
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.2

SOFT IP CUSTOMIZATION MODELS BASED ON HIGH-LEVEL
ABSTRACTIONS

Robertas Damaševičius, Vytautas Štuikys
Software Engineering Department, Kaunas University of Technology

Studentų st. 50, LT – 51368, Kaunas, Lithuania

Abstract. System-on-Chip (SoC) design raises an abstraction level in hardware (HW) design beyond a domain
language specification. This requires the introduction and adoption of high-level analysis and specification methods
that provide reusability, layericity, orthogonality, heterogeneity and customizability for HW design. HW design has
many levels of abstraction. The transition between these levels can be described using a concept of design process. As
there may be many representation and design methods for a designer to choose from, while implementing a certain
design process, we describe several Design Flow Models aimed at implementing customization in soft IP-based HW
design. These models apply several concepts taken from software engineering (object-oriented and pattern-based
design, metaprogramming, parsing, and markup languages) to HW design.

Key words: High-level abstraction, customization, reuse, design process, metaprogramming.

1. Indroduction

Today, the entire embedded systems comprised of
multiple processors, memories and application-speci-
fic circuitry are implemented on a single semiconduc-
tor chip. Such systems, called Systems-on-Chip (SoC),
have hardware and software parts, where “hardware”
corresponds to implemented circuit elements, and
“software” corresponds to programmed instructions
performed by hardware. In recent years, the most
frequently discussed topics at conferences, forums and
meetings in HW design community are centered on
three basic trends as follows: (1) Unification of the
design methodologies [1]. (2) Moving towards higher
levels of abstraction and metamodeling in design [2].
(3) Emergence of a new vision, Ambient Intelligence,
for future microelectronic systems [3].

Currently, the researchers emphasize the role of
parameterization, customization and integration of the
pre-designed soft IP (Intellectual Property) compo-
nents, described using a high-level hardware (HW)
description language (HDL), such as VHDL, into HW
systems. To bridge the enormous gap between the
high-level specification of a design problem and its
implementation, the researchers propose and designers
use a variety of models (representations of a system)
at the different levels of abstraction. They vary from
the lower-level abstractions such as Gate, RTL to the
higher-level ones such as design space layers [4],
metacores [5], objects [6], UML diagrams [7, 8],
architectural patterns [9, 10], formal models [11],
frameworks [12], platforms [13, 14], Petri Nets [15]

and SystemC models [16], which should ensure higher
design quality, productivity and reuse.

High-level models are created using a variety of
modeling languages and are used to make essential
architectural design decisions within a certain design
framework. Some models and abstractions are used at
both lower and higher levels (e.g., FSM). These abst-
ractions allow hiding the lowest physical layer (tran-
sistors and wires) and contributing to increasing de-
sign productivity in the domain.

One way to reduce the embedded system design
time and costs is to reuse the pre-existing soft IPs
systematically [17]. The design of soft IPs is a
complex task due to the following reasons. Smart
products usually require various combinations of high
performance, low cost and low power. Developers
usually design general-purpose embedded systems for
reuse in numerous applications. Since the context of
their usage is usually unknown, these designs often
focus on the functionality issues only, thus yielding
widely applicable, but not efficient designs. On the
other hand, extreme specialization results in highly
efficient design usable only in a single application.

Design of highly reusable soft IPs does not solve
the problem of adaptation for a particular context.
Customization of soft IPs to fit an application, if not
pre-programmed, may require extensive design
efforts. The designer has to find the balance between
generalization of functionality and specialization of
performance characteristics.

The contribution and novelty of this paper is four
Design Flow Models that describe the application of

125

R. Damaševičius, V. Štuikys

(1) Design processes are domain-specific and can
be used only for implementing certain well-known
models in the domain.

high-level abstractions (metalanguages, UML, mark-
up) and tools for automated implementation of custo-
mization of soft IPs and integration into a HW system.
This paper is a summary of our previous research and
experiments published in various papers [18-25].

(2) Design processes are commonly used by de-
signers.

The structure of the paper is as follows. Section 2
discusses the process-based view to HW design. Sec-
tion 3 describes four Design Flow Models based on
using UML, Design Patterns, Metaprogramming,
Parsing and XML/XSLT style sheets for HW design.
Section 4 summarizes our experiments in implement-
ing the wrapping design process using the Models.
Section 5 evaluates the results and presents a discus-
sion. Finally, Section 6 presents the conclusions.

(3) Design processes are transformative, i.e. they
are about transforming their input (programs, syntax
trees) into output.

(4) Design processes are executable, i.e., they not
only describe what is done, but also imply how it can
be done using some well-defined method or approach.

(5) Design processes are design context-specific,
i.e. they reside within a certain design framework.

For example, a common design process used in
communication-based design is wrapping [20, 21],
which adds the communication protocol to the
existing soft IP to adapt it in order to allow for
communicating with other components in the designed
system. Wrapping relates between the same levels of
abstraction in design flow (Figure 1).

