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Abstract. An optimization problem related to optimal design of processes in oil industry is considered. The 
problem is difficult because of small, implicitly defined feasible region. In such a case it is difficult not only to const-
ruct a rational algorithm for search for minimum, but also to construct an algorithm for search for feasible points. Seve-
ral algorithms for finding feasible points are proposed as well as several algorithms for optimization in a region 
approximated using points scattered in the region. A set of test functions is constructed to model the considered 
industrial optimization problems which normally are not suitable for testing of algorithms because of computational 
intensity. Testing results are presented, and conclusions about algorithms efficiency are drawn. 

 
 

1. Indroduction 

A standard optimization problem consists of 
feasible region defined by equalities and inequalities, 
and of objective function defined not only inside but 
also outside of the feasible region. However, in some 
applications there occur optimization problems with 
implicitly defined feasible regions and objective func-
tions not defined outside of the feasible region.  

We need to find the minimum value and a 
minimizer for the problem 
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Important properties of the optimization problem 
are discussed in [3], [4]. The aim of this paper is to 
develop algorithms suitable for a class of problems 
similar to that presented in [3]. For such research 
project a class of test problems satisfying assumptions 
below is needed. 

The problems of black box optimization are typical 
for process engineering in case the physical and 
economical properties are modelled by software 
packages allowing limited access to the implemented 
models. For example, the only output of the package 

is either the objective function value or indication that 
the input variables are infeasible. An optimization 
problem of such a type, related to industrial proces-
sing raw hydrocarbon feed stock into oil and gas pro-
ducts, is considered in [3]. The design and optimiza-
tion of such a process is difficult due to a combination 
of features of the process and the models used, both 
for modelling the physical behaviour of the process 
and for deriving cost estimates of a given configura-
tion and set of operating conditions [3]. The objective 
function value is calculated using the modelling 
package Jacaranda [1]. The objective is the profit of 
the process, which is calculated using the parameters 
obtained via modelling the physical processes, and 
market data. The package returns the objective func-
tion value (profit with sign minus) for the design para-
meters granting requested quality of the products. The 
package returns 10  in the case either the process is 
physically impossible or the products quality is not 
satisfactory. The reasonable intervals of the variables 
are known, and they constitute the hyper-rectangle set 

. However, a large part of  is not feasible since 
the parameter combinations are not compatible with 
physical feasibility of desired processes. Even larger 
part of  is not feasible because of not acceptable 
products quality. 

20

B B

B

To develop efficient algorithms for problems simi-
lar to the problem in [1], [3], a class of test functions 
modelling properties of the considered problem is 
needed because experimentation with the original 
problem is prohibitive computationally intensive. 
Most important property of the original problem is 
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size of the feasible region A . It is so small with res-
pect to  that even finding feasible points is 
challenging. However, the problem is not hopeless 
since it is possible to construct enclosures for 

B

A . A 
−θ enclosure of A , denoted by , is defined by the 

inclusions , 
θA

1≤B⊂⊂ AθA 0 ≤θ ; , πθ AA ⊂ θπ < ; 
. The hypervolume of constitutes about one 

percent of the hypervolume of . The sizes of the 
enclosures for different 

1AA ≡ 0

B
A

θ  of the problem of [3] are 
shown in Figure 1.  

 

 
Figure 3. Projection of trial points to the plane of two first 
principal components. Feasible points are indicated with 

large circles, and infeasible points with small dots 

 

2. Test problems 

To assess efficiency of optimization algorithms 
experimentally, test problems similar to the original 
industrial problem are needed. We take into account 
the following properties of the original problem. The 
feasible region should be small, e.g. with ratio 

 of order 10 – 10 , where vol(.) de-
notes hypervolume. According to the discussion in the 
previous section the enclosures of the feasible region 
should be available. To simplify comparison of algo-
rithms, we construct test functions with known value 
of global minimum and known global minimizer.  

