
301

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2008, Vol.37, No.4

DESIGN OF ONTOLOGY-BASED GENERATIVE COMPONENTS
USING ENRICHED FEATURE DIAGRAMS AND META-

PROGRAMMING

Vytautas Štuikys, Robertas Damaševičius
Software Engineering Department, Kaunas University of Technology

Studentų 50, LT-51368, Kaunas, Lithuania

Abstract. A product line (PL) approach is emerging as the most promising design paradigm for embedded soft-
ware design domain, where a great variability of requirements and products exists. The implementation of the PL ap-
proach requires thorough domain analysis and domain modelling. We propose to represent embedded software compo-
nents using Enriched Feature Diagrams (EFDs). EFDs are an extension of traditional Feature Diagrams (FDs) for
explicit representation of domain variability enriched with contextualization and domain ontology. We suggest to
transform feature models described using EFDs into generative component specifications encoded using the meta-
programming techniques. A case study from the embedded software specialization domain is presented.

Key words: feature diagram, generative component, domain ontology, product line, embedded software.

1. Introduction
Current approaches for architectural design of sys-

tems or components (either instances or generative
ones) predominantly use the product line (PL) concept.
A software PL is a set of software systems that share a
common, managed set of features satisfying the spe-
cific needs and are developed from a common set of
core assets in a prescribed way [1]. The concept of
PLs, if applied systematically, allows for the dramatic
increase of software design quality, productivity, pro-
vides a capability for mass customization and leads to
the ‘industrial’ software design [2].

The key for the PL implementation is the use of
domain analysis and domain modelling methods. From
the computer science and software engineering per-
spective, a vast majority of the methods (e.g., FODA
[3], FORM [4], FAST [5], etc.) exploit such domain
properties as scope, commonality and variability [6].
These concepts enable to express the content in the
form of features and to model the domain well through
the identification of structural, functional and other
characteristics (otherwise features) and their relation-
ships. However, with the further expansion of com-
plexity, which is inspired by ever-growing technology
capabilities, market demands, user requirements, new
appliances (e.g., ambient intelligence, mobile comput-
ing), etc., it is not enough to rely on the domain con-
tent-based and feature-centric analysis in the system
development only.

What is needed is the extension of the scope of
analysis in order to extract along with the content-
oriented features the other domain relevant knowledge
that may be, for example, related with the context of
use. Context awareness is a very important feature in
such appliances as ambient intelligence [7], e-learning
systems [8], knowledge-based information systems and
many others, because this kind of information hides (if
it is not yet revealed) or brings more complex relation-
ships of features that can be treated as knowledge (if
this information is already revealed). In a broader
sense, context analysis is a matter of cognitive science.
Software engineering approaches (such as FODA
method for domain analysis) do not also neglect the
importance of the context; however, these approaches
deal with the context in a narrow sense (usually stati-
cally as, e.g., FODA that neglects possible changes in
the context).

What we suggest in this paper is: 1) to represent
embedded software components using Enriched Fea-
ture Diagrams (EFDs), an extension of traditional Fea-
ture Diagrams (FDs) for the explicit representation of
domain variability enriched with contextualization and
domain ontology; 2) to transform such feature models
described using EFDs into generative component
specifications encoded using the meta-programming
techniques.

The paper is organized as follows. Section 2 dis-
cusses the related work. Section 3 describes the basics
of Feature Diagrams and motivates for their extension.

V. Štuikys, R. Damaševičius

302

Section 4 describes Enriched Feature Diagrams
(EFDs). Section 5 discusses attributes of the ontology-
based generative components. Section 6 describes en-
coding of EFDs using meta-programming. Section 7
presents a case study. Finally, Section 8 presents
evaluation, discussion and conclusions.

2. Related work
We categorize basic related works into three re-

search streams: 1) approaches that deal with feature
diagrams (FDs) and ontology-based representation of
commonality-variability for embedded software; 2)
analysis of specific requirements and methods, such as
power optimization for embedded software; 3) genera-
tive approaches for implementing systems and compo-
nents.

Stream 1. This stream has a direct link with do-
main analysis methods (FODA, FORM, FAST) and PL
approaches already referred to in the previous section.
The origins of FDs can be traced back to the FODA
methodology in 1990 [9]. Since then, they have under-
gone several extensions [3, 4, 10, 11, 12] intended to
improve their expressiveness. FDs first were applied in
the context of industrial manufacturing product lines,
e.g. for modelling car assembly lines. Later, the idea
was extended to software product lines (PLs).