2. Process-based view to HW design

The IP-based design is a vision of how researchers
and designers introduce reuse-based ideas (abstrac-
tions, models, instructions, rules, etc.), implement
them by creating tools, and use tools in order to
achieve a pre-specified design aim while designing
and manufacturing sophisticated products, such as
embedded systems. The SoC design methodologies
generally require the following features:

Higher level
of abstraction

Lower level
of abstraction

Refinement

Higher level
of abstraction

Wrapping

IP
Library

SoC/HW
system

Reuse

Optimization

Generalization

Design Flow

Tech.
Library

Lower level
of abstraction

(1) Layericity – HW has many layers of abstraction
(HW, embedded SW, RTOS, etc.) for which the under-
lying, subsequent design-flow steps are abstracted. By
carefully defining HW abstraction layers and deve-
loping new representation and automated design
methods, an electronic system design flow is realized.

(2) Orthogonality – based on the principle of sepa-
ration of concerns, the IP-based HW design methodo-
logy must clearly separate behavioral aspects from
implementation, and communication from computa-
tion [26].

Figure 1. Abstractions and design processes

The transition between higher and lower levels of
abstraction can be defined as refinement. This means
the translation between a high-level specification (e.g.,
UML diagram, Petri net) and a lower level implemen-
tation (e.g., VHDL program) in a design environment.
The opposite process is generalization, used in meta-
modeling, metaprogramming and development of
generic components. Reuse means the usage of a soft
IP component (with or without modifications) in the
designed system. Optimization means the improve-
ment of the component’s characteristics (area, speed,
power usage) via a functionality-preserving modifica-
tion of the component.

(3) Reusability – process-based HW design pro-
motes reuse at all levels of abstraction, including reuse
of soft IP components, high-level models, testbenches,
architectures, etc. [27]

(4) Customizability – a platform can be customized
for a range of applications within a certain domain
using a variety of mechanisms from simple paramete-
rization to sophisticated transformations [28].

There are many levels of abstraction in HW de-
sign. For simplicity, we can consider only two levels,
the higher level (HL) and the lower level (LL). These
levels differ in the considered domain entities (e.g.,
HL: objects and messages, LL: transistors and wires)
and their representation methods used (e.g., HL: UML
diagrams, LL: HDL specification). Each level con-
sequently can be subdivided into multiple sub-levels.
The relation between the levels of abstraction can be
described using a concept of design process [23]. We
understand a design process as a series of commonly
used domain-specific actions, tasks or methods
performed to achieve a certain design aim. We
formulate the properties of design processes below:

Design processes are introduced into the domain
through raising the level of abstraction. Generally, we
can distinguish four different levels of abstraction (see
Figure 2) in system design:

(1) Domain abstraction level – the organization of
domain data (components) into the tree-like hierar-
chies, where a root component is a generalization of
the descendant components.

(2) Metaprogram level – the development of the
generic components (programs) using the internal

126

Soft IP Customization Models Based on High-Level Abstractions

mechanisms of the domain language (polymorphism)
or an external language (metalanguage).

(4) Metamodel level – the representation of model
semantics using abstract metamodels. A composition
of several metamodels implements a platform. (3) Model level – the introduction of models that

describe a specific domain problem in general.

Meta-
model

Model

generalization modeling

Meta-
program

Program

generalization generation

programming

metaprogramming

Domain
Languages

Concepts

Methodologies

Root

Descen-
dant

generalization specialization

polymorphism

Platform composition

Figure 2. Different levels of abstraction in domain

While the first two levels are usually introduced
using the textual specification mechanisms of the
programming languages (either object-oriented or the
metaprogramming ones), the last two levels can be
introduced using a graphical notation such as UML.

We summarize our perception of process-based
HW design as a two-dimensional space of wrapping
and refinement processes, the basic abstract processes
within our approach. The first one relates with a de-
sign (sub)problem specification using some abstrac-
tion. The second one relates with the transformation
of the higher-level specification into a representation
at a lower-level of abstraction.

Furthermore, each of these processes contain
different sub-processes (operations). The partition and
selection of processes from the design process space is
a particular concern of a designer. The ideal case is the
one in which the design process is described using a
unique abstraction hiding the lower-level design
processes, and implemented using a well-defined
design flow. Next, we describe several design flow
models, which we have identified during our research.

3. Design flow models
3.1. Model 1: UML-based

Model 1 describes the usage of UML for HW de-
sign. A designer has three main problems to solve. (1)
How to raise the level of abstraction from the domain
language specification to the UML specification? (2)

How to modify the UML specification to implement a
certain design process? (3) How to refine the UML
specification to domain language?

To solve these problems, the design flow must
provide the following features. Firstly, it must ensure a
mapping between the UML subset used to model a
target system and the domain language (e.g., VHDL)
abstractions. Secondly, it must implement a set of
translation rules between UML and domain language.
A mapping is usually described formally using a
metamodel that describes the syntactic components of
the used UML diagram and the corresponding domain
language abstractions (Table 1).

Table 1. UML-VHDL metamodel

UML model element VHDL abstraction
Interface Entity

Class Architecture
Inheritance -

Composition Port map
Realization Of

Public attribute Port (external signal)
Private attribute Signal (internal)

Method Process
Parameter Generic

The aim of the translation rules is to describe how

an instance of the UML metamodel (i.e., any UML
model described using a subset of UML defined in a
metamodel) can be transformed from and to an

127

R. Damaševičius, V. Štuikys

instance of a target model (i.e., a domain language
specification that describes the implementation of a
system specified using UML). These rules can be
implemented manually by a designer, or automatically
using a dedicated translation tool.

