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Abstract. System-on-Chip (SoC) design raises an abstraction level in hardware (HW) design beyond a domain 
language specification. This requires the introduction and adoption of high-level analysis and specification methods 
that provide reusability, layericity, orthogonality, heterogeneity and customizability for HW design. HW design has 
many levels of abstraction. The transition between these levels can be described using a concept of design process. As 
there may be many representation and design methods for a designer to choose from, while implementing a certain 
design process, we describe several Design Flow Models aimed at implementing customization in soft IP-based HW 
design. These models apply several concepts taken from software engineering (object-oriented and pattern-based 
design, metaprogramming, parsing, and markup languages) to HW design. 
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1. Indroduction 

Today, the entire embedded systems comprised of 
multiple processors, memories and application-speci-
fic circuitry are implemented on a single semiconduc-
tor chip. Such systems, called Systems-on-Chip (SoC), 
have hardware and software parts, where “hardware” 
corresponds to implemented circuit elements, and 
“software” corresponds to programmed instructions 
performed by hardware. In recent years, the most 
frequently discussed topics at conferences, forums and 
meetings in HW design community are centered on 
three basic trends as follows: (1) Unification of the 
design methodologies [1]. (2) Moving towards higher 
levels of abstraction and metamodeling in design [2]. 
(3) Emergence of a new vision, Ambient Intelligence, 
for future microelectronic systems [3]. 

Currently, the researchers emphasize the role of 
parameterization, customization and integration of the 
pre-designed soft IP (Intellectual Property) compo-
nents, described using a high-level hardware (HW) 
description language (HDL), such as VHDL, into HW 
systems. To bridge the enormous gap between the 
high-level specification of a design problem and its 
implementation, the researchers propose and designers 
use a variety of models (representations of a system) 
at the different levels of abstraction. They vary from 
the lower-level abstractions such as Gate, RTL to the 
higher-level ones such as design space layers [4], 
metacores [5], objects [6], UML diagrams [7, 8], 
architectural patterns [9, 10], formal models [11], 
frameworks [12], platforms [13, 14], Petri Nets [15] 

and SystemC models [16], which should ensure higher 
design quality, productivity and reuse.  

High-level models are created using a variety of 
modeling languages and are used to make essential 
architectural design decisions within a certain design 
framework. Some models and abstractions are used at 
both lower and higher levels (e.g., FSM). These abst-
ractions allow hiding the lowest physical layer (tran-
sistors and wires) and contributing to increasing de-
sign productivity in the domain. 

One way to reduce the embedded system design 
time and costs is to reuse the pre-existing soft IPs 
systematically [17]. The design of soft IPs is a 
complex task due to the following reasons. Smart 
products usually require various combinations of high 
performance, low cost and low power. Developers 
usually design general-purpose embedded systems for 
reuse in numerous applications. Since the context of 
their usage is usually unknown, these designs often 
focus on the functionality issues only, thus yielding 
widely applicable, but not efficient designs. On the 
other hand, extreme specialization results in highly 
efficient design usable only in a single application. 

Design of highly reusable soft IPs does not solve 
the problem of adaptation for a particular context. 
Customization of soft IPs to fit an application, if not 
pre-programmed, may require extensive design 
efforts. The designer has to find the balance between 
generalization of functionality and specialization of 
performance characteristics. 

The contribution and novelty of this paper is four 
Design Flow Models that describe the application of 
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(1) Design processes are domain-specific and can 
be used only for implementing certain well-known 
models in the domain. 

high-level abstractions (metalanguages, UML, mark-
up) and tools for automated implementation of custo-
mization of soft IPs and integration into a HW system. 
This paper is a summary of our previous research and 
experiments published in various papers [18-25]. 

(2) Design processes are commonly used by de-
signers.  

The structure of the paper is as follows. Section 2 
discusses the process-based view to HW design. Sec-
tion 3 describes four Design Flow Models based on 
using UML, Design Patterns, Metaprogramming, 
Parsing and XML/XSLT style sheets for HW design. 
Section 4 summarizes our experiments in implement-
ing the wrapping design process using the Models. 
Section 5 evaluates the results and presents a discus-
sion. Finally, Section 6 presents the conclusions. 

(3) Design processes are transformative, i.e. they 
are about transforming their input (programs, syntax 
trees) into output.  

(4) Design processes are executable, i.e., they not 
only describe what is done, but also imply how it can 
be done using some well-defined method or approach.  

