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Abstract. Fusion of multiple biometric modalities for human authentication performance improvement has 
received considerable attention. This paper presents a robust multimodal biometric authentication scheme integrating 
iris, face and palmprint based on score level fusion. In order to overcome the limitation of the possible missing 
modalites, the multiple parallel support vector machines (SVMs) fusion strategy is applied, in which all possible 
modality combination cases are considered and each case has a corresponding SVM to combine the scores to generate 
a fused score for the final decision. Experimental results show that the proposed multimodal scheme is more robust and 
flexible, especially when some of the biometric modalities are unavailable. 
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1. Introduction 

Biometrics refers to the technologies that use phy-
siological or behavioral characteristics to authenticate 
a person's identity[1]. In recent years, the increasing 
demand on enhanced security has led to an unprece-
dented interest in automated personal authentication 
based on biometrics.  

Biometric systems based on a single source of in-
formation are called unimodal systems. Although 
some unimodal systems have got considerable im-
provement in reliability and accuracy, they often suffer 
from enrollment problems due to non-universal bio-
metrics traits, susceptibility to biometric spoofing or 
insufficient accuracy caused by noisy data[2], and 
hence, may not be able to achieve the desired perfor-
mance requirement in real-world applications. One 
way to overcome these problems is the use of multi-
modal biometric authentication systems, which com-
bine information from multiple modalities to arrive at 
a decision. Some studies have demonstrated that mul-
timodal biometric systems can achieve better perfor-
mance comparing to the unimodal systems [2-7]. 

Although existing multimodal fusion techniques 
have been shown effectively to improve the accuracy 
of biometrics-based verification, they also face some 
limitations. For example, most existing multimodal fu-
sion schemes, especially some single parametric ma-
chine learning fusion strategies, are based on the 
assumptions that each biometric modality is available 
and complete [4-6], so each registered person must be 
entered into every modality. Once a modality is 
unavailable or missed, the multimodal systems break 

down or the accuracy degrades. This may not be plau-
sible and is very restrictive. Additionally, in existing 
multimodal fusion techniques, when the parametric 
learning fusion strategies are adopted at the matching 
score level [4, 5, 7],  the fusion is viewed as a classifi-
cation problem, in which the score vector is classified 
into one of two classes: “Accept” (genuine user) or 
“Reject” (impostor). However, the above approach 
seems to lack flexibility when different performance 
demands are required in real applications. Concerning 
these problems, some solutions are given in this work. 

In this paper, we proposed a robust multimodal 
authentication scheme which addresses the problem 
mentioned above. The proposed multimodal scheme 
integrates three biometric modalities: iris, face and 
palmprint. Three biometric verifiers are fused at the 
matching score level. When fusing, instead of single 
machine learning fusion strategy, an improved fusion 
strategy based on a group of parallel support vector 
machines (SVMs) is employed. The parallel multiple 
SVMs cover all possible subsets of the biometric mo-
dalities being considered. The selector in fusion mo-
dule can select an appropriate SVM for fusion from 
multiple SVMs according to the current available 
modalities, which can eliminate the limitation brought 
by the missing modalities. Moreover, in the proposed 
fusion strategy, the fusion of different scores is viewed 
as a combination problem, in which the score vector is 
combined to generate a fused single scalar score, 
which is then used to make the final decision by a 
predefined decision threshold. This approach can in-
crease flexibility and meet demands under more 
circumstances by adjusting the decision threshold. The 
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experimental results on our constructed multimodal 
database prove the superiority of the proposed system. 