A target system is not specified freely, but rather
using patterns, which are refined to architectures that
implement common domain models. Design patterns
are an abstraction used for representing, abstracting
and encapsulating common design solutions in UML,
as well as for describing contexts to which they can be
applied in an implementation-independent way [29].
The problem is how design patterns should be refined.
Design patterns usually are very abstract and can be
refined into a target model in a variety of ways that
could lead to different implementations.

The design flow in Model 1 is as follows (Figure
3). A designer uses the translation rules to derive the
UML diagram of soft IP(s), and then composes it with
the additional glue code specified in UML. The
specification of the glue code is obtained by defining
the design pattern used to implement a well-known
domain model. A target system is obtained when the
UML diagram is translated into the domain language-
based specification. This model was also discussed in
[21, 23, 25].

Soft IP(s)
(DL)

Composition

Target System
(DL)

Glue code
(UML)

Soft IP
(UML)

Translation

Target System
(UML)

Translation

Design
Pattern

Refinement

Mapping/
translation

rules

Figure 3. Design flow in Model 1

The problems a designer faces in Model 1 are as
follows: (1) Standard UML is not enough for expres-
sing HW domain concepts such as timing. (2) Vali-
dation of the object-oriented model of HW. (3)
Selection of a suitable domain language. VHDL is
closer to HW domain, whereas SystemC is closer to
SW domain, but has many restrictions on synthesiz-
ability.

3.2. Model 2: Metaprogramming-based

Model 2 describes the application of metaprogram-
ming paradigm [22] for HW design. Metaprogram-
ming is a higher-level programming technique that
provides a means for manipulating with domain prog-
rams as data. The aim of metaprogramming is to
create a metaspecification – a specification of a

program generator for a narrow domain of application.
A metaspecification consists of a family of related
domain program instances that implement a well-
proven domain model. The instances are encapsulated
with their modification algorithm that describes
generation of a particular instance depending upon the
values of generic parameters.

Heterogeneous metaprogramming means program-
ming with two different languages simultaneously.
The lower-level language (domain language, DL) is
used for expressing the basic domain functionality.
The higher-level language (metalanguage, ML) is used
for expressing generalization and describing domain
program modifications. A designer uses a metalan-
guage as a higher-level abstraction to integrate toge-
ther the different domain program instances and make
up a metaspecification. Then a metaspecification is
used as a set of instructions for a metalanguage pro-
cessor to generate the specific domain program
instances.

The problems a designer faces in Model 2 are as
follows. (1) It requires two design environments, thus
the validation process is more complex. (2)
Overgeneralization also could become a problem. (3)
The selection of parameter values is a cumbersome
task that requires the detailed domain knowledge.

Soft IP(s)
(DL)

Target System
(DL)

Well-proven
model(s)

Meta-
specification(s)

(ML + DL)

Parameters Processing

Metaprogramming

Figure 4. Design flow in Model 2

The design flow in Model 2 is as follows (Figure
4). A designer uses a well-proven domain model to
develop a parameterized metaspecification that repre-
sents a family of the available target system imple-
mentations. A particular instance of a target system is
obtained when a metaspecification is processed using
values of the generic parameters supplied by a desig-
ner. This model was also discussed in more details in
[19, 20, 22].

3.3. Model 3: Parsing-based

Model 3 is an extension of Model 2 with parsing.
The aim is to streamline the selection of the context-
dependent parameter values for metaspecifications.
Parsing is an application-specific domain analysis me-
thod that is concerned with automatic analysis of abst-
ract domain representations – the DL program source
code. Parsing decomposes the domain language

128

Soft IP Customization Models Based on High-Level Abstractions

specification according to the DL syntax into an Abst-
ract Syntax Tree (AST). AST then can be used for a
variety of purposes such as domain visualization,
modelling, extraction of the application-specific infor-
mation for further customization, optimization and
domain code generation.

The problem with parsing-based model is the
implementation of parsing itself, which may be very
complex. However, for many DLs custom open-source
parsers exist that can be easily integrated into a design
flow.

The design flow in Model 3 is as follows (Figure
5). It is similar to Model 2. The difference is that ap-
plication-specific design context represented by soft
IP(s) is analyzed automatically and the obtained data
are used to generate a target system. This model was
also discussed in more details in [24].

Soft IP(s)

(DL)

Target System
(DL)

Well-proven
model(s)

Meta-
specification(s)

(ML + DL)
Metaprogramming

Parameters Processing

Parsing

AST Extraction

Figure 5. Design flow in Model 3

3.4. Model 4: Markup-based

Recently, XML began to be used as a metalan-
guage capable of specifying parameterized compo-
nents and design architecture independently of the
modelling language in the embedded system design
domain [30]. XML is a markup language that provides
a common syntax for describing the structure of data
according to their content or meaning. XML also can
be described as a metalanguage that allows defining
customized domain-specific markup languages for
different types of documents.

XML has several advantages as a representation
language. The hierarchical topology of data organiza-
tion reflects the logic structure of data. The tagged
data embed the information structure within the data,
which makes the processing easier. A designer is not
restricted to a limited set of tags defined by proprie-
tary vendors. By defining his own set of tags, he can
create a markup language oriented at a specific do-
main of application. The rules specified by those tags
need not be limited to formatting rules. XML allows
defining any tags with any rules for any target domain,
such as tags representing business rules or data
description.