(5) Design processes are design context-specific, 
i.e. they reside within a certain design framework. 

For example, a common design process used in 
communication-based design is wrapping [20, 21], 
which adds the communication protocol to the 
existing soft IP to adapt it in order to allow for 
communicating with other components in the designed 
system. Wrapping relates between the same levels of 
abstraction in design flow (Figure 1). 

2. Process-based view to HW design 

The IP-based design is a vision of how researchers 
and designers introduce reuse-based ideas (abstrac-
tions, models, instructions, rules, etc.), implement 
them by creating tools, and use tools in order to 
achieve a pre-specified design aim while designing 
and manufacturing sophisticated products, such as 
embedded systems. The SoC design methodologies 
generally require the following features:   
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(1) Layericity – HW has many layers of abstraction 
(HW, embedded SW, RTOS, etc.) for which the under-
lying, subsequent design-flow steps are abstracted. By 
carefully defining HW abstraction layers and deve-
loping new representation and automated design 
methods, an electronic system design flow is realized. 

(2) Orthogonality – based on the principle of sepa-
ration of concerns, the IP-based HW design methodo-
logy must clearly separate behavioral aspects from 
implementation, and communication from computa-
tion [26]. 

Figure 1. Abstractions and design processes 

The transition between higher and lower levels of 
abstraction can be defined as refinement. This means 
the translation between a high-level specification (e.g., 
UML diagram, Petri net) and a lower level implemen-
tation (e.g., VHDL program) in a design environment. 
The opposite process is generalization, used in meta-
modeling, metaprogramming and development of 
generic components. Reuse means the usage of a soft 
IP component (with or without modifications) in the 
designed system. Optimization means the improve-
ment of the component’s characteristics (area, speed, 
power usage) via a functionality-preserving modifica-
tion of the component.  

(3) Reusability – process-based HW design pro-
motes reuse at all levels of abstraction, including reuse 
of soft IP components, high-level models, testbenches, 
architectures, etc. [27] 

(4) Customizability – a platform can be customized 
for a range of applications within a certain domain 
using a variety of mechanisms from simple paramete-
rization to sophisticated transformations [28]. 

There are many levels of abstraction in HW de-
sign. For simplicity, we can consider only two levels, 
the higher level (HL) and the lower level (LL). These 
levels differ in the considered domain entities (e.g., 
HL: objects and messages, LL: transistors and wires) 
and their representation methods used (e.g., HL: UML 
diagrams, LL: HDL specification). Each level con-
sequently can be subdivided into multiple sub-levels. 
The relation between the levels of abstraction can be 
described using a concept of design process [23]. We 
understand a design process as a series of commonly 
used domain-specific actions, tasks or methods 
performed to achieve a certain design aim. We 
formulate the properties of design processes below:  

Design processes are introduced into the domain 
through raising the level of abstraction. Generally, we 
can distinguish four different levels of abstraction (see 
Figure 2) in system design: 

(1) Domain abstraction level – the organization of 
domain data (components) into the tree-like hierar-
chies, where a root component is a generalization of 
the descendant components. 

(2) Metaprogram level – the development of the 
generic components (programs) using the internal 

126 



Soft IP Customization Models Based on High-Level Abstractions 

mechanisms of the domain language (polymorphism) 
or an external language (metalanguage). 

(4) Metamodel level – the representation of model 
semantics using abstract metamodels. A composition 
of several metamodels implements a platform. (3) Model level – the introduction of models that 

describe a specific domain problem in general. 
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Figure 2. Different levels of abstraction in domain 

While the first two levels are usually introduced 
using the textual specification mechanisms of the 
programming languages (either object-oriented or the 
metaprogramming ones), the last two levels can be 
introduced using a graphical notation such as UML. 

We summarize our perception of process-based 
HW design as a two-dimensional space of wrapping 
and refinement processes, the basic abstract processes 
within our approach. The first one relates with a de-
sign (sub)problem specification using some abstrac-
tion. The second one relates with the transformation 
of the higher-level specification into a representation 
at a lower-level of abstraction.  

Furthermore, each of these processes contain 
different sub-processes (operations). The partition and 
selection of processes from the design process space is 
a particular concern of a designer. The ideal case is the 
one in which the design process is described using a 
unique abstraction hiding the lower-level design 
processes, and implemented using a well-defined 
design flow. Next, we describe several design flow 
models, which we have identified during our research. 