Based on the success of feature modelling and PL
approach in industrial manufacturing and software en-
gineering domains and intention to introduce product
families in System-on-Chip (SoC) design [13], we pro-
pose using FDs for specification, representation and
structuring of generative embedded software compo-
nents. Furthermore, FDs are also important for con-
structing domain ontologies by providing views on on-
tologies [14, 15] in order to acquire a common
understanding of the domain. Ontology is a conceptual
specification that describes knowledge about a domain
[16]. The construction of such ontologies allows pro-
viding shared and common understanding of a specific
domain, and facilitates knowledge sharing and reuse.

Domain ontologies, where domain knowledge is
represented as ontology trees, have some syntactic and
conceptual resemblance with feature hierarchies repre-
sented using FDs [17]. However, FDs have weaker ca-
pabilities to express various relationships in represent-
ing knowledge [14]. On the other hand, when those
capabilities are not enough, FDs can be easily com-
bined with more powerful domain knowledge repre-
sentation methods, such as fuzzy logic [18].

Stream 2. Specifically to embedded software de-
sign for mobile computing, energy consumption is a
major cost when running some large scale applications
[19], though other characteristics (execution time, ac-
curacy, memory) remain as important as ever. Com-
bined together those characteristics are highly influen-
tial to domain ontologies and should be included in the
requirement statement. We restrict ourselves by
providing power analysis methodologies that are
relevant to the application level only. The method [20]

to the application level only. The method [20] relies on
application-level observations of battery dissipation for
a representative set of benchmarks by showing of how
these benchmark dissipation rates can be combined to
form an estimate for an arbitrary program. Another ap-
proach [20] enables generation of the energy-efficient
code based on an instruction level model that quanti-
fies the energy cost of individual instructions and of
various inter-instruction effects.

Profiling-based power optimization methods use
profiling tools that are generally applied at several lev-
els of abstraction: user [21], operational [22], algo-
rithmic, data and instruction-level [23]. Application-
level profiling can be used for dynamically modifying
application’s behaviour to conserve energy [24]. En-
ergy profiling, automated data representation conver-
sion, derivation of polynomial representation and sym-
bolic algebra is combined by Peymandoust et al. [25].
In this approach energy profiling is necessary to iden-
tify critical sections of code that needs to be optimized.
For more complex arithmetic functions, the symbolic
algebra techniques decompose the polynomial repre-
sentation of the basic blocks of a program into a set of
instructions available on the embedded processor that
automates energy and performance optimization of the
arithmetic sections of source code.

In [26], power consumption is optimized using
two well-known transformation methods: loop unroll-
ing, where it aims at reducing the number of processor
cycles by eliminating loop overheads, and loop block-
ing, where it breaks large arrays into several pieces and
reuses each one without self interference. Compiler op-
timizations such as linear loop transformations; tiling,
unrolling, fusion, fission and scalar expansion are also
considered in [27]. However, only loop unrolling is
shown to decrease the consumed energy. Software
pipelining and recursion elimination for energy optimi-
zation are also considered in [28]. Various code trans-
formations for software power optimization are dis-
cussed in [29]. For the application of trigonometric
functions in real-time ES software, typically both the
numerical precision and the resource demands are rele-
vant [30]. For the following discussions of different
power optimization techniques we concentrate on the
cosine function, since other trigonometric functions
can be directly derived from it.

Stream 3. There is a broad discussion on genera-
tive approaches. Most relevant works to our paper are:
generative programming [10], aspect-oriented pro-
gramming [31], frame-based technology [32] and
meta-programming [33]. A common usage of meta-
programming is to provide mechanisms for designing
generic (generative) components [34], i.e. explicitly
implementing generalization in the domain. Domain
language implements commonalities in a domain,
while a meta-language allows developers to specify
variations to be implemented in the domain system.
Thus meta-programming provides means for imple-
menting domain commonalties and variability at the
generic component implementation level, which are

Design of Ontology-Based Generative Components Using Enriched Feature Diagrams and Meta-Programming

303

specified graphically by FDs at the generic component
design level.