XML is often used with XSL, a family of recom-
mendations for defining transformation and presenta-
tion of XML documents. A part of XSL is XSLT – a
language for describing transformation of XML

documents. An XSLT program (style sheet) is a set of
template rules for transforming a source tree into a
result tree. The transformation is achieved by associa-
ting patterns with templates. Each template rule has
two parts. A pattern is used to match nodes in a source
tree of the input XML document. A template is used to
form a result tree of the output XML document. The
structure of the result tree can be completely different
from the structure of the source tree.

The design flow in Model 4 is as follows (Figure
6). A designer uses the translation rules to derive the
XML-based specification of soft IP(s). Then the desig-
ner composes the transformation code in XSL and ap-
plies it to the XML-based specification of the original
soft IP. The result is the XML-based specification of
the system. A low-level implementation of the target
system is obtained when the XML-based specification
is translated into the domain language specification.

The problems the HW designer faces in Model 4
are as follows: (1) How to decompose the domain for
hierarchical structuring of components (according to
domain concepts, language syntax, etc.). (2) How to
implement parameterization. The existing parameteri-
zation mechanisms are weak and not particularly
suitable for developing generic components. (3) Low
maturity of application in HW domain.

The benefits of using a markup language for HW
design are as follows. It allows for convenient repre-
sentation, access, and management of various types of
structured domain information, including HW com-
ponents and architectures. Furthermore, the designer
has the ability to implement automatic modification/
transformation of HW components and generation of
documentation files in various formats using XSL
style sheets. The systematic application of XML/XSL
in HW design could contribute to the increase in
design productivity and reuse as well as to provide
better documentation capabilities.

Soft IP
(VHDL)

Processing

Target System
(VHDL)

Transformation code
(XSL)

Soft IP
(XML)

Translation

Target System
(XML)

Translation

Well-proven
model

Figure 6. Design flow in Model 4

4. Summary of experiments

Here we present a summary of our experiments
performed for implementing a wrapping design
process using previously described Design Flow Mo-
dels in the context of communication-based design
[18-25].

129

R. Damaševičius, V. Štuikys

The main purpose of communication control is to
ensure the relevant transmission of data (e.g., ope-
rands, commands, addresses, etc.) to and from the IP.
The transmission of data can be described using diffe-
rent rules or protocols, i.e. an agreed format for trans-
mitting data between the IPs. In our experiments, we
have considered two common communication proto-
cols, namely, handshake protocol that deals with an
asynchronous flow of data, and FIFO protocol that
deals with sudden bursts of data in a producer-
consumer model.

The typical wrapping scheme is described in Figu-
re 7. Suppose, we have two components that have to
communicate with each other: Source IP and Target IP
(see Figure 7, a). If their interfaces or communication
schemes are incompatible, we have to insert a Wrap-
per between Source IP and Target IP in order to con-
vert their communications signals between different
communication schemes (see Figure 7, b). Finally,
Wrapper is partitioned to allow the separation of
Source IP and Target IP (see Figure 7, c).

Source
IP

Target
IP

(a)

Source
IP

Target
IP

Wrapper
(b)

Wrapper''Wrapper'

Source
IP

Target
IP

(c)

Figure 7. Interconnection of IPs: a) point-to-point, b) via

wrapper, c) refined view

+aMethod()

cComponent

+aMethod()

«interface»
aComponent

«refines»

+wrapperA()

cWrapper1

1

1

+wrapperB()

cWrapper2

-component : aComponent
aWrapper

Figure 8. Wrapper design pattern

To specify a wrapping design process at a high
level of abstraction, we use a Wrapper pattern that
allows adapting an interface and behaviour of the IP
component to the context of a given application.
Figure 8 presents the UML class diagram of the Wrap-
per design pattern. The abstract class aComponent
specifies an interface that is common for all compo-
nents and their wrappers. The class cComponent

provides an implementation for aComponent class.
The abstract class aWrapper specifies a wrapper
interface and contains an instance of aComponent
class. The cWrapper classes provide the different im-
plementations of a wrapper.

The target architecture is shown in Figure 9. FIFO
wrapper (Figure 9, a) wraps IP with two instances of
the FIFO buffer and additional control logic. The
internal clock signal clk_int is used to run the control
logic (FSM) and IP. The data are transferred to IP
when Push signal is set to a high level and Full signal
has a low level. The results are returned when Pop
signal is set to a high level and Empty signal has a low
level.

FIFO wrapper (Model 1)

Push

FullEmpty

Data_in

Push
Full

IP

Clock

Control_
logic (FSM)

Pop

Data_out

Pop
Emptyclk_gen

Data_in Data_out

clk_int

Reset

Handshake wrapper (Model2)

Data_in IP

Handshake
FSM

Req Ack
Data_in

Data_out
Reset

Clock

En_data
Evnto

(b)

(a)

Figure 9. Target architecture: a) FIFO wrapper,

and b) handshake wrapper

Handshake wrapper (see Figure 9, b) wraps IP
with Handshake FSM. The data are transferred to IP
when request signal Req is set to a high level and
acknowledgement signal Ack is received from Hand-
shake FSM. The result is returned as soon as IP pro-
cesses the data. Note that signals Data_in and Data
out represent the IP-specific data signals.