)(/)( BvolAvol 4− 6−

Figure 1. Hypervolume of enclosure depending onθ [3] 

Discontinuity and other irregularities of the objec-
tive function of the original problem are caused by 
numerical methods used in modelling of physical pro-
cesses. Therefore the construction of a descent trajec-
tory is difficult even from a feasible starting point. For 
example, Figure 2 illustrates not only the discontinuity 
of objective function but also the presence of local 
minima close to the points of discontinuities. Because 
of these properties of the objective function, the 
application of gradient based descent methods does 
not seem possible. However, these difficulties are not 
fatal for direct search methods.  

Two test problems below represent the minimiza-
tion problems with small implicitly defined feasible 
regions whose enclosures can be controlled via para-
meter θ . The test functions differ from the real world 
objective function discussed above with respect to the 
smoothness. However, this difference is not essential 
since we consider search algorithms not using gra-
dients/smoothness of the objective functions.  

For the first test problem (Problem I) we use well 
known Rosenbrock function but with small nonconvex 
feasible region 
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where 1AA = , { }2,1,22: =≤≤−= ixXB i . Figure 4 
illustrates the feasible region and its enclosure with  

0=θ .  Figure 2. Cut of the objective function in  2x
The minimum value is equal to 0 and it is achieved 

at one point X=(1, 1). For  in (2) re-scaled to a unit 
cube, the minimum point in new scales is (0.75, 0.75). 
The largest enclosure  constitutes approximately 
3.5% of  while the estimate of the ratio is 

B

θA
B
( 00019.0)/)( =BvolAvol ; it is obtained from 10  

random trials with uniform distribution over . The 
sizes of enclosures for different 

6

B
θ  are shown as dot 

line (3) in Figure 5. 

The feasible region A  of the original problem in 
[3], is not disjoint but with a non-smooth boarder. The 
conclusion that the set  is not disjoint is corrobo-
rated by the projection of points scattered in  to the 
plane defined by two first principal coordinates; see 
Figure 3. 

1A

1A
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Figure 4. Feasible region of problem (2); (.) – represent 

points in enclosure with 0=θ  and (o) – represent points in 
enclosure with 1=θ  

 
Figure 5. Hypervolume of enclosure depending onθ ;  

(1) – Industrial problem, (2) – Problem II, (3) – Problem I 

To test the algorithms in a case of higher dimensio-
nality, the second test problem is considered. The 
objective function of this test problem (Problem II), 
the feasible region, and its enclosures are defined 
below: 
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where and1AA = { 5,...,1,22: =≤≤ }−= ixXB i

0=

. Figu-
re 6 illustrates convexity of the feasible region and its 
enclosure with θ .  

The minimum value is equal to 0 and it is achieved 
at two points; two first coordinates of minimum points 
are  X01=(-0.9472, 0.9709) and X02=(-1.0527, 1.0291) 
and others are equal to 1. The maximum value is 
larger than 0.459.  in (3) is re-scaled to a unit cube 
and two first coordinates the minimum points in new 
scales are (0.2368, 0.7572) and (0.2632, 0.7427) and 
others are equal to 0.75. The largest enclosure  
constitutes approximately 5% of , while the esti-
mate of the ratio is ; it is 

obtained from 10  random trials with uniform distri-
bution over . The sizes of enclosures for different 

B

θA
B

)(B 0005.0/)( =volAvol

6

B θ  
are shown as dash-dot line (2) in Figure 5. 

π

θ

 
Figure 6. Rhomb wise feasible region of problem (3) is 
indicated by feasible points (o); points (.) belong to the 

enclosure with 0=θ  

3. Optimization algorithms 

Two stage procedure is performed to solve optimi-
zation problems with small implicitly defined feasible 
regions: search for feasible region and optimization in 
the region approximated using found feasible points.  