3. Basics of Feature Diagrams and
motivation of their extension
Conceptually, when applied in modelling, the no-

tation of FDs represents the domain model that de-
scribes the architecture of system or component at a
higher abstraction level. A conventional FD [3] is a
tree-like directed acyclic graph, in which the root
represents the initial concept (also referred to as do-
main), intermediate nodes represent compound fea-
tures, and leaves represent non-decomposable atomic
features that may have values (aka variants); branches
represent the parent-child relationships among com-

pound features or among compound features and
atomic features. Furthermore, some additional relation-
ships such as constraints (e.g., <require>, <mutual ex-
clusion>, etc.) between leaves derived from different
parents are identified.

FDs are a graphical notation. Features are denoted
by boxes. Features differ in types. There are manda-
tory, optional and alternative feature types. Mandatory
feature is the one which always is selected (it is
marked by a black circle above its box). Optional fea-
ture is the one which may be selected or not. Alterna-
tive feature is the one which is selected depending on
some alternative (condition). Both are marked by a
white circle above its box (see Table 1). If atomic fea-
ture has values (variants), it is also treated as a variant
point.

Table 1. Feature types, ontology and constraints for feature model representation

Feature type Definition, formalism and semantics of
relationships

Graphical notation (syntax)

Concept and its
context

Concept is represented by the root with
the explicitly stated context on the left at
the same level; context is seen as the
highest mandatory feature with variants

<Concept><Context>

Mandatory Feature B (C, D) is included if its parent

A is included:
a) if A then B;
b) if A then C&D;
(Relationship-and: <R-and>) a) b)

Optional Feature B (C, D) may be included if its
parent A is included:
a) if A then B or <no feature>;
b) if A then C or D or <no feature>

a) b)
Alternative 1 Exactly one feature (B or C or D) has to

be selected if its parent A is selected:
a) if A then case-of (B, C) ;
b) if A then case-of (B, C, D) ;
(Relationship-case: <R-case>) a) b)

Alternative 2 At least one feature has to be selected if
its parent A is selected:
a) if A then any-of (B, C);
b) if A then any-of (B, C, D);
(Relationship-or: <R-or>) a) b)

Alternative 3 if A then (B but ¬C) or (C but ¬ B);
(Relationship-xor: <R-xor>; differs from
R–case by: 1) having two sons only; 2)
label “xor” is written at the father’s node) CB

A

xor

Ontology A compound of atomic features and their
relationships; ontology expresses the do-
main knowledge in some way

Constraint xor if F then ¬K and if ¬F then K
(<R-xor> between atomic features F and
K that are derived from different parents);

K Fxor

Constraint
require

Feature K requires feature F, or shortly:
K requires F

K Frequires

V. Štuikys, R. Damaševičius

304

FDs are now at the focus of researchers. As a re-
sult of continuous efforts to enhance expressiveness,
there are some syntactic discrepancies and different in-
terpretations of FDs semantics. All these should be
taken into account when dealing with FD-related prob-
lems. With respect to the aims of our research, we need
to extend FDs, too. Our aim is similar to Batory [35],
who is the proponent of moving the FD notation closer
towards domain ontologies. The need for extending
FDs with contextualization is also motivated in [36].

In this paper, we are seeking to enrich FDs by
domain ontologies and, on this basis, to provide some
extensions. The motivation is the following observa-
tion: the structure and meaning of a concrete FD is de-
pendable on the context and the latter on the goal a FD
is pertaining. As we will show later by examples, by
changing such attributes as <goal>, <context> we alter
the shape and, perhaps, semantics of the FD (e.g., fea-
ture types). Having in mind requirements of the PL de-
scription, the context is inevitably changing in archi-
tectural design. This property further leads to treating
attributes <goal> and <context> as generic categories
meaning that each have some pre-specified concrete
value taken from a prescribed space. In this paper, we
use the term <generic context> only. It should be un-
derstood as a higher-level attribute (feature) having at
least two different values. When representing the same
initial concept, the use of generic context results in the
construction of a set of the related FDs. The latter cor-
responds to the PL approach, in which the related
groups of features model product families.

Table 1 summarizes the (syntax and semantics) of
conventional attributes as well as innovative attributes
of enriched FDs (EFDs) that are shown in bold.