Below as an example, we present several high-le-
vel descriptions of a design problem. Figure 10, a)
presents a metaspecification described in Java that
generates a specific GATE component instance with
respect to the supplied values of the parameters.
Figure 10, b) shows the corresponding implementation
in Open PROMOL metalanguage [18]. Figure 10, c)
shows an example of the generated GATE instance in
VHDL.

Figure 11 presents the structural representation of a
handshake wrapper for a specific soft IP. It uses the
<WRAPPER> tag to concisely specify a handshake
wrapper of the core_6502 component with a common
clock signal. The wrapped IP is specified using the
<IP> tag and is located on a remote server specified
using the XInclude tag.

130

Soft IP Customization Models Based on High-Level Abstractions

 <?xml version="1.0"?>
<vhdl>
<entity name = "FIFO">
 <port name="D_In" dir="in" type="bit"/>
 <port name="Pop" dir="in" type="bit"/>
 <port name="Push" dir="in" type="bit"/>
 <port name="Reset" dir="in" type="bit"/>
 <port name="Clk" dir="in" type="bit"/>
 <port name="D_Out" dir="out" type="bit"/>
 <port name="Empty" dir="out" type="bit"/>
 <port name="Error" dir="out" type="bit"/>
 <port name="Full" dir="out" type="bit"/>
</entity>
</vhdl>
<xsl:for-each select="vhdl/entity">
entity <xsl:value-of select="@name"/> is
 port (
 <xsl:for-each select="port">
 <xsl:value-of select="@name" />:
 <xsl:value-of select="@dir" />
 <xsl:value-of select="@type" />
 <xsl:if test="position()!=last()">;
 </xsl:if>
 </xsl:for-each>
);
end <xsl:value-of select="@name" />;
</xsl:for-each>

(a)

(b)

 v o id g e n e ra te _ g a te (S tr in g fu n c , in t w id th , in t d e la y) {
/ / g e n e ra t in g V H D L e n tity o f a g a te . ..

p r in t ln ("E N T I T Y G A T E I S ") ;
p r in t(" \ t P O R T (X 1 , X 2 : IN S T D _ L O G IC ") ;
if (w id th > 1) p r in t("_ V E C T O R ("+ (w id th -1)+ "d o w n to 0) ") ;
p r in t ln (" ;") ;
p r in t(" \ t Y : O U T S T D _ L O G IC ") ;
if (w id th > 1) p r in t("_ V E C T O R ("+ (w id th -1)+ "d o w n to 0) ") ;
p r in t ln (") ; ") ;
p r in t ln ("E N D G A T E ;") ;

/ / g e n e ra t in g V H D L a rch ite c tu re o f a g a te ...
p r in t ln ("A R C H I T E C T U R E M O D E L O F G A T E I S ") ;
p r in t ln (" \ t B E G I N ") ;
p r in t(" \ t\ t Y < = X 1 "+ fu n c + " X 2 A F T E R "+ d e la y + ” n s ;”) ;
p r in t ln ("E N D M O D E L ;") ;

}

@ - G e n e r ic In te r fa c e
$
“S e le c t a fu n c t io n : ” { A N D ,O R ,X O R } fu n c := O R ;
“E n te r th e w id th o f in p u ts : ” { 1 ..8 } w id th := 8 ;
“E n te r th e d e la y (in n s) :” { 1 ..1 0 } d e la y := 5 ;
$
@ - G a te In te r fa ce
E N T IT Y G A T E IS
 P O R T (X 1 , X 2 : IN S T D _ L O G IC

@ if[w id th > 1 ,{ _ V E C T O R (@ su b [w id th -1] D O W N T O 0)}] ;
 Y : O U T S T D _ L O G IC

@ if[w id th > 1 ,{ _ _ V E C T O R (@ s u b [w id th -1] D O W N T O
0)}]) ;
E N D G A T E ;

@ - G a te F u n c t io n a lity
A R C H IT E C T U R E M O D E L O F G A T E IS
 B E G IN
 Y < = X 1 @ su b [fu n c] X 2 A F T E R @ su b [d e la y] n s ;
E N D M O D E L ;

E N T IT Y G A T E IS
 P O R T (X 1 , X 2 : IN S T D _ L O G IC _ V E C T O R (7 D O W N T O 0) ;

 Y : O U T S T D _ L O G IC _ V E C T O R (7 D O W N T O 0)) ;
E N D G A T E ;

A R C H IT E C T U R E M O D E L O F G A T E IS
 B E G IN
 Y < = X 1 O R X 2 A F T E R 5 n s ;
E N D M O D E L ;

(a)

(b)

(c)

Figure 12. Markup of FIFO model:
a) structural XML-based representation of FIFO interface;

b) XSL template to generate a VHDL model

The obtained representation can be used as input to
domain analysis and design tools. For example, it can
be freely translated back to VHDL using XSL (see
Figure 12, c). The same markup representation can be
translated into different domain languages such as
SystemC, which is especially important for modelling
of complex embedded systems.

Figure 10. a) VHDL metaspecification, b) Open PROMOL
metaspecification and, c) VHDL instance

 <WRAPPER type="handshake" clock="clk">
<IP name="core_6502"

xmlns:xi="http://www.w3.org/2001/XInclude">
 <XI:INCLUDE

href="http://soften.ktu.lt/~damarobe/xml/free6502.xml"/>
</IP>

</WRAPPER>

In our experiments, we have used several coarse-
grained soft IPs such as ALUs, CPU cores, micro-
controllers and microprocessors. The synthesis results
show the following average increase in chip area of
the generated wrappers with respect to the original
soft IPs: 4-16% for Handshake wrappers, and 21-47%
for FIFO wrappers, and the average increase in
estimated power usage of the wrapped soft IPs with
generated wrappers with respect to the original soft
IPs: 26% for Handshake wrappers, and 39% for FIFO
wrappers.