3. Design flow models 
3.1. Model 1: UML-based 

Model 1 describes the usage of UML for HW de-
sign. A designer has three main problems to solve. (1) 
How to raise the level of abstraction from the domain 
language specification to the UML specification? (2) 

How to modify the UML specification to implement a 
certain design process? (3) How to refine the UML 
specification to domain language? 

To solve these problems, the design flow must 
provide the following features. Firstly, it must ensure a 
mapping between the UML subset used to model a 
target system and the domain language (e.g., VHDL) 
abstractions. Secondly, it must implement a set of 
translation rules between UML and domain language. 
A mapping is usually described formally using a 
metamodel that describes the syntactic components of 
the used UML diagram and the corresponding domain 
language abstractions (Table 1). 

Table 1. UML-VHDL metamodel 

UML model element VHDL abstraction 
Interface Entity 

Class Architecture 
Inheritance - 

Composition Port map 
Realization Of 

Public attribute Port (external signal) 
Private attribute Signal (internal) 

Method Process 
Parameter Generic 

 
The aim of the translation rules is to describe how 

an instance of the UML metamodel (i.e., any UML 
model described using a subset of UML defined in a 
metamodel) can be transformed from and to an 
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instance of a target model (i.e., a domain language 
specification that describes the implementation of a 
system specified using UML). These rules can be 
implemented manually by a designer, or automatically 
using a dedicated translation tool.  

A target system is not specified freely, but rather 
using patterns, which are refined to architectures that 
implement common domain models. Design patterns 
are an abstraction used for representing, abstracting 
and encapsulating common design solutions in UML, 
as well as for describing contexts to which they can be 
applied in an implementation-independent way [29]. 
The problem is how design patterns should be refined. 
Design patterns usually are very abstract and can be 
refined into a target model in a variety of ways that 
could lead to different implementations. 

The design flow in Model 1 is as follows (Figure 
3). A designer uses the translation rules to derive the 
UML diagram of soft IP(s), and then composes it with 
the additional glue code specified in UML. The 
specification of the glue code is obtained by defining 
the design pattern used to implement a well-known 
domain model. A target system is obtained when the 
UML diagram is translated into the domain language-
based specification. This model was also discussed in 
[21, 23, 25]. 
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Figure 3. Design flow in Model 1 

The problems a designer faces in Model 1 are as 
follows: (1) Standard UML is not enough for expres-
sing HW domain concepts such as timing. (2) Vali-
dation of the object-oriented model of HW. (3) 
Selection of a suitable domain language. VHDL is 
closer to HW domain, whereas SystemC is closer to 
SW domain, but has many restrictions on synthesiz-
ability. 

3.2. Model 2: Metaprogramming-based 

Model 2 describes the application of metaprogram-
ming paradigm [22] for HW design. Metaprogram-
ming is a higher-level programming technique that 
provides a means for manipulating with domain prog-
rams as data. The aim of metaprogramming is to 
create a metaspecification – a specification of a 

program generator for a narrow domain of application. 
A metaspecification consists of a family of related 
domain program instances that implement a well-
proven domain model. The instances are encapsulated 
with their modification algorithm that describes 
generation of a particular instance depending upon the 
values of generic parameters.  

Heterogeneous metaprogramming means program-
ming with two different languages simultaneously. 
The lower-level language (domain language, DL) is 
used for expressing the basic domain functionality. 
The higher-level language (metalanguage, ML) is used 
for expressing generalization and describing domain 
program modifications. A designer uses a metalan-
guage as a higher-level abstraction to integrate toge-
ther the different domain program instances and make 
up a metaspecification. Then a metaspecification is 
used as a set of instructions for a metalanguage pro-
cessor to generate the specific domain program 
instances. 

The problems a designer faces in Model 2 are as 
follows. (1) It requires two design environments, thus 
the validation process is more complex. (2) 
Overgeneralization also could become a problem. (3) 
The selection of parameter values is a cumbersome 
task that requires the detailed domain knowledge. 
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Figure 4. Design flow in Model 2 

The design flow in Model 2 is as follows (Figure 
4). A designer uses a well-proven domain model to 
develop a parameterized metaspecification that repre-
sents a family of the available target system imple-
mentations. A particular instance of a target system is 
obtained when a metaspecification is processed using 
values of the generic parameters supplied by a desig-
ner. This model was also discussed in more details in 
[19, 20, 22]. 