4. Enriched Feature Diagrams (EFDs):
Motivating research examples
To support the framework introduced in the previ-

ous section, we present two motivating research exam-
ples in this section. Let us consider the cosine calcula-
tion domain. This domain has the exceptional impor-
tance for many embedded and real time applications
(e.g., FFT in DSP, image processing, etc. [30]). The
goal is identified as “Design of Embedded SW to sup-
port product Line approach”. Example 1 (Figure 1) ex-
plains the essence of the EFD use with respect to the
introduced innovations. The term <context 1> has the
meaning: “high performance computing”.

Example 2 (Figure 2) explains what happens when
the context is changed. The <context 2> has the mean-
ing (value) now: “high performance mobile comput-
ing”. As a result, new features appear (e.g., energy, C#)
and richer ontology is introduced in the EFD. Further-
more, some features (e.g., C, Java) changed their type
(from mandatory to optional because C# is more rele-
vant than C and Java for mobile computing).

Goal: Design of ESW to support PL concept
Context: high performance computing

Cosine calculation

Approaches Implementation

Horner series Lookup tables

PerformanceAccuracy
(predefined)Performance Accuracy

JavaC

Memory

Ontology 1 Ontology 2

<Context 1>

Figure 1. EFD with explicit context and ontology for cosine
calculation

Attributes of EFDs are:
− The explicitly stated generic context
− A set of related EFDs
− The extended scope of variability
− Richer domain ontology
− An architectural description of a domain with

ontology-based variability in mind.
The essential attribute of EFDs is domain ontol-

ogy. In general, domain ontology can be expressed in a
variety of ways depending on the domain, feature
properties and design goal (context). Sometimes it is
enough to specify relationships among features-leaves
using the simplest constraint relationships such as ‘fea-
ture A <requires> feature B’ or ‘A and B are mutual
exclusive features’ (see Table 1). If the features are of
Boolean type more complex relationships based on the
propositional logic can be used [35].

Goal: Design of ESW to support PL concept
Context: high performance mobile computing

Cosine calculation

Approaches Representation

Horner series Lookup tables

Performance

Accuracy
(predefined)

Performance Accuracy

Java C

MemoryEnergy Energy

C#

Enriched ontology 1 Enriched ontology 2

<Context 2>

Figure 2. Changes in EFD due to context change

The atomic features (leaves on the EFDs) can be
also related with some complex functional dependen-
cies that can be specified using some analytic methods
(if any exist), empiric (experimental) methods (if there
is no other way to obtain functional dependencies as it
is the case for energy consumption and performance)

Design of Ontology-Based Generative Components Using Enriched Feature Diagrams and Meta-Programming

305

or by using some prognostic methods based on prob-
abilistic models, such as fuzzy logic [18].

In this paper, we used analytical methods where
ontology can be expressed through a functional rela-
tionship (e.g., performance and accuracy can be ex-
pressed through the series length in the Horner
scheme) and empiric methods in energy consumption
evaluation (see a case study in Section 7).

5. Attributes of ontology-based generative
components (OBGC)
In general, a generative component allows gener-

ating component instances on demand specified by
meta-parameters values. An ontology-based generative
component (OBGC) is the one which is built using the
EFD (i.e., it is enriched by domain ontology) and im-
plements the ontology and other features represented in
the EFD using some generative technology. We make a
distinction between terms ‘generic’ and ‘generative’
(we use the latter one when a generative technology is
defined explicitly). In this paper, we use heterogeneous
meta-programming as a generative technology [34].
Basic attributes of such a component are as follows.
1. We are treating the OBGCs as members of reuse

repositories to support large-scale reuse and design
knowledge sharing for embedded systems. EFDs
are architectural models of OBGCs represented at
a higher abstraction level.

2. An OBGC represents a family of generative com-
ponents. A configuration of the family is specified
by the design goal and design context. A member
of the family is a generative component (either
HW-oriented, e.g. given in a HW description lan-
guage such as VHDL, SystemC, etc., or a pure SW
component given in C, C# or other language).

3. FDs enriched by domain ontology (i.e., EFD) are a
part of the specification document that serves as a
high-level model of a generative component.

4. The rest part of the specification is a meta-
program that encodes domain ontology and other
relationships explicitly stated in the EFD.

5. Compliance between the high-level model (i.e.,
the EFD) and functionality of the meta-program is
a very important attribute because of many aspects
(e.g., better reuse, capabilities of transformation,
and maintenance and evolution).