Figure 11. XML-based specification of a wrapper

In Figure 12, we present an example, how the
markup technology can be applied to structurally re-
present the domain models. As an example, we take
the interface description of the FIFO model in VHDL
language (entity) (see Figure 12, a). The description
has two hierarchical levels of structure: entity at the
higher level and its I/O ports at the lower level.
Furthermore, each port has the following attributes:
port name, direction (in or out), and type (bit,
std_logic, etc.).

Furthermore, the experiments we have carried out
show that using the third-party soft IPs as black-box
entities and well-proven models for their modification
enables us to simplify the design validation problem.
This result follows from the fact that we use the
qualified soft IPs and apply thorough testing proce-
dures only for the newly created functionality intro-
duced by the performed modifications.

When introducing the markup information into the
domain model, each level of abstraction is replaced
with the corresponding tag, which may be defined
freely by the designer. For example, the domain
language level can be marked by <vhdl> tag, the
component interface level - by <entity> tag, and port
level – by <port> tag. Furthermore, the attributes of
the abstraction are replaced by the property of the tag
and its value. The property of tag can be defined
freely, whereas the value of the property must be the
same as the attribute of the abstraction. For example,
entity FIFO can be marked as <entity name=
”FIFO”/>. The resulting structured representation of
the FIFO model is given in Figure 12, b).

5. Evaluation & Discussion

The presented Design Flow Models allow for
introducing design automation for well-understood
subdomains of HW design more effectively by using
higher-level abstractions. We compare the presented
integration models in Table 2 and evaluate them
below.

131

R. Damaševičius, V. Štuikys

Table 2. Comparison of design flow models

Model Design
methodology

High level
abstraction

Low level
abstraction Applicability Separated

concerns
Restric-

tions
Specifica-
tion type

Transforma-
tion model

1 Object-oriented UML class
diagrams

structural
VHDL

Well-proven
domain models

Structural
Subsets of
UML and

VHDL
Graphical Metamodel,

translation rules

2 Meta-
programming

Meta-
language

behavioral
VHDL

Design families Generic
Domain

variability
Textual

Meta-
specification

2 Parsing Meta-
language

VHDL,
AST

Customization of
soft IPs

Generic,
analysis

Design
context

Textual,
data

Metaspecificati
on, parsing

4 Markup XML, XSL VHDL
Representation &
transformation of
domain models

Structural
Domain
content

Textual Style sheet

(1) UML-based model allows for specifying a HW
design problem at a higher abstraction level graphi-
cally. The design content is captured immediately and
intuitively, thus increasing design comprehensibility.
The level of abstraction is raised to the system level,
which allows dealing with growing complexity of HW
designs.

(2) Metaprogramming-based model concentrates
on automatic generation of a particular component
instance from a metaspecification and achieving larger
reuse, because a metaspecification together with its
processor is a program generator for a narrow domain.

(3) Parsing-based model allows for automatic ana-
lysis of design context and extraction of the applica-
tion-specific information for further customization of
the existing soft IPs.

(4) Markup-based model allows for convenient
representation, access, management, and distribution
of various types of HW/SW components and architec-
tures. Furthermore, the designer has the ability to
implement automatic modification of soft IPs and
generation of a documentation using XSL. The syste-
matic application of markup languages for HW design
could increase design productivity, IP reuse and re-
mote sharing as well as provide better documentation
capabilities.

All proposed models focus on automatic genera-
tion of a target code, however, in a different way, thus
suggesting different solutions. The basis of Model 1 is
a relationship metamodel between UML and VHDL.
The basis of Model 2 is a metaprogramming para-
digm, linking, for example, Java as a metalanguage
and VHDL as a domain language. Model 3 deals with
analysis and representation of domain components as
abstract syntax trees, further used for generating cus-
tomized code. In Model 4, XSL style sheet is used for
matching and transforming markup structures and
generating VHDL code.

The analyzed HW design processes are applied at a
level of abstraction above and before the traditional
HW modelling, testing, synthesis and manufacturing
processes. They greatly depend upon the results of
domain analysis and are oriented at customization,
transformation and “glass-box” reuse of HW models
described using a high level language such as VHDL.

As such, the research is very much in the area of SW
engineering, though research objects are partly taken
from the HW domain. The presented design processes
have some similarity with traditional design processes
implemented in HW synthesis tools as well as in SW
compilers and interpreters in general as follows. (1)
Programs are translated into other (usually lower-level
abstraction) representations of programs. (2) Several
commercial HW synthesis tools can also wrap their
proprietary components with wrappers.

However, there are many differences as follows.
(1) The design methodology based on metaprog-

ramming, which is presented in this paper, is indepen-
dent of synthesis tools, proprietary technological lib-
raries and HW description languages.

(2) Components taken from different IP providers
can be customized, which is not the case with the
known synthesis tools.

(3) Metaprogramming paradigm is independent of
domain of application itself, which was proven by the
presented experiments (the same methodology was
used in HW, SW and embedded SW domains).