3.1. Generation of feasible points 

Algorithm generating a set of points in feasible re-
gion A  is a sequential procedure which starts with 
generating points in  and finishes with0A 1AA = . The 
generation of points in  is guided by information 
obtained from points in , where

θA

πA θπ < . An increase 
of the index implies a decrease in the size of the 
enclosure. The evolution of set of points is similar to 
the evolution of biological population driven by 
worsening environmental conditions. Developed three 
algorithms are based on this approach. 

3.1.1. Algorithm I 
The generation living in conditions defined by  

produces descendants. The new generation is com-
posed of the individuals of the old generation and their 
descendants who survive in the new conditions, 
defined by . The descendants are produced by multi-
parent crossover aiming to ensure diversity in the new 
generation, where the diversity may be interpreted as 
the uniformity of the distribution of points in . The 
parents who would survive under the new conditions 
are chosen for crossover more frequently than those 
who would not; however those who would survive 
normally constitute only a small fraction of the old 
generation. For a set,  of  multi-parents, one sur-
vivable parent and 

θA

J
1

j
−j  non-survivable parents are 

chosen. The choice in corresponding subsets is ran-
dom with uniform distribution. The crossover is 
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defined by formula 
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where iα  are weights; weight of the survivable parent 
is 0.5 and the others weights are generated randomly 
with uniform distribution. The coefficient 1≥γ  

defines central extension of the convex hull of points 
 with respect to the centre (average of the points). 

The crossover is a generalization of the convex 
(arithmetic) crossover for the multi-parent case [2]. 
The crossover of survivable and not survivable parents 
(points satisfying constrains and not satisfying 
constrains) is similar to the crossover used in 
GENOCOP [2]. 

iX

 
Figure 7. Projection of trial points to the plane of the variables pairs. Feasible points are indicated with large circles, and 

infeasible points with small dots 

3.1.2. Algorithm II 
Population living in conditions defined by π  is 

used for finding new individuals living in conditions 
defined by θ . In order to collect a set of points in the 
enclosure θ , additional points are generated. New po-
pulation consists of feasible points in the enclo-
sure . New points are generated over the hyper-
cube: 

θA

[ ∆+∆− ii xx ; ], , ,  ni ,,1 K= 5=n 05.0=∆

around randomly chosen point from enclosure . πA ∆  
was experimentally chosen and is equal to 

.  points are randomly gene-
rated in the defined hyper-rectangular. The size  
was chosen experimentally and is equal m . New 
generated points are collected to new population if 
they are feasible in  enclosure. 

100*))(/)(( BvolAvol

θA

m
m
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3.1.3. Algorithm III 
Projection of trial points to the plane of the 

variables pairs in Figure 7 shows that some variables 

vary in large enough intervals and other variables vary 
in very small intervals of the hypercube. Therefore, to 
make new point by changing value of one variable in 
randomly chosen point may be purposeful.  
Population living in conditions defined by π is used 
for finding new individuals living in conditions 
defined by θ . As in Algorithm II hypercube: 

[ ]∆+∆− ii xx ; , ni ,,1K= , ,  5=n 05.0=∆

around randomly chosen point from population living 
in conditions defined by π  is defined. Randomly 
chosen variable’s value is changed by a new value, 
which is randomly generated in the hypercube. Point, 
feasible in  enclosure, is involved into new 
generation. Procedure is repeated  times, and this 
count, as in Algorithm II, is equal .  This cycle 
is repeated until  feasible points are collected. 

θA
m

m = n2
N

3.1.4. Computational results 

We aimed to compare the efficiency of the algo-
rithms. One of the criteria chosen for comparison is 
the amount of points generated on the ground of 
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points in π enclosure for finding N points in θ  en-
closure. The efficiency of the algorithms could be 
compared using other criteria such as the average CPU 
Time of point’s generation, the best of minimal values 
found, average of the minimal values found, standard 
deviation of the minimal values found and average 
number of function calls. Computations were made on 
a 700 MHz Pentium based computer with 256 MB of 
RAM. 