6. A full compliance may result in generating several
domain program instances from the same meta-
specification at a time.

7. The model of a generative component (in the case
of the use of meta-programming) has two interre-
lated parts: meta-interface (for expressing com-
munication with the environment and initialization
of generative aspects) and meta-body (for express-
ing functionality and implementing generative as-
pects).

8. At the core of the meta-interface model is the
meta-parameter concept. There are three catego-
ries of meta-parameters in the OBGC specifica-
tion: 1) the highest-level meta-parameter(s) that
correspond to the design context (goal); 2) the on-
tology-related meta-parameters; and 3) ordinary
meta-parameters.

9. The highest-level meta-parameter(s) pre-specify
the configuration of the family that can be imple-
mented either as a set of separate modules or as a
hierarchal branching of set of modules of a single
specification.

10. The structure of an ontology-based meta-parame-
ter has a name, abstract value and semantics. The
latter one is expressed through explicitly described
domain ontology. This requires decomposition,
classification and ordering of domain ontology ob-
tained as a result of analysis (e.g., analytic or ex-
perimental). The abstract value is a bridge for
connecting knowledge represented in the meta-
interface with the implementation knowledge that
is hidden in the meta-body.

6. Encoding of EFDs using meta-
programming
We consider encoding as model transformations

that are not yet supported by automatic tools. Ab-
stractly, model transformation is a process that trans-
forms a source model (EFD, in our case) into a target
model (meta-program, in our case). As a meta-program
specification is a compound of two languages (meta
and target in heterogeneous meta-programming), we
need to use two-level model transformations. At level
one, the given EFD is transformed into a meta-program
model. Then, at level two, the latter model is trans-
formed into meta-program itself. The meta-program
model was described in Section 5 (although implicitly).
For an explicit meta-program example, see Figure 4.

The model consists of meta-interface and meta-
body. Meta-interface specifies meta-parameters, their
values and constraints between some meta-parameter
values (if any). For simplicity reasons, we describe
level-one transformations, when a source model is
given by a single EFD under the following conditions:

− FD is complete (with context, features, rela-
tionships, variant points, constraints and ontologies)
and syntactically correct (in terms of introduced syn-
tax).

− At least one variant for each variant point is
identified.

− A scenario or scenarios written in the target
language are given. How many of such scenarios are to
be given is the matter of debates.

Transformation rules at level one are as follows.

V. Štuikys, R. Damaševičius

306

A. Firstly, the context as a higher-level feature
(variant point) is transformed into the highest-level
meta-parameter(s).

B. Secondly, feature constraints are transformed
into constraints that are expressed in terms of meta-
parameters and their relationships using meta-
constructs (e.g., meta-meta-if)

C. Thirdly, variant points that describe ontology-
based features in the EFD are transformed into ontol-
ogy related meta-parameters; then the rest variant
points are transformed into meta-parameters.

D. Finally, meta-parameter values, which may ex-
press ontology at the meta-program level, are identi-
fied; then the rest values are identified.

By transformations mentioned in A, B, C and D
we mean the rewriting of a graphical notation of EFD
and changing them by a meta-program notation speci-
fied by the given meta-language.

Transformation rules at level two are as follows.
− Firstly, the first scenario of the target program

instance is embedded into the meta-body; then places
(locations) which relate to variants are identified and
variability is implemented using meta-language con-
structs (e.g., meta-for, meta-case, meta-if, etc.)

− Secondly, the process of A is repeated for the
rest scenarios.

− Thirdly, within the process the checking for
completeness of encoding of the EFD is provided, as
well as encoding correctness using tools that support
meta-programming.

7. Case study: an extended research
example

7.1. Definition, aim and methods used

Program efficiency (in terms of time or power
consumption) can be improved by using 1) more effi-
cient algorithms that solve the same computation prob-
lem, or 2) approximate computation algorithms that
sacrifice accuracy for gain in other characteristics.
More specifically, there are two methods for solving
this problem: data specialization and program spe-
cialization.