3.3. Model 3: Parsing-based 

Model 3 is an extension of Model 2 with parsing. 
The aim is to streamline the selection of the context-
dependent parameter values for metaspecifications. 
Parsing is an application-specific domain analysis me-
thod that is concerned with automatic analysis of abst-
ract domain representations – the DL program source 
code. Parsing decomposes the domain language 
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specification according to the DL syntax into an Abst-
ract Syntax Tree (AST). AST then can be used for a 
variety of purposes such as domain visualization, 
modelling, extraction of the application-specific infor-
mation for further customization, optimization and 
domain code generation.  

The problem with parsing-based model is the 
implementation of parsing itself, which may be very 
complex. However, for many DLs custom open-source 
parsers exist that can be easily integrated into a design 
flow. 

The design flow in Model 3 is as follows (Figure 
5). It is similar to Model 2. The difference is that ap-
plication-specific design context represented by soft 
IP(s) is analyzed automatically and the obtained data 
are used to generate a target system. This model was 
also discussed in more details in [24]. 
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Figure 5. Design flow in Model 3 

3.4. Model 4: Markup-based 

Recently, XML began to be used as a metalan-
guage capable of specifying parameterized compo-
nents and design architecture independently of the 
modelling language in the embedded system design 
domain [30]. XML is a markup language that provides 
a common syntax for describing the structure of data 
according to their content or meaning. XML also can 
be described as a metalanguage that allows defining 
customized domain-specific markup languages for 
different types of documents.  

XML has several advantages as a representation 
language. The hierarchical topology of data organiza-
tion reflects the logic structure of data. The tagged 
data embed the information structure within the data, 
which makes the processing easier. A designer is not 
restricted to a limited set of tags defined by proprie-
tary vendors. By defining his own set of tags, he can 
create a markup language oriented at a specific do-
main of application. The rules specified by those tags 
need not be limited to formatting rules. XML allows 
defining any tags with any rules for any target domain, 
such as tags representing business rules or data 
description. 

XML is often used with XSL, a family of recom-
mendations for defining transformation and presenta-
tion of XML documents. A part of XSL is XSLT – a 
language for describing transformation of XML 

documents. An XSLT program (style sheet) is a set of 
template rules for transforming a source tree into a 
result tree. The transformation is achieved by associa-
ting patterns with templates. Each template rule has 
two parts. A pattern is used to match nodes in a source 
tree of the input XML document. A template is used to 
form a result tree of the output XML document. The 
structure of the result tree can be completely different 
from the structure of the source tree. 

The design flow in Model 4 is as follows (Figure 
6). A designer uses the translation rules to derive the 
XML-based specification of soft IP(s). Then the desig-
ner composes the transformation code in XSL and ap-
plies it to the XML-based specification of the original 
soft IP. The result is the XML-based specification of 
the system. A low-level implementation of the target 
system is obtained when the XML-based specification 
is translated into the domain language specification. 

The problems the HW designer faces in Model 4 
are as follows:  (1) How to decompose the domain for 
hierarchical structuring of components (according to 
domain concepts, language syntax, etc.). (2) How to 
implement parameterization. The existing parameteri-
zation mechanisms are weak and not particularly 
suitable for developing generic components. (3) Low 
maturity of application in HW domain. 

The benefits of using a markup language for HW 
design are as follows. It allows for convenient repre-
sentation, access, and management of various types of 
structured domain information, including HW com-
ponents and architectures. Furthermore, the designer 
has the ability to implement automatic modification/ 
transformation of HW components and generation of 
documentation files in various formats using XSL 
style sheets. The systematic application of XML/XSL 
in HW design could contribute to the increase in 
design productivity and reuse as well as to provide 
better documentation capabilities. 
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Figure 6. Design flow in Model 4 

4. Summary of experiments 

Here we present a summary of our experiments 
performed for implementing a wrapping design 
process using previously described Design Flow Mo-
dels in the context of communication-based design 
[18-25]. 
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The main purpose of communication control is to 
ensure the relevant transmission of data (e.g., ope-
rands, commands, addresses, etc.) to and from the IP. 
The transmission of data can be described using diffe-
rent rules or protocols, i.e. an agreed format for trans-
mitting data between the IPs. In our experiments, we 
have considered two common communication proto-
cols, namely, handshake protocol that deals with an 
asynchronous flow of data, and FIFO protocol that 
deals with sudden bursts of data in a producer-
consumer model.  