The dependence of hypervolumes of enclosures on 
θ  in Figure 5 demonstrates that hypervolumes de-
crease as the continuation parameter approximates to 
one. The values of the continuation parameter are 
chosen k1.0=θ , . 10,,0 K=k

Computations in each enclosure are terminated 
after the amount of points in θ  enclosure comes to 

, when 210=N 0=θ  and  when 310=N

1,,1.0 K=θ . Ten independent runs are executed for 
each algorithm with different initial set of randomly 
generated points with uniform distribution over the 
hypercube. Table 1 contains the results of this experi-
ment. The following notations are used: Alg. – the 
abbreviated algorithm’s name; avgn – average number 
of points generated on the ground of the points in  
for finding  points in , where 

πA
N θA 1.0−= θπ ; Total 

– sum of the average amount of points generated in 
sequential procedure, where 1,,2.0,1. K0,0=θ . 

Table 2 lists the estimations of other criteria that 
are used to compare the algorithms efficiency.   

According to computational results presented in 
Tables 1 and 2, the problem of finding feasible points 
is best solved by Algorithm II. 

Table 1. The average amount of points in π  enclosure used to generate N=1000 in each θ enclosure 

 
Alg. 

avgn 
1.0=θ  

avgn 
2.0=θ  

avgn 
3.0=θ  

avgn 
4.0=θ  

avgn 
5.0=θ  

avgn 
6.0=θ  

avgn 
7.0=θ  

avgn 
8.0=θ  

avgn 
9.0=θ  

avgn 
1=θ  Total 

Problem I 
Algorithm I 11392 1765 1760 2099 2153 2513 4101 4971 11054 1677887 1719695 
Algorithm II 525 27 33 47 61 82 117 188 402 205997 207479 
AlgorithmIII 304 304 307 306 313 329 335 353 432 246854 249837 

Problem II 
Algorithm I 2306 1269 1312 1334 1470 1590 1725 1884 2437 1851 17178 
Algorithm II 372 49 78 92 126 154 218 373 790 1632 3884 
AlgorithmIII 405 381 388 409 445 510 654 814 1084 2875 7965 

Industrial problem [3] 
Algorithm I 3817 1148 1227 1491 1565 1873 2514 3992 7784 10983 36394 
Algorithm II 1354 1086 1077 1126 1189 1247 1603 2620 3621 6478 21401 
AlgorithmIII 1371 1386 1270 1287 1324 1423 1782 2490 3755 7573 23661 

Table 2. Criteria defining the algorithms efficiency  

 Criteria Algorithm I Algorithm II Algorithm III 
Problem I  Average of the computational time (s) 869.5 74.34 102.82 
(formula 2) Best minimum 6.4419e-06 1.1283e-06 8.0762e-03 
 Average of the minimal values found 0.02659 0.02584 0.03618 
 Standard deviation of the minimal values found 0.025246 0.026647 0.018709 
 Number of function calls 1719695 207479 249837 
Problem II  Average of the computational time (s) 10.8 4.9 4.8 
(formula 3) Best minimum 0.034124 0.033858 0.034973 
 Average of the minimal values found 0.246935 0.233409 0.235262 
 Standard deviation of the minimal values found 0.099571 0.095470 0.096406 
 Number of function calls 17178 3884 7965 
Industrial problem  Average of the computational time (s) 3.04*103 2.54*103 2.73*103 
[3] Best minimum -3.2184e+08 -3.2218e+08 -3.2104e+08 
 Average of the minimal values found -2.7453e+08 -2.7289e+08 -2.7069e+08 
 Standard deviation of the minimal values found 1.1677e+07 1.3782e+07 1.1241e+07 
 Number of function calls 36394 21401 23661 
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3.2 Optimization in feasible region 

The proposed optimization algorithms are based 
on evolutionary technique. The trial points are gene-
rated by search algorithms modelling a population of 
individuals evolving under natural selection pressure 
hardening because of worsening environmental condi-
tions. Selection is based on individual’s fitness model-
led by objective function value.  