2. Framework of the proposed multimodal 
system 

Face verifier, iris verifier and palmprint verifier all 
involve image preprocessing, feature extraction, mat-
ching and decision-making. Multimodal fusion for 
three modalities can be done at the feature extraction 

level, the matching score level, or the decision level. 
Although feature sets usually contain more informa-
tion data than the matching scores, features from diffe-
rent modalities are usually incompatible. Fusion at the 
decision level is thought to lack flexibility (due to the 
limited information from each classifier, e.g. no infor-
mation on confidence of decisions). Thus, fusion at 
the score level is the most popular and frequently used 
method because of its good performance, intuitiveness 
and simplicity. 
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Figure1. Block diagram of the proposed scheme 

Figure 1 shows the block diagram of the proposed 
multimodal biometric authentication method integrat-
ing iris, face and palmprint. From Figure 1, it can be 
seen that the images of three modalities of a certain 
person waiting for being authenticated are first acqui-
red and input corresponding verifiers to make a match 
with the stored template in the database. Following the 
obtainment of matching scores, the selector will select 
an appropriate SVM for fusion from multiple SVMs 
and corresponding decision threshold according to the 
current available modalities status. The selected SVM 
will combine multiple matching scores to generate a 
fused score for the final decision. At the decision step, 
the selected threshold is utilized to make a decision of 
genuine or impostor. 

3. Biometric verifiers 
3.1. Iris verifier 

The human iris is an annular region between pupil 
and sclera. Due to its high reliability and non-inva-
siveness, iris recognition is receiving increased atten-
tion. Among various algorithms, phase information 
based algorithm proposed by Daugman[9] is consi-
dered a very effective one, which used Gabor filters to 
extract phase structure information of iris. Our recent 
work shows that better performance can be achieved 
by using 2D Log-Gabor filters to extract phase infor-
mation [10]. So in the proposed multimodal scheme, 
our improved phase information algorithm using 
multi-scale 2D Log-Gabor is applied to generate the 

matching score of iris verifier. The detailed process is 
as follows: 

 
Figure 2. Steps involved in iris preprocessing 

1) Iris image preprocessing. Prior to feature extrac-
tion, the iris image needs to be preprocessed to eli-
minate uninterested information. The main prepro-
cessing steps, as illustrated in Figure 2, consist of 
localization of the inner and outer iris boundaries, 
localization of eyelid boundaries, transformation 
from polar coordinates to a fixed size rectangular 
image, mask generation and image enhancement. 

2) Feature extraction and encoding. 2D Log-Gabor 
filters are employed to extract the phase informa-
tion of iris. The iris image is divided into some 
blocks and the phase of each block can be extrac-
ted by using multi-scale 2D Log-Gabor filters[10]. 
The feature of iris can be described as certain 
binary codes. 

3) Matching. The difference between two iris was 
measured by their Hamming distance: 

[( ) ( )]
( )H

codeA codeB maskA maskB
d

maskA maskB
⊗

= ∑
∑

∩ ∩
∩

,  (1) 
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where ⊗ denotes the Boolean Exclusive-OR operator 
(XOR), maskA  and maskB denote two iris matching 
masks, respectively, “0” for the non-iris regions, and 
“1” for the iris regions; ∩  denotes the AND operator. 
Finally, the matching score of iris verifier is obtained 
as the Hamming distance. 

3.2. Face verifier 

Face is an important biometric modality. Among 
various face recognition algorithms, appearance-based 
approaches are the most popular. In our multimodal 
biometric system, the Laplacianface algorithm is emp-
loyed in the face verifier part, which is a newest 
appearance-based face recognition algorithm[8].  

In the Laplacianface algorithm, face images are 
mapped into a face subspace for analysis by using 
Locality Preserving Projections (LPP). LPP finds an 
embedding that preserves local information, and ob-
tains a face subspace that best detects the essential 
face manifold structure. The process of face verifier 
consists of the following stages: 
1) Face image preprocessing. The detected face 

images are normalized in order to reach scale and 
shift invariability. The histogram equalization is 
applied to normalize the brightness level of face. 
Figure 3(b) shows the preprocessed images. 