The typical wrapping scheme is described in Figu-
re 7. Suppose, we have two components that have to 
communicate with each other: Source IP and Target IP 
(see Figure 7, a). If their interfaces or communication 
schemes are incompatible, we have to insert a Wrap-
per between Source IP and Target IP in order to con-
vert their communications signals between different 
communication schemes (see Figure 7, b). Finally, 
Wrapper is partitioned to allow the separation of 
Source IP and Target IP (see Figure 7, c). 
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Figure 7. Interconnection of IPs: a) point-to-point, b) via 

wrapper, c) refined view 
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Figure 8. Wrapper design pattern 

To specify a wrapping design process at a high 
level of abstraction, we use a Wrapper pattern that 
allows adapting an interface and behaviour of the IP 
component to the context of a given application. 
Figure 8 presents the UML class diagram of the Wrap-
per design pattern. The abstract class aComponent 
specifies an interface that is common for all compo-
nents and their wrappers. The class cComponent 

provides an implementation for aComponent class. 
The abstract class aWrapper specifies a wrapper 
interface and contains an instance of aComponent 
class. The cWrapper classes provide the different im-
plementations of a wrapper. 

The target architecture is shown in Figure 9. FIFO 
wrapper (Figure 9, a) wraps IP with two instances of 
the FIFO buffer and additional control logic. The 
internal clock signal clk_int is used to run the control 
logic (FSM) and IP. The data are transferred to IP 
when Push signal is set to a high level and Full signal 
has a low level. The results are returned when Pop 
signal is set to a high level and Empty signal has a low 
level. 
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Figure 9. Target architecture:  a) FIFO wrapper,  

and b) handshake wrapper 

Handshake wrapper (see Figure 9, b) wraps IP 
with Handshake FSM. The data are transferred to IP 
when request signal Req is set to a high level and 
acknowledgement signal Ack is received from Hand-
shake FSM. The result is returned as soon as IP pro-
cesses the data. Note that signals Data_in and Data 
out represent the IP-specific data signals. 

Below as an example, we present several high-le-
vel descriptions of a design problem. Figure 10, a) 
presents a metaspecification described in Java that 
generates a specific GATE component instance with 
respect to the supplied values of the parameters. 
Figure 10, b) shows the corresponding implementation 
in Open PROMOL metalanguage [18]. Figure 10, c) 
shows an example of the generated GATE instance in 
VHDL. 

Figure 11 presents the structural representation of a 
handshake wrapper for a specific soft IP. It uses the 
<WRAPPER> tag to concisely specify a handshake 
wrapper of the core_6502 component with a common 
clock signal. The wrapped IP is specified using the 
<IP> tag and is located on a remote server specified 
using the XInclude tag. 
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 <?xml version="1.0"?> 
<vhdl> 
<entity name = "FIFO"> 
 <port name="D_In"  dir="in"  type="bit"/> 
 <port name="Pop"   dir="in"  type="bit"/> 
 <port name="Push"  dir="in"  type="bit"/> 
 <port name="Reset" dir="in"  type="bit"/> 
 <port name="Clk"   dir="in"  type="bit"/> 
 <port name="D_Out" dir="out" type="bit"/> 
 <port name="Empty" dir="out" type="bit"/> 
 <port name="Error" dir="out" type="bit"/> 
 <port name="Full"  dir="out" type="bit"/> 
</entity> 
</vhdl> 
<xsl:for-each select="vhdl/entity"> 
entity <xsl:value-of select="@name"/> is 
  port ( 
  <xsl:for-each select="port"> 
    <xsl:value-of select="@name" />:    
    <xsl:value-of select="@dir" />  
    <xsl:value-of select="@type" /> 
    <xsl:if test="position()!=last()">;  
    </xsl:if> 
  </xsl:for-each> 
  ); 
end <xsl:value-of select="@name" />; 
</xsl:for-each> 

(a)

(b)  

 v o id  g e n e ra te _ g a te (S tr in g  fu n c , in t  w id th , in t d e la y )  {  
/ /  g e n e ra t in g  V H D L  e n tity  o f a  g a te  . .. 

