{nmin,} then
nmax=∞. If X{nmin} then nmax=nmin.

Definitions for detecting dates:
ABD be the set of words that indicate abstract date

(“šis”, “praeitas”, “ateinantis”, “žalvario”,
“geležies”, “nepriklausomybės”, etc.);

AWY be the set of words associated with the word
“metai” (“aštuoniasdešimtmetis”, “pusmetis”,
“šešiolikametis”, “vienuolikmetis”,
“tūkstantmetis”, etc.);

Rules for automatic annotation of person names
(<n>), place names (<pl>), foreign phrases (<f>):
1. (<n>$PNE</n>){1,3} (<n>$PEN</n>){1,}
2. (<n>$PNW</n>){1,3} (<n>$PEN</n>){1,} CCE be the set of words and contractions that

indicating era (“prieš mūsų erą”, “po
Kristaus”, etc.);

3. (<n>$PEN</n>){1,} (<n>$PNE</n>){1,3}
4. (<n>$PEN</n>){1,} (<n>$PNW</n>){1,3}
5. (<n>$PEN</n>){1,} (<n>$RD</n>){1} END be the set of endings, which explicitly

indicate the inflection of a numeral (“ieji”,
“ąją”, e.g.: “1980-ieji”, “15-ąją”, etc.);

6. <n>($PEN){1}</n> (<n>($SWN)</n>){1,2}
<n>($PEN){1}</n>

7. <n>($PNE){1,3}</n>
(<n>($SWN)</n>){1,2} <n>($PEN)</n> HD be the set of huge numerals in literal form

(“tūkstantis”, “šimtas”, “milijonas”,
“milijardas”); 8. \B(<n>($PEN){1}</n>), if ID($PEN)=1

and Count(LCase($PEN))=0 and
Count(\M($PEN))>0 PAR be the set of particles (“netgi”, “net”, “pat”,

etc.); 9. \M((<n>($PEN)</n>){1,}), if
ID($PEN)=0 PRE be the set of prepositions (“nuo”, “prieš”,

“per”, “iki”, “ligi”, etc.); 10. \B(<?>4($AMW){1}<?>), if $AMW in @PEN
and $AMW in @PLN SW be the set of words that indicate short period

of time (“diena”, “para”, “savaitė”, etc.); 11. \M(<?>($AMW){1}<?>), if $AMW in @PEN
and $AMW in @PLN

WCE is the list that indicates word (“amžius”); 12. \B(<pl>($PLN){2,}</pl>)
WMO is the list that indicates word (“mėnuo”); 13. \M(<pl>($PLN){1,}</pl>), if

ID($PLN)=1 WW is the list of words (“pusė”, “pradžia”,
“vidurys”, “ketvirtis”, “pabaiga”); 14. \B(<?>($PLN){1}<?>), if ID($PLN)=1

WY is the list that indicates word (“metai”) as
isolate word;

15. \B(<?>($PEN){1}<?>), if ID($PEN)=1
and Count(LCase($PEN))>0 and
Count(\M($PEN))>0 YM be the set of months (“sausis”, “vasaris”,

etc.); 16. \B(<?>($PEN){1}<?>), if ID($PEN)=1
and Count(LCase($PEN))=0 and
Count(\M($PEN))=0 YS be the set of seasons (“pavasaris”, “vasara”,

“ruduo”, “žiema”). 17. <acronym>$ACR</acronym>
18. <contraction>$CON</contraction> # Definitions for detecting sentence boundaries:
19. (<f>$FLW</f>){1,} CNE be the set of contractions never occurring at

the end of a sentence (“dr.”, “gerb.”, etc.); 20. (<f>$FLW</f>){1,}(<f>$AMW</f>){1,3}
(<f>$FLW</f>){1,}, if $AMW{1,3} in
@FLW and $AMW{1,3} in @TT PAG be the set of paragraphs numeration symbols

(ending with external period); 21. (<f>$FLW</f>){1,}(<?>$AMW<?>){1,3}
(<f>$FLW</f>){1,}, if $AMW{1,3} not
in @FLW and $AMW{1,3} in @TT

SEP be the set of token separators [,.?!:-
/()[]{}<>|%`"'˙–*];

SLC be the set of lower-case letters;
SUC be the set of upper-case letters; 4 <?> denotes the annotation case which should be

resolved by a human (in semi-automatic annotation
mode).

USS be the set of common sentence separators
[.!?].