3.2.1. Adaptive search for optimum 
The starting population consists of points in the 

feasible region A . The current population is described 
by the eigenvectors and eigenvalues of the covariance 
matrix of these points, and the average vector of these 
points. The trial points are modelled as realizations of 
a Gaussian random vector with average equal to 

( )a XX −− min aXϕ , where  is the average of the 
current population,  is the best point found in the 
current population. A newly generated point is in-
cluded in the new population if its function value is 
less than the average of the current population. The 
new population is formed of the best points of both the 
current population and newly generated points. The 
new population becomes current one, its eigenvalues 
and eigenvectors are calculated, and random genera-
tion of new points is repeated. 

aX

minX

3.2.2. Evolutionary search for optimum 
Descendants are produced according to the convex 

multiparent crossover 

NiXXXX rri ...1,21min =++= γβα ,           (4) 

where  is the best point found,  is a random-
ly selected point from  best points of the parent 
generation and  is a randomly selected point from 

 worst points of the parent generation. The 
weights in (4) are chosen as follows: 

minX 1rX

=

N2.0
2rX

N8.0
7.0α ,  - 

are generated randomly with uniform distribution, 
γβ ,

1=++ γβα . The number of descendants is equal to 
the population size . The new generation consists of 

 best points of survived descendants and  
best points of parent population.  

N
N2.0 N8.0

3.2.3. GA - based search for optimum 
A probabilistic selection is performed with the 

selection probability  based on individual’s fitness 

value: 

jP

∑ =
=

N

jii FP

i N

jF
1

, where  equals the fitness 

of individual ,  - population size. Individual i  is 
selected if  

iF

ii CUC ≤<− )1,0(1 , 

where  is the cumulated probability of 

the population. Each individual is coded into sequence 
of  binary digits, where  is variable number 

in individual and 

∑ =
=

i

j ji PC
1

n*bits n

16=bits . Two genetic operators 
were applied in this algorithm: multi-point crossover 
and mutation. Multi-point crossover takes two 
individuals and produces two new descendants. Two 
individuals are crossed from  and 

 positions, where i , with cross rate 
thibits )2)*(( −

n,...,thibits )*(
7.0

1=
=cp . Binary mutation flips each bit with 

probability 001.0=mp  according to equation (5). 
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Best descendants and best points from parent 
population constitute new population of  
individuals. 

N

3.2.4. Computational results 
The goal of these experiments is to estimate the 

efficiency of the optimization algorithms. For compa-
rison of the algorithms the following criteria can be 
used: best minimum found, the average of the found 
minimums, standard deviation of the found mini-
mums, number of function calls used to obtain the best 
minimum value and computational time used to find 
best minimum value. The way of seeking minimum 
point is also an important criterion in algorithms 
comparison.  

The population size is chosen 100, 300, 500 and 
generation’s number is chosen 10, 20, 30, 40, and 50. 
Computations are terminated after the defined number 
of generations. 50 independent runs (each with 
different seed) are executed.  

The results of the experiment are listed in Table 3. 
Best results for Problem I have presented an Evolutio-
nary search algorithm. The best minimum, which is 
equal to 1.5001e-28, was obtained during the experi-
ment with population size 500 and number of 
generation 30. Very close result to our known mini-
mum point of this problem has carried an Adaptive 
search algorithm with best function value 3.4823e-
011. For comparison of these two algorithms it is 
useful to mention that Adaptive search algorithm 
requires less function calls to find best point. 