p r in t ln ( "E N T I T Y  G A T E  I S " ) ;  
p r in t( " \ t P O R T  (X 1 , X 2 :  IN  S T D _ L O G IC " ) ;  
if (w id th > 1 )  p r in t( "_ V E C T O R ( "+ (w id th -1 )+ "d o w n to  0 ) " ) ;
p r in t ln ( " ;" ) ;   
p r in t( " \ t Y  : O U T  S T D _ L O G IC " ) ;  
if (w id th > 1 )  p r in t( "_ V E C T O R ( "+ (w id th -1 )+ "d o w n to  0 ) " ) ;
p r in t ln ( " ) ; " ) ;   
p r in t ln ( "E N D  G A T E ;" ) ;   
 

/ /  g e n e ra t in g  V H D L  a rch ite c tu re  o f a  g a te  ... 
p r in t ln ( "A R C H I T E C T U R E  M O D E L  O F  G A T E  I S ") ;   
p r in t ln ( " \ t  B E G I N ") ;   
p r in t( " \ t\ t Y  < =  X 1  "+ fu n c + "  X 2  A F T E R  "+ d e la y + ”  n s ;” ) ;
p r in t ln ( "E N D  M O D E L ;" ) ;  

}  

@ - G e n e r ic  In te r fa c e  
$  
“S e le c t a  fu n c t io n : ”    { A N D ,O R ,X O R }  fu n c := O R ; 
“E n te r  th e  w id th  o f in p u ts : ”   { 1 ..8 }   w id th := 8 ;  
“E n te r  th e  d e la y  ( in  n s ) :”   { 1 ..1 0 }  d e la y := 5 ;  
$  
@ - G a te  In te r fa ce  
E N T IT Y  G A T E  IS  
    P O R T  (X 1 , X 2 :  IN  S T D _ L O G IC  

@ if[w id th > 1 ,{ _ V E C T O R (@ su b [w id th -1 ]  D O W N T O  0 )} ] ;   
   Y :  O U T  S T D _ L O G IC  

@ if[w id th > 1 ,{ _ _ V E C T O R (@ s u b [w id th -1 ]  D O W N T O  
0 )} ] ) ;  
E N D  G A T E ;  
 
@ - G a te  F u n c t io n a lity  
A R C H IT E C T U R E  M O D E L  O F  G A T E  IS  
    B E G IN  
   Y  < =  X 1  @ su b [ fu n c ]  X 2  A F T E R  @ su b [d e la y ]  n s ;  
E N D  M O D E L ;  

E N T IT Y  G A T E  IS  
    P O R T  (X 1 , X 2 :  IN  S T D _ L O G IC _ V E C T O R  (7  D O W N T O  0 ) ;   

   Y :  O U T  S T D _ L O G IC _ V E C T O R  (7  D O W N T O  0 )) ;  
E N D  G A T E ;  
 
A R C H IT E C T U R E  M O D E L  O F  G A T E  IS  
    B E G IN  
   Y  < =  X 1  O R  X 2  A F T E R  5  n s ;  
E N D  M O D E L ;  

(a )

(b )

(c )  

Figure 12. Markup of FIFO model:  
a) structural XML-based representation of FIFO interface;  

b) XSL template to generate a VHDL model 

The obtained representation can be used as input to 
domain analysis and design tools. For example, it can 
be freely translated back to VHDL using XSL (see 
Figure 12, c). The same markup representation can be 
translated into different domain languages such as 
SystemC, which is especially important for modelling 
of complex embedded systems.  

Figure 10. a) VHDL metaspecification, b) Open PROMOL 
metaspecification  and, c) VHDL instance 

 <WRAPPER type="handshake" clock="clk"> 
<IP name="core_6502"  

xmlns:xi="http://www.w3.org/2001/XInclude"> 
   <XI:INCLUDE  

href="http://soften.ktu.lt/~damarobe/xml/free6502.xml"/>
</IP> 

</WRAPPER> 
 

In our experiments, we have used several coarse-
grained soft IPs such as ALUs, CPU cores, micro-
controllers and microprocessors. The synthesis results 
show the following average increase in chip area of 
the generated wrappers with respect to the original 
soft IPs: 4-16% for Handshake wrappers, and 21-47% 
for FIFO wrappers, and the average increase in 
estimated power usage of the wrapped soft IPs with 
generated wrappers with respect to the original soft 
IPs: 26% for Handshake wrappers, and 39% for FIFO 
wrappers.  

Figure 11. XML-based specification of a wrapper 

In Figure 12, we present an example, how the 
markup technology can be applied to structurally re-
present the domain models. As an example, we take 
the interface description of the FIFO model in VHDL 
language (entity) (see Figure 12, a). The description 
has two hierarchical levels of structure: entity at the 
higher level and its I/O ports at the lower level. 
Furthermore, each port has the following attributes: 
port name, direction (in or out), and type (bit, 
std_logic, etc.).  