2) Training. In this stage, a set of training faces are 
collected and Laplacianfaces are computed from 
the training set. The detailed process is as follows: 
First, the normalized face images are projected 
into the PCA subspace by throwing away the 
components corresponding to zero eigenvalue. 
Then Locality Preserving Projections is applied to 
reduce the number of features (dimensions). At 
last, the projection matrix can be represented as 

PCA LPPW W W= , in which each column of the pro-
jection matrix can be called as a Laplacianface 
when transformed into two dimensions. The 
examples of Laplacianfaces are shown in Figure 
3(c). 

       
(a) Original faces         (b) Preprocessed faces 

 
    (c) Laplacianfaces 

Figure 3. Images involved in face recognition 

3) Recognition. The feature vector from a facial 
image can be obtained by projecting the image into 
a face space. In this process, the image is 

represented as a linear combination of Laplacian-
faces and the feature vector is made of weightings 
associated with each Laplacianface.  

4) Matching. The matching score between two face-
feature vectors is calculated using the Euclidean 
distance in the matching phase. The formula can 
be denoted as: 

           2

1
( ) ( )E

k

i i
i

d v,u v u
=

= −∑ , (2) 

where v and u are feature vectors of matching faces. 
k  is the dimensionality of feature vector. 

Following the above process, the matching score 
of face verifier is obtained as the Euclidean distance. 

3.3. Palmprint verifier 

The palmprint is a relatively new biometric feature 
used for automated personal authentication[1]. In this 
work, a recognition algorithm (Laplacianpalmprint) 
similar to face recognition is applied. The process of 
computing the matching score between applicant and 
stored template is as follows: 
1) Preprocessing. After the palmprints are captured 

by the CCD-based device, they should be prepro-
cessed to separate the fingers. After preprocessing, 
the central part of the palmprint is cropped to 
represent the whole one. Figure 4 shows a captured 
palmprint and its cropped images. 

        
(a) Original palmprint            (b)  Cropped image 

Figure 4. Images involved in palmprint recognition 

2) Training and recognition. Similar to Laplacianface 
algorithm, a set of palmprints are as training data 
to train Laplacianpalmprint. When performing re-
cognition, the palmprints being verified are projec-
ted onto the trained palmprint subspace, and the 
feature vector can be obtained as the weightings 
associated with each Laplacianpalmprint. 

3) Matching. The matching score between two palm-
print feature vectors also can be calculated using 
the Euclidean distance. 

4. Fusion and decision 
4.1. Score normalization 

The matching scores generated from different veri-
fiers are heterogeneous because they are not on the 
same numerical range, which may negatively affect 
fusion results. So the first step of fusion is score 
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normalization to transform scores into a common 
domain. 

A double sigmoid function is used for score 
normalization in this work. Given matching scores 
d of a certain verifier, the normalized score x  is 
given by 

1

2

1    
1 exp( 2(( ) / ))    1   otherwise   
1 exp( 2(( ) / ))

d t
d t tx

d t t

⎧ <⎪⎪ + − −= ⎨
⎪
+ − −⎪⎩

  (3) 

where t is the reference operating point and t1 and t2 
denote the left and right edges of the region ( i.e. the 
interval 1 2( , )t t t t− − ) in which the function is near-li-
near. By using (3), the scores can be mapped to the [0, 
1] range. 

4.2. Multiple parallel SVMs fusion strategy 

After score normalization, a mutimodal score vec-
tor can be constructed. The next step is fusion at the 
matching score level. In previous researches, this step 
is often viewed as a classification problem, and by 
using some learning machines the score vector is di-
rectly classified into one of two classes: “Accept” 

(genuine user) or “Reject” (impostor). In this work, a 
more flexible approach is adopted. The fusion of 
scores is viewed as a combination problem and the 
score vector is combined to generate a single scalar 
score, which is used to make the final decision. This 
approach can meet demands under more circumstan-
ces by adjusting the decision threshold, for example, 
we can increase decision threshold to meet the cir-
cumstance claiming strictly low false rejection rate 
(FRR) and relaxed false acceptance rate (FAR), or we 
also can decrease threshold to meet the circumstance 
claiming strictly low false acceptance rate (FAR) and 
relaxed false rejection rate (FRR). 