The best minimum for Problem II with rhomb wise 
feasible region was obtained during experiment with 
population size 500 and number of generations 40. 
Found minimum point is equal to known function 
minimizer and function value in this point is 0. Adap-
tive search algorithm has presented best results for 
Industrial problem [3]. The experiment with popula-
tion size 100 and number of generations 40 produced 
the best result for the Industrial problem. The best 
minimum value found is -3.2542e+008 at the point 
(0.79774, 0.50082, 0.000084041, 0.84825, 0.54592). 
The average of found estimates of minimum is –
3.2291e+008. Best points found by Evolutionary 
search and GA – based search algorithms also are 
acceptable, but averages of the found minimum 
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value’s show that most of found best points are out of 
our target area.  

The goal of another experimental investigation 
was to see how algorithms seek a minimum point. 
Experiment parameters and initial population were 
chosen the same, whereby best points of problems 
were found. In Figure 8 there are shown experimental 
results for three problems, which were solved with 
Adaptive search, Evolutionary search and GA based 
search algorithms. All algorithms start minimum 
search at the same initial population (the best value 
from initial population in Figure 8 is marked by 
circle). Starting at initial population in Industrial prob-
lem in experiment with population size 100 and 
number of generations 40, minimum is reached 

through 28 generations and in Problem I with rhomb 
wise feasible region, in experiment with population 
size 500 and number of generations 40, through 12 
generations using Adaptive search algorithm. Evolu-
tionary search algorithm in experiment with popula-
tion size 500 and number of generations 30, finds best 
minimum through 30 generations in Problem II. Graph 
(3) in Figure 8 shows that Adaptive search finds a 
point close to the best minimum point 

As seen in Figure 9 computational time depends 
on population size and objective function. In this 
experiment the fastest algorithm is Adaptive search. 
When population size grows up, the computational 
time of GA – based search algorithm grows up faster 
then other algorithms computational time. 

Table 3. Criteria defining the algorithms efficiency 

  Adaptive search Evolution search GA–based search 
Problem I  Best minimum 3.4823e-011 1.5001e-028 4.5251e-007 
(formula 2) Average of the minimal values found 0.0047 3.5295e-006 6.2715e-005 
 Standard deviation of the minimal values found 0.0102 1.7656e-005 5.7301e-005 
 Number of function calls 11000 15000 12500 
 Average of the computational time (s) 21 46.37 246 
Problem II  Best minimum 0 7.4523e-005 0.0011 
(formula 3) Average of the minimal values found 0.0022 0.0323 0.0256 
 Standard deviation of the minimal values found 0.0042 0.0166 0.0155 
 Number of function calls 6000 20000 9500 
 Average of the computational time (s) 13.2 73 233 
Industrial  Best minimum -3.2542e+008 -3.2489e+008 -3.2479e+008 
problem  Average of the minimal values found -3.2291e+008 -3.1248e+008 -3.1938e+008 
[3] Standard deviation of the minimal values found 2.1929e+006 4.2205e+007 4.4575e+006 
 Number of function calls 2800 600 14700 
 Average of the computational time (s) 44 19 260 

 

 
Figure 8. Algorithms comparison; (1) – industrial problem, (2) – Problem II, (3) – Problem I; * – best minimum value found;  

O – best value from initial population; Adaptive search – solid line; Evolutionary search – dashed line;  
GA – based search – dot line 
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Figure 9. Computational time of 50 generations with population size (100, 300, 500) performed on minimization of three 

problems: (1) – industrial problem, (2) – Problem I, (3) – Problem II; Adaptive search time function– solid line;  
Evolutionary search time function – dashed line; GA – based search time function – dot line 

4. Conclusions 

Optimization problems with small implicitly de-
fined feasible region are considered. Two stage pro-
cedure is used to solve such problems: search for 
feasible region and optimization in the region approxi-
mated using the found feasible points.  

Three algorithms are proposed to find points in 
feasible region, and three algorithms are proposed to 
find minimum value and a minimizer in the approxi-
mated feasible region. 

For the experimental investigation of algorithms 
efficiency a class of test problems is elaborated. 

The results of experimental investigation show that 
Algorithm II is the best to locate feasible region. The 
best of three algorithms for optimization is the 
Adaptive search algorithm.  
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