Furthermore, the experiments we have carried out 
show that using the third-party soft IPs as black-box 
entities and well-proven models for their modification 
enables us to simplify the design validation problem. 
This result follows from the fact that we use the 
qualified soft IPs and apply thorough testing proce-
dures only for the newly created functionality intro-
duced by the performed modifications. 

When introducing the markup information into the 
domain model, each level of abstraction is replaced 
with the corresponding tag, which may be defined 
freely by the designer. For example, the domain 
language level can be marked by <vhdl> tag, the 
component interface level - by <entity> tag, and port 
level – by <port> tag. Furthermore, the attributes of 
the abstraction are replaced by the property of the tag 
and its value. The property of tag can be defined 
freely, whereas the value of the property must be the 
same as the attribute of the abstraction. For example, 
entity FIFO can be marked as <entity name= 
”FIFO”/>. The resulting structured representation of 
the FIFO model is given in Figure 12, b). 

5. Evaluation & Discussion 

The presented Design Flow Models allow for 
introducing design automation for well-understood 
subdomains of HW design more effectively by using 
higher-level abstractions. We compare the presented 
integration models in Table 2 and evaluate them 
below. 
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Table 2. Comparison of design flow models 

Model Design 
methodology 

High level 
abstraction 

Low level 
abstraction Applicability Separated 

concerns 
Restric-

tions 
Specifica-
tion type 

Transforma-
tion model 

1 Object-oriented UML class 
diagrams 

structural 
VHDL 

Well-proven 
domain models 

Structural 
Subsets of 
UML and 

VHDL 
Graphical Metamodel, 

translation rules

2 Meta-
programming 

Meta-
language 

behavioral 
VHDL 

Design families Generic 
Domain 

variability 
Textual 

Meta- 
specification 

2 Parsing Meta-
language 

VHDL, 
AST 

Customization of 
soft IPs 

Generic, 
analysis 

Design 
context 

Textual, 
data 

Metaspecificati
on, parsing 

4 Markup XML, XSL VHDL 
Representation & 
transformation of 
domain models 

Structural 
Domain 
content 

Textual Style sheet 

 

(1) UML-based model allows for specifying a HW 
design problem at a higher abstraction level graphi-
cally. The design content is captured immediately and 
intuitively, thus increasing design comprehensibility. 
The level of abstraction is raised to the system level, 
which allows dealing with growing complexity of HW 
designs. 

(2) Metaprogramming-based model concentrates 
on automatic generation of a particular component 
instance from a metaspecification and achieving larger 
reuse, because a metaspecification together with its 
processor is a program generator for a narrow domain. 

(3) Parsing-based model allows for automatic ana-
lysis of design context and extraction of the applica-
tion-specific information for further customization of 
the existing soft IPs. 

(4) Markup-based model allows for convenient 
representation, access, management, and distribution 
of various types of HW/SW components and architec-
tures. Furthermore, the designer has the ability to 
implement automatic modification of soft IPs and 
generation of a documentation using XSL. The syste-
matic application of markup languages for HW design 
could increase design productivity, IP reuse and re-
mote sharing as well as provide better documentation 
capabilities. 

All proposed models focus on automatic genera-
tion of a target code, however, in a different way, thus 
suggesting different solutions. The basis of Model 1 is 
a relationship metamodel between UML and VHDL. 
The basis of Model 2 is a metaprogramming para-
digm, linking, for example, Java as a metalanguage 
and VHDL as a domain language. Model 3 deals with 
analysis and representation of domain components as 
abstract syntax trees, further used for generating cus-
tomized code. In Model 4, XSL style sheet is used for 
matching and transforming markup structures and 
generating VHDL code. 

The analyzed HW design processes are applied at a 
level of abstraction above and before the traditional 
HW modelling, testing, synthesis and manufacturing 
processes. They greatly depend upon the results of 
domain analysis and are oriented at customization, 
transformation and “glass-box” reuse of HW models 
described using a high level language such as VHDL. 

As such, the research is very much in the area of SW 
engineering, though research objects are partly taken 
from the HW domain. The presented design processes 
have some similarity with traditional design processes 
implemented in HW synthesis tools as well as in SW 
compilers and interpreters in general as follows. (1) 
Programs are translated into other (usually lower-level 
abstraction) representations of programs. (2) Several 
commercial HW synthesis tools can also wrap their 
proprietary components with wrappers.  