As to fusion strategies, rather than some conven-
tional non-parametric learning fusion strategies such 
as sum, product, and Fisher, supervised parametric 
learning fusion strategies based on SVM are consi-
dered in our multimodal system. However, instead of 
the single static SVM fusion strategy, multiple parallel 
SVMs fusion strategy is proposed and utilized to over-
come the limitation of previous techniques when some 
modalities are not currently available. The structure of 
the multiple SVMs fusion strategy is described in 
Figure 5. 
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Figure 5. Structure of multiple SVMs fusion strategy 

As shown in Figure 5, following the normalization 
of the matching scores, multiple SVMs based fusion is 
utilized. Multiple SVMs are parallel and each SVM is 
for a possible subset of {face, iris, palmprint} that 
contains two or three modalities. At one time, only an 
appropriate SVM is selected by selector according to 
the current available modalities status. If only one mo-
dality is available, the input score is directly as the 
fused score. The selected SVM can generate a corres-
ponding fused score for the final decision. The deci-
sion threshold is corresponding to the selected SVM. 
At the stage of decision, if the fused score value is 
lower than the threshold, the applicant is accepted as a 
genuine user (enrolled). However, if it exceedes  the 
threshold, the applicant is rejected as an imposter (not 
enrolled). 

Multiple SVMs are trained using a set of training 
data which can be made up of the following sets: {iris, 

face}, {face, palmprint}, {iris, palmprint}, {iris, face, 
palmprint}. One set is for one SVM to learn. The 
principle of learning is described as follows: 

SVM is based on the principle of structural risk 
minimization[11][12]. In this work, we use SVM to 
build a fusion function which can provide a fused 
score. Let the normalized matching scores, provided 
from the training sets, be combined into a multimodal 
score vector x . The design of a SVM trained fusion 
scheme consists in the estimation of a function 

2 3: ( )f R R R→  to maximize the separability of 
genuine { (x)f |genuine attempt} and impostor 
{ (x)f |impostor attempt} score distributions. 

Suppose that the training set is 1(x , )N
i i iX y == , 

where N is the number of multimodal score vectors in 
the training set, and { 1,1}iy ∈ − =  {impostor, genuine}. 
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Via 2 3: ( )R R QΦ → , X is mapped into a high dimen-
sion features space Q. The principle of SVM relies on 
a linear separation in the space Q. In order to achieve 
a good level of generalization capability, the margin 
between the separator hyperplane H(w, b) =  {h ∈ Q ⏐ 
⎨w, h⎬Q + b = 0} and the mapped data ( )XΦ  is 
maximized (where ⎨w, h⎬Q denotes inner product in 
space Q, and 0(w , )Q w R∈ ∈  are the parameters of 
the hyperplane). Following the obtainment of the 
optimal hyperplane * *(w , )H b , the decision function 

D that classifies a test pattern xT  is: 

* *(x ) { w , (x ) }T
T QD sign b= < Φ > +              (4) 

Defining (x ,x ) (x ), (x )i j i j Q
K = Φ Φ  as the 

kernel function (4) can be changed as: 
*(x ) { (x ,x ) }T i i i T

i SV

D sign a y K b
∈

= +∑             (5) 

where *{ | 0}iSV i a= >  indexes the set of support 
vectors. 