Data specialization [37] aims at encoding results
of early computations in data structures. The execution
of a program is divided into two stages. First, a part of
the algorithm is pre-computed in advance and the re-
sults are saved in a data structure such as look-up table
(LUT). A LUT usually is an array (cache), which re-
places a runtime computation with a simpler memory
access operation. Of course, caching a computation is
beneficial only if its execution cost exceeds the cost of
a cache reference, i.e. it is recommended only for such
performance-costly functions as cosine, logarithm, etc.
The speed gain can be significant, since retrieving a
value from the memory is faster than undergoing an

expensive computation. We perform specialization of
the given algorithm as follows. (1) We analyze the ap-
plication source code to identify references to the com-
putation costly functions. (2) We generate a LUT for
the specialized function using the meta-programming
techniques. (3) Then, all references to the function are
replaced by the reference to its LUT. A more detailed
description of the methodology can be found in [34].

Program specialization [38] aims at improving the
efficiency of programs by exploiting known informa-
tion about the input to a program, i.e. program spe-
cialization is the optimization of a program. An exam-
ple of such specialization can be computation of the
Taylor series specialized for its length.

7.2. Case study for cosine function

The most performance-costly part of many DSP
algorithms (such as FFT, DCT, JPEG) is the calcula-
tion of the cosine function [39]. According to the Am-
dahl's law, the most effective way to improve perform-
ance of a program is to speed-up the most time-
consuming part of it. If we speed-up the calculation of
cosine values, we can achieve significant gains in pro-
gram execution times and power usage. Such a fine-
grained customization is very typical to embedded
software development [40].

The cosine calculation has been chosen as a repre-
sentative algorithm of the calculation-intensive appli-
cation. We analyze three variants of the representative
algorithm: Taylor series, cosine LUT and cosine LUT
with linear interpolation.

Approximation of a function using simpler opera-
tions (e.g. addition and multiplication) as in the Taylor
series of a cosine function (see Eq. (1)) can allow
achieving higher performance and lower power con-
sumption at a cost of accuracy.

() ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−=+−+−= ...

30
1

12
1

2
1...

!6!4!2
1cos

222642 xxxxxxx (1)

Evaluation using the monomial form of an n -
degree polynomial requires at most n additions and
() 2/2 nn + multiplications, if powers are calculated by
repeated multiplication and each monomial is evalu-
ated individually. Using the Horner's scheme represen-
tation we need only n additions and n multiplications.

For even better performance, data specialization
can be applied: known cosine values can be stored in a
generated LUT. The trade-off here is that accuracy of
the result may depend upon the size of the table. How-
ever, in many applications such as JPEG, the results of
DCT are rounded-off to the integer values anyway. The
complexity of the LUT based method is constant. It re-
quires only 1 multiplication for the calculation of a
LUT index and does not depend upon the size of a
LUT.

In a simple LUT, the value of a function argument
is rounded to the nearest value for which a function
value in a LUT exists. Thus the accuracy of this ap-

Design of Ontology-Based Generative Components Using Enriched Feature Diagrams and Meta-Programming

307

proach is not fine. A more complex approach includes
a LUT with linear interpolation of the function values
for these arguments of a function, which are not avail-
able in the LUT. The complexity of the LUT with lin-
ear interpolation is also constant. It requires 2 multipli-
cations and 4 additions, and does not depend upon the
size of a LUT.

7.3. Results of experiments

Our investigation corresponds to that part of the
general framework (see Section 3), which is described
by obligatory features in feature diagrams (see Figures
1 and 2). The experiments were performed on a Com-
paq iPAQ H3900 (Pocket PC platform, Intel PXA250
400 MHz CPU, 32 MB RAM, Windows CE 3.0 OS).

Figure 3. Trade-offs: power/execution time (top), and

power/accuracy (bottom)

Our experiments show that the execution time and
voltage drop for the Taylor series of cos function

grows linearly with series length, whereas for the LUT-
based approximation with and without interpolation the
execution time and voltage drop values are flat. The
LUT without interpolation has the lowest power con-
sumption and the best performance. The LUT with lin-
ear interpolation has worse power consumption and
performance, but higher accuracy. Taylor series have
the worst results both in terms of power and perform-
ance (except for n=2 case, which however, has worst
accuracy).

The trade-offs between power consumption (ex-
pressed via battery voltage drop), execution time and
calculation accuracy (expressed via Mean Absolute
Percentage Error - MAPE) parameters are shown in
Figure 3.