(4) Though increase in reuse and design produc-
tivity brought by the application of design processes
and metaprogramming in a narrow well-defined do-
main is also useful for a designer of the end-product,
the main benefactors may be for the creators and pro-
viders of reusable component repositories, who must
quickly and cost-efficiently satisfy a plethora of va-
rious and continuously evolving requirements from
their clients.

The comparison shows that the analysed techno-
logies introduce an additional level of abstraction
above the domain-level. Thus, there are some simila-
rities in structural aspects of design.

However, the technologies aim to represent diffe-
rent views to the domain: metaprogramming – generi-
city, OOD – communication, and markup technology
– structure. All these views are relevant to HW design.
Thus, a designer may choose a certain abstraction to
introduce a higher level of abstraction in a domain
depending upon the specific requirements. A more
promising approach would be to integrate these
abstractions in a common design environment, i.e., to

132

Soft IP Customization Models Based on High-Level Abstractions

specify HW systems at a high level using UML
diagrams, generate specific instances using the meta-
programming techniques, and distribute and assemble
HW components from different remote IP libraries
using XML/XSLT.

Considering the presented evaluation of high-level
abstractions and technologies, the following recom-
mendations (see Table 3) can be given for a designer,
who is focusing on a specific design aim in his work
or implementing a particular design process.

Table 3. Recommendations of usage

Design process Recommended technology Reason for usage
Parameterisation Metaprogramming Provides more flexibility, higher modification capabilities and more

convenient representation of parameters (no types, etc.).
Representation Object-oriented Objects better reflect the real-world features of the domain; UML

provides graphical notation for high-level specification.
Abstraction Markup Markup provides capabilities for representing design context structurally

and hierarchically.
Generalization Metaprogramming Metaspecification is specifically oriented at describing families of domain

components.
Specialization Object-oriented /

Metaprogramming
Class hierarchies provide a convenient framework for specialization.
Metaprogramming allows for generating specialized component
instances.

Customisation Metaprogramming with
parsing / Markup

Smart customisation requires automatic analysis of design context using
built-in parsing tools.

Generation Metaprogramming Describes the generation process explicitly.
Reuse Metaprogramming /

Object-oriented
Metaprogramming supports reuse via generation, and object-orientation –
via polymorphism.

Separation of
concerns

Metaprogramming /
Object-oriented / Markup

All technologies support separation of concerns, though in a different
way; particular selection must be made depending on a specific design
task.

Variability Metaprogramming Metaprogramming abstractions, such as external functions, allow to
flexibly expressing variability in a domain.

6. Conclusions

We have proposed a soft IP customization
framework based on the concept of design process
and metaprogramming. The framework is indepen-
dent of specific HW synthesis tools, proprietary
technological libraries and HW description langua-
ges, and allows implementing customization of
soft IP components taken from different providers
and sources. HW and SW design can be unified at
a high level of abstraction using UML. Different
high-level abstractions can be used in the same
system design flow.
We have described four Design Flow Models for

using UML, Design Patterns, Metaprogramming,
Parsing, and XML/XSL style sheets in HW design.
UML allows describing a system in an implementa-
tion-independent way. Design Patterns allow abstract-
ly describing common design solutions. Metaprogram-
ming allows describing families of design models in a
generic way. XML/XSL allows for convenient repre-
sentation, access, management, and distribution of
various types of the structured domain information.

Depending on the particular requirements and
availability of tools, the designer can select a proper
higher-level abstraction and a design flow model to
achieve higher design reuse, automation and producti-
vity in narrow well-understood HW design sub-do-
mains such communication control. Combinations of
models can be used for the integration of several high-

level abstractions within the same design framework
to achieve higher separation of concerns in a design.

References
 [1] F. Vahid, T. Givargis. Embedded System Design: A

Unified Hardware. Software Introduction, John Wiley
& Sons, 2002.

 [2] B. Liccardi, T. Maier-Komor, J.A. Oswald, M. El-
kotob, G. Färber. A Meta-Modeling Concept for Em-
bedded RT-Systems Design. Proc. of 14th Euromicro
Conference on Real-Time Systems, 19-21 June 2002,
Vienna, Austria.

 [3] E. Aarts, R. Roovers. IC Design Challenges for Am-
bient Intelligence. Proc. of DATE 03, Munich, Germa-
ny, 3-7 March 2003, 2-7.

 [4] H.P. Peixoto, M.J. Jacome, A. Royo, J.C. Lopez.
The Design Space Layer: Supporting Early Design
Space Exploration for Core-Based Designs. Proc. of
the DATE’1999, Munich, Germany, 9 -12 March
1999, 676-683.

 [5] S. Meguerdichian, F. Koushanfar, A. Mogre, D.
Petranovic, M. Potkonjak. MetaCores: Design and
Optimization Techniques. Proc. of DAC’2001, Las
Vegas, NV, USA, June 18-22, 585-590.

 [6] F. Doucet, R.K. Gupta. Microelectronic System-on-
Chip Modeling using Objects and their Relationships.
Online Symposium for Electrical Engineers
(OSEE2000), 2000.

133

R. Damaševičius, V. Štuikys

 [7] G. de Jong. A UML-based design methodology for
real-time and embedded systems. Proc. of DATE
2002, Paris, France, 4-8 March 2002, 776-778.