The fusion strategy relies on the computation of 
the decision function D. In order to obtain not a final 
classifier decision but a fused score based on the 
proximity of the test pattern to the separating surface, 
a modification is proposed here. The fused score Ts of 
a test pattern xT  is defined as follows: 

*(x ) (x ,x )T T i i i T
i SV

s f a y K b
∈

= = +∑                   (6) 

As to the training of the SVM model, firstly, the 
kernel function should be decided. Several kernel 
functions have been put forward. However, in case of 
selecting the optimal kernel function, there is no fast 
method but by trial and error method. In this work, the 
radial basis function (RBF) is used as the basic kernel 
function by iterative trials. In the RBF kernel-based 
SVM, C and γ (kernel width) are two adjustable 
parameters, which play a crucial role in the perfor-
mance of SVM. C is the regularization constant deter-
mining the trade-off between the empirical error and 
the regularized term, and γ underlies the mapping 
from input to feature space and consequently affects 
the performance. In our work, we adopt the grid based 
search method to obtain the optimal parameters (C, γ). 

5. Experiments and results 
5.1. Experimental database 

To evaluate the effectiveness of our proposed mul-
timodal authentication scheme, a database containing 
iris, face and palmprint samples is required. In this 
work, we construct a multimodal biometric database 
for our experiments based on UBIRIS iris database 
[14], ORL face database[13] and PolyU palmprint 
database[15]. 

The constructed multimodal database consists of 
280 records corresponding to 40 subjects (7 records 
each subject), and each record contains an iris image, 
a face image and a palmprint image. In our experi-
ments, the 40 subjects are divided into two sets: 8 sub-
jects (56 records) as training data to estimate the para-
meters of all SVMs, the remaining 32 subjects (224 
records) as the test data to evaluate the performance of 
the trained system.  

In a verification system�the false acceptance rate 
(FAR) and the false rejection rate (FRR) are two 
widely used error measures. FAR and FRR are the 
functions of the decision threshold that can control the 
tradeoff between the two error rates. The performance 
of the verification system can be represented by the 
ROC (receive operating characteristic) curves, which 
plot probability of FAR versus probability of FRR for 
different values of the decision threshold. The point on 
the ROC defined by FAR=FRR is the EER point. 
Finally, the experiment results (ROC and EER) based 
on the test data, as well as some comparisons, are 
presented as follows. 

5.2. Comparison with unimodal methods 

The goal of the multimodal fusion is to achieve 
better precision and reliability of human authenti-
cation than single biometrics. In order to prove the 
effectivity of our proposed method, we present a com-
parison with the unimodal methods (only one moda-
lity used).  
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Figure 6. ROC curves of  unimodal method and the 

proposed method 

Figure 6 shows the ROC curves and EER of the 
following biometric systems: only iris verification, 
only face verification, only palmprint verification and 
the proposed multimodal verification in case that three 
modalities are all available. Iris verification is based 
on the improved phase information algorithm using  
multi-scale 2D Log-Gabor filtering, which has been 
described in above section and presents better perfor-
mance than some current iris recognition algorithms in 
our previous studies[10].  Face and palmprint veri-
fications are based on Laplacianface and Laplacian-
palmprint. As can be seen from Figure 6, iris 
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recognition usually has very high verification per-
formance. Although UBIRIS is a noisy database and 
many noisy iris images are contained in the testing set, 
it also can achieve the performance of 0.63% EER. 
Face and palmprint recognition are less reliable than 
iris. But when three biometrics are combined using 
our proposed method, we can achieve a performance 
of 0.16% EER. This brings obvious performance im-
provement compared with the unimodal biometric 
methods. This means that multimodal biometric me-
thod is an effective way to improve human identifi-
cation accuracy.  

In terms of identification speed, there is no doubt 
that the multimodal methods will spend more time 
than the unimodal methods. In our experiments, we 
measured the average computational time required to 
execute the different authentication methods. All times 
were recorded on a Pentium-4 3.06GHz processor, 
running the Matlab code. As to the unimodal methods, 
the time for accomplishing identification with a stored 
template is 386 ms, 156 ms and 217 ms when iris, face 
and palmprint are respectively selected. As to our 
proposed multimodal method, when three modalities 
are all available and serially processed, the time for 
accomplishing identification is 793 ms, which is also 
fast enough for real-time identification. From the 
computational times, we can find that the time of the 
multimodal method is a little more than the sum of 
three modalities, and that the fusion part only spends 
very little time once SVM fusion rule has been trained 
in advance.  Furthermore, in order to achieve the less 
computational time we can complement the 
multimodal method in the following ways: firstly, with 
the quick development of microelectronics, faster 
processors can been used to speed up the identification 
system; secondly, the verification modules of different 
modalities can been executed simultaneously by 
utilizing multiple processors technology especially in 
the embedded system, which can save more compu-
tational time. 