7.4. Examples of meta-programs for
implementing OBGC

Figure 4(a) describes the implementation of the
only small part of EFD (see Figure 1), which is identi-
fied as “ontology 1”. The implementation consists of
meta-interface (between symbols $) and meta-body
(the rest part). The meta-interface has the human-
oriented information (between symbols “) and the ma-
chine executable information (i.e., {2..6} n := 2;),
where n is the name of the ontology-based meta-
parameter. Its default abstract value (i.e., 2) also in-
forms the user about performance-accuracy relation-
ship in this case. The entire space of values specifies
ontology 1.

Meta-body in the specification is implemented us-
ing Open PROMOL functions (@sub, @for and @rep
given in bold in Figure 4), as meta-language [23]. The
result of execution, when n = 3, is the program in C
(Figure 4, b).

Figure 5 describes a more complex implementa-
tion, in which some results from experiments we have
carried out for energy as ontology for transferring the
knowledge to the user are included. The only meta-
interface of the generative component is given here.
This example is also illustrative because some impor-
tant characteristics (e. g., argument parameter whose
values are influential to accuracy; operating system,
mode, and type of processors, which are important for
energy measurements) are missed in this specification
for simplicity reasons. Note that square brackets (see
Figure 5) specify feature constraints under which meta-
parameter values are assigned.

V. Štuikys, R. Damaševičius

308

 $
"Enter the number of terms in Taylor series of cosine function:
 2 terms: 4 mult/div ops, 2 add/sub ops, 10E-2 accuracy
 3 terms: 6 mult/div ops, 3 add/sub ops, 10E-3 accuracy
 4 terms: 8 mult/div ops, 4 add/sub ops, 10E-4 accuracy
 5 terms: 10 mult/div ops, 5 add/sub ops, 10E-6 accuracy
 6 terms: 12 mult/div ops, 6 add/sub ops, 10E-8 accuracy" {2..6} n:=2;
$

double cos_@sub[n](double x) {
 double x2=x*x;
 return 1-x2/2@for[i,2,n,{*(1-x2/@sub[2*i*[2*i-1]]}]@rep[n-1,{)}];
}

double cos_4(double x) {
 double x2=x*x;
 return 1-x2/2*(1-x2/12*(1-x2/30*(1-x2/56)));
}

(a)

(b)

Figure 4. Generative cosine meta-program (a) and its generated instance (b) when n=4

 $ "Select the context" {energy, performance, accuracy} context:=energy;
"Select the implementation language" {C++, C#, Java) lang:=C++;
"Select the algorithm type:

1 - Taylor series
 2 - Look-up table
 3 - Look-up table with linear interpolation" {1,2,3} type:=3;
[type=1 and [[context eq {accuracy}] or [context eq {performance}]]]
 "Enter the length of the Taylor series
 2 terms: 4 mult/div ops, 2 add/sub ops, 10E-2 accuracy
 3 terms: 6 mult/div ops, 3 add/sub ops, 10E-3 accuracy
 4 terms: 8 mult/div ops, 4 add/sub ops, 10E-4 accuracy
 5 terms: 10 mult/div ops, 5 add/sub ops, 10E-6 accuracy
 6 terms: 12 mult/div ops, 6 add/sub ops, 10E-8 accuracy" {2..6} n:=3;
[type=1 and context eq {energy}]
 "Enter the length of the Taylor series
 2 terms: voltage drop 0.6 nV
 3 terms: voltage drop 1.0 nV
 4 terms: voltage drop 0.9 nV
 5 terms: voltage drop 1.3 nV
 6 terms: voltage drop 2.2 nV" {2..6} n:=3;
[type=1] "Enter the size of the look-up table (time: 5.6 us, voltage drop 0.28 nV,
 accuracy: 8 - 1E-2; 16, 32 - 1E-3; 64, 128 - 1E-4; 256 - 1E-5; 512 - 1E-6)"
 {8,16,32,64,128,256,512} size:=32;
[type=2] "Enter the size of the look-up table (time: 11.5 uS, voltage drop 0.56nV,
 accuracy: 8 - 1E-2; 16, 32 - 1E-3; 64, 128 - 1E-4; 256 - 1E-5; 512 - 1E-6)"
 {8,16,32,64,128,256,512} size:=32;
$

Figure 5. Meta-interface containing domain knowledge and context information

8. Discussion, evaluation and conclusions

The higher complexity of architectural design (in
terms of features), the greater need to model and im-
plement the domain variability