295

J. Kapočiūtė, G. Raškinis

296

22. (<f>$FLW</f>){1,}(<f>$ACR</f>){1}
(<f>$FLW</f>){1,}

23. (<f>$FLW</f>){1,}(<f>$DD{1,}</f>)
(<f>$FLW</f>){1,}

24. (<f>$FLW</ f>){1,}(<f>$PEN</f>){1,3}
(<f>$FLW</f>){1,}

25. (<f>$FLW</f>){1,}(<f>$PLN</f>)
(<f>$FLW</f>){1,}

26. ([(]5 or [“] or [‘])
(<f>$AMW</f>){1,2} (<f>$FLW</f>){1,},
if $AMW{1,2} in @FLW and $AMW{1,2} in
@TT

27. (<f>$FLW</f>){1,} (<f>$AMW</f>){1,2}
([)] or [”] or [’]), if $AMW{1,2} in
@FLW and $AMW{1,2} in @TT

28. ([(] or [“] or [‘]) (<f>DD</f>){1,}
(<f>$FLW</f>){1,}

29. (<f>$FLW</f>){1,}
(<f>$DD{1,}</f>){1,}([)] or [”] or
[’])

30. ([(] or [“] or [‘])
(<f>$PEN</f>){1,2} (<f>$FLW</f>){1,}

31. (<f>$FLW</f>){1,}
(<f>$PEN</f>){1,2}([)] or [”] or [’])

32. ([(] or [“] or [‘]) (<f>$PLN</f>){1}
(<f>$FLW</f>){1,}

33. (<f>$FLW</f>){1,} (<f>$PLN</f>){1}
([)] or [”] or [’])

34. \A(<f>$TT</f>){1,2}
(<f>$FLW</f>){1,}, if $TT in $FLW

35. (<f>$FLW</f>){1,}
(<f>$TT</f>){1,2}\Z, if $TT in $FLW

36. (<?>$TT</?>){1,2} (<f>$FLW</f>){1,},
if Length($TT) < 4

37. (<f>$FLW</f>){1,} (<?>$TT</?>){1,2},
if Length($TT) < 4

Rules for automatic annotation of dates:

1. [(]<d>$DD{4} [-] $DD{4}</d>[)]
2. <d>($DD{4})1 [-] ($DD{4})2</d>, if

($DD{4})2- ($DD{4})1< 100
3. <?>($DD{4})1 [-] ($DD{4})2<?>, if

($DD{4})2 - ($DD{4})1≥ 100
4. [(]<d>$DD{4}</d>[)]
5. <d>($PRE{1} $PAR{0,1}){0,1} (($DD{1,}

or $DL{1} or $DD{1,} $END{1}){1,}
($PRE{1} $PAR{0,1} or [,]){1}){1,}
($AWY{1} or $SW{1} or $WY{1} or
$WCE{1}){1}</d>

6. <d>($PRE{1} $PAR{0,1}){0,1} $DD{4}
([.] or []) ($DD{1,2} or
$RD{1,4}){1} (([.] or []) $DD{1,2}
$SW{0,1}){0,1}</d>

7. <d>($PRE{1} $PAR{0,1}){0,1} $YM{1}
$WMO{0,1} ($DD{1,2} ([-] $END{1})
{0,1} or $DD{1,2}){1} $SW{0,1}</d>

8. <d>($PRE{1} $PAR{0,1}){0,1} ($DD{1,}
or ($DD{1,}[-] $END{1}){1} or $RD{1,}
or $DL{1} or $ABD{1}){1,} ($WCE{1}

5 Separators are enclosed within brackets to distinguish

them from separators used to specify annotation rules.

$CCE{0,1}){1} (($DD{1,} or $RD{1,} or
$DL{1} or $ABD{1}){0,1} $AWY{1}){0,1}
($DD{1,} or (($DD{1,}[-] $END{1}){1}
or $RD{1,} or $DL{1} or $ABD{1}){1,}
$WW{1}){0,1}</d>

9. <d>($PRE{1} $PAR{0,1}){0,1} ($DD{1,}
or ($DD{1,}[-] $END{1}){1} or $RD{1,}
or $DL{1} or $ABD{1}){0,1} $CCE{0,1}
($AWY{1} or $WY{1} or
$HD{1}$WY{1}){1} $CCE{0,1} ($YS{1} or
$YM{1} $WMO{0,1}){0,1} (($DD{1,} or
($DD{1,}[-] $END{1}){1} or $RD{1,} or
$DL{1}){1,} $SW{0,1}){0,1}
$WW{0,1}</d>

Rules for automatic annotation of sentence

boundaries:
1. \A<s>$SEP{0,}$SUC{1,}
2. \A<s>$SEP{0,}$SLC{1,}
3. \A<s>$SEP{0,}$DD{1,}
4. $SUC{1,}$SEP{0,} </s>\Z
5. $SLC{1,}$SEP{0,} </s>\Z
6. $DD{1,}$SEP{0,} </s>\Z
7. $SLC{1,}$SEP{0,}$USS{1,}</s><s>$SEP{0

,} $SUC{1,}
8. $CAT{1}</s><s>$TT{1}
9. $CAT{1}<?>$PEN{1} or

$CAT{1}<?>$PLN{1}
10. $DD{1,}$SEP{0,}$USS{1,}<?>$SEP{0,}

$SUC{1,}
11. $SLC{1,}

SEP{0,}$USS{1,}<?>$SEP{0,}$DD{1,}
12. $SUC{1,}

$SEP{0,}$USS{1,}<?>$SEP{0,}$DD{1,}

13. $DD{1,}
$SEP{0,}$USS{1,}<?>$SEP{0,}$DD{1,}