However, there are many differences as follows.  
(1) The design methodology based on metaprog-

ramming, which is presented in this paper, is indepen-
dent of synthesis tools, proprietary technological lib-
raries and HW description languages.  

(2) Components taken from different IP providers 
can be customized, which is not the case with the 
known synthesis tools.  

(3) Metaprogramming paradigm is independent of 
domain of application itself, which was proven by the 
presented experiments (the same methodology was 
used in HW, SW and embedded SW domains).  

(4) Though increase in reuse and design produc-
tivity brought by the application of design processes 
and metaprogramming in a narrow well-defined do-
main is also useful for a designer of the end-product, 
the main benefactors may be for the creators and pro-
viders of reusable component repositories, who must 
quickly and cost-efficiently satisfy a plethora of va-
rious and continuously evolving requirements from 
their clients. 

The comparison shows that the analysed techno-
logies introduce an additional level of abstraction 
above the domain-level. Thus, there are some simila-
rities in structural aspects of design.  

However, the technologies aim to represent diffe-
rent views to the domain: metaprogramming – generi-
city, OOD – communication, and markup technology 
– structure. All these views are relevant to HW design. 
Thus, a designer may choose a certain abstraction to 
introduce a higher level of abstraction in a domain 
depending upon the specific requirements. A more 
promising approach would be to integrate these 
abstractions in a common design environment, i.e., to 
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specify HW systems at a high level using UML 
diagrams, generate specific instances using the meta-
programming techniques, and distribute and assemble 
HW components from different remote IP libraries 
using XML/XSLT. 

Considering the presented evaluation of high-level 
abstractions and technologies, the following recom-
mendations (see Table 3) can be given for a designer, 
who is focusing on a specific design aim in his work 
or implementing a particular design process. 

Table 3. Recommendations of usage 

Design process Recommended technology Reason for usage 
Parameterisation Metaprogramming Provides more flexibility, higher modification capabilities and more 

convenient representation of parameters (no types, etc.). 
Representation Object-oriented Objects better reflect the real-world features of the domain; UML 

provides graphical notation for high-level specification. 
Abstraction Markup Markup provides capabilities for representing design context structurally 

and hierarchically. 
Generalization Metaprogramming Metaspecification is specifically oriented at describing families of domain 

components. 
Specialization Object-oriented /  

Metaprogramming 
Class hierarchies provide a convenient framework for specialization. 
Metaprogramming allows for generating specialized component 
instances. 

Customisation Metaprogramming with 
parsing / Markup 

Smart customisation requires automatic analysis of design context using 
built-in parsing tools. 

Generation Metaprogramming Describes the generation process explicitly. 
Reuse Metaprogramming /  

Object-oriented  
Metaprogramming supports reuse via generation, and object-orientation – 
via polymorphism. 

Separation of 
concerns 

Metaprogramming /  
Object-oriented / Markup 

All technologies support separation of concerns, though in a different 
way; particular selection must be made depending on a specific design 
task. 

Variability Metaprogramming Metaprogramming abstractions, such as external functions, allow to 
flexibly expressing variability in a domain. 

 
6. Conclusions 

We have proposed a soft IP customization 
framework based on the concept of design process 
and metaprogramming. The framework is indepen-
dent of specific HW synthesis tools, proprietary 
technological libraries and HW description langua-
ges, and allows implementing customization of 
soft IP components taken from different providers 
and sources. HW and SW design can be unified at 
a high level of abstraction using UML. Different 
high-level abstractions can be used in the same 
system design flow. 
We have described four Design Flow Models for 

using UML, Design Patterns, Metaprogramming, 
Parsing, and XML/XSL style sheets in HW design. 
UML allows describing a system in an implementa-
tion-independent way. Design Patterns allow abstract-
ly describing common design solutions. Metaprogram-
ming allows describing families of design models in a 
generic way. XML/XSL allows for convenient repre-
sentation, access, management, and distribution of 
various types of the structured domain information.  

Depending on the particular requirements and 
availability of tools, the designer can select a proper 
higher-level abstraction and a design flow model to 
achieve higher design reuse, automation and producti-
vity in narrow well-understood HW design sub-do-
mains such communication control. Combinations of 
models can be used for the integration of several high-

level abstractions within the same design framework 
to achieve higher separation of concerns in a design. 
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