5.3.  Comparison with the previous studies 

In the proposed scheme, the fusion of scores is 
viewed as a combination problem. Instead of some 
non-parametric learning fusion strategies such as sum, 
product and Fisher applied in previous studies [4][5], 
the SVM-based score level fusion strategy is 
employed to generate a fused score for the final 
decision. In the experiments, we compared the 
proposed SVM-based fusion strategy with the non-
parametric learning fusion strategies. The detailed 
comparison results are as follows. 

In case that three modalities are all available, Fi-
gure 7 gives the ROC curves for the mutimodal bio-
metric methods with different fusion strategies: sum, 
product, Fisher and SVM. These strateges are emp-
loyed at the matching score level to generate a fused 
score for decision.  From the figure, we can see that 
although these fusion strategies all can achieve 

performance improvement compared with unimodal 
method, SVM based score level fusion rule can get the 
best accuracy and the most improvement among four 
fusion strategies, which proves the superiority of 
combination approach based on parametric learning 
fusion strategies. 
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Figure 7. ROC curves of different fusion rules 

In our proposed multimodal scheme, multiple pa-
rallel SVMs are utilized to overcome the limitation 
brought by the possible missing modalities. Next, we 
give the experimental results of the multiple SVMs 
fusion strategy when a missing modality appears.  
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Figure 8. ROC curves of previous methods 

Figure 8 represents the ROC curves of the pro-
posed multimodal system when iris, face and palm-
print are respectively missed. From Figure 8 as well as 
Figure 6, we can find that, although the performance 
of three cases is a little worse than the case that three 
modalities are all available, better performance also 
can be achieved than single biometrics system. This 
means that multiple SVMs fusion strategy can 
effectively overcome the limitation of the missing 
modalities. 

In contrast, when the single static SVM fusion 
strategy is applied, the multimodal system is highly 
sensitive to missing modalities and the accuracy de-
creases noticeably. In our experiments, when iris, face 
and palmprint are respectively missed, the EER of the 
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multimodal system is increased to 16.7%, 24.5% and 
19.8%, which clearly shows that our multimodal 
authentication based multiple parallel SVMs are more 
practical. 

6. Conclusions 

In this paper, a robust multimodal biometric 
authentication method integrating iris, face and palm-
print is proposed. Fusion of three modalities is carried 
out at the matching score level. Addressing the limi-
tations of existing fusion techniques, multiple parallel 
SVMs fusion strategy is employed, in which all pos-
sible modality combination cases are considered and 
each case has a corresponding SVM to combine the 
scores to generate a fused score for the final decision. 
From the experiment results, we can conclude that: 
1) Fusion of multiple biometrics can improve the 

verification performance comparing to the single 
biometrics. 

2) Viewing fusion of multiple scores as a combina-
tion problem is a more flexible solution and para-
metric learning fusion strategy based on SVM is 
better than non-parametric learning fusion strate-
gies such as sum, product and Fisher. 

3) Multiple parallel SVMs fusion strategies can effec-
tively overcome the limitation brought by the pos-
sible missing modalities. Further, the addition of a 
new modality does not affect the existing SVMs, 
instead, we can simply train the additional SVMs 
to handle the new modality combination, which 
can increase the continuity and flexibility of 
system. 
Future work will involve investigation of better 

alternative verification techniques suitable for fusion 
of three modalities, as well as fusion of iris, face and 
palmprint feature at an earlier stage. 
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