 [8] G. Martin. UML for embedded systems specification
and design: motivation and overview. Proc. of DATE
2002, Paris, France, 4-8 March 2002, 773-775.

 [9] B. Selic. Architectural Patterns for Real-Time Sys-
tems. L. Lavagno, G. Martin, B. Selic (Eds.), UML for
Real, Kluwer Academic Publishers, 2003, 171-188.

[10] B.P. Douglass. Fine Grained Patterns for Real-Time
Systems. L. Lavagno, G. Martin, B. Selic (Eds.), UML
for Real, Kluwer Academic Publishers, 2003, 149-170.

[11] S. Edwards, L. Lavagno, E.A. Lee, A. Sangiovanni-
Vincentelli. Design of Embedded Systems: Formal
Models, Validation, and Synthesis. Proc. of the IEEE,
85(3), March 1997, 366-390.

[12] E.A. Lee. What's Ahead for Embedded Software?
IEEE Computer Magazine, 33(9), September 2000,
18-26.

[13] A. Sangiovanni-Vincentelli, G. Martin. Platform-
Based Design and Software Design Methodology for
Embedded Systems. IEEE Design and Test of Compu-
ters, Vol.18, No.6, 2001, 23-33.

[14] A. Mihal, C. Kulkarni, C. Sauer, K. Vissers, M.
Moskewicz, M. Tsai, N. Shah, S. Weber, Y. Jin, K.
Keutzer, S. Malik. A Disciplined Approach to the
Development of Architectural Platforms. IEEE Design
and Test of Computers, Vol.19, 2002, 2-12.

[15] A. Yakovlev, L. Gomes, L. Lavagno (Eds.). Hard-
ware Design and Petri Nets. Kluwer Academic Publi-
shers, 2000.

[16] W. Műller, W. Rosenstiel, J. Ruf. SystemC: Metho-
dologies and Applications. Kluwer Academic Publi-
shers, 2003.

[17] M. Keating, P. Bricaud. Reuse Methodology Manual
for System-on-a-Chip Designs. Kluwer Academic
Publishers, 1999.

[18] V. Štuikys, R. Damaševičius, G. Ziberkas. Open
PROMOL: An Experimental Language for Target
Program Modification. A. Mignotte, E. Villar, L. Ho-
robin (Eds), System on Chip Design Languages, Klu-
wer Academic Publishers, 2002.

[19] V. Štuikys, R. Damaševičius, G. Ziberkas, G. Ma-
jauskas. Soft IP Design Framework Using
Metaprogramming Techniques. B. Kleinjohann, K.H.
(Kane) Kim, L. Kleinjohann, A. Rettberg (Eds.). De-
sign and Analysis of Distributed Embedded Systems,
Kluwer Academic Publishers, 2002, 257-266.

[20] R. Damaševičius, V. Štuikys. Wrapping of Soft IPs
for Interface-based Design Using Heterogeneous Me-
taprogramming. INFORMATICA, Lithuanian Academy
of Sciences, 2003, Vol.14, No.1, 3-18.

[21] R. Damaševičius, G. Majauskas, V. Štuikys. Appli-
cation of Design Patterns for Hardware Design. Proc.
of DAC’2003, June 2-6, Anaheim, CA, USA, 48-53.

[22] V. Štuikys, R. Damaševičius. Metaprogramming
Techniques for Designing Embedded Components for
Ambient Intelligence. T. Basten, M. Geilen, H. de
Groot (Eds.), Ambient Intelligence: Impact on Embed-
ded System Design. Kluwer Academic Publishers,
2003, 229-250.

[23] R. Damaševičius, V. Štuikys. Application of UML
for Hardware Design Based on Design Process Model.
Proc. of Asia South Pacific Design Automation
Conference (ASP-DAC 2004), January 27-30, 2004,
Yokohama, Japan, 244-249.

[24] V. Štuikys, R. Damaševičius. Soft IP Customization
Model Based on Metaprogramming Techniques.
INFORMATICA, Lithuanian Academy of Sciences,
2004, Vol.15, No.1, 111-126.

[25] R. Damaševičius, V. Štuikys. Application of the Ob-
ject-Oriented Principles for Hardware and Embedded
System Design. INTEGRATION, the VLSI Journal,
2004, Vol.38(2), Elsevier, 309-339.

[26] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey,
A. Sangiovanni-Vincentelli. System Level Design:
Orthogonalization of Concerns and Platform-Based
Design. IEEE Trans. on Computer-Aided Design
19(12), 2000.

[27] A. Sangiovanni-Vincentelli. Platform-Based Design:
A Path to Efficient Design Re-Use. Proc. of the First
Int. Symposium on Quality of Electronic Design
(ISQED 2000), 20-22 March 2000, San Jose, CA, 209-
210.

[28] F. Vahid, T. Givargis. Platform Tuning for Embed-
ded Systems Design. IEEE Computer, 34(2), 2001,
112-114.

[29] E. Gamma, R. Helm, R. Johnson, J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[30] F. Doucet, S. Shukla, R. Gupta. Introspection in Sys-
tem-Level Language Frameworks: Meta-level vs. In-
tegrated. Proc. of Design Automation and Test in
Europe Conference (DATE 2003), 3-7 March 2003,
Munich, Germany, 382-387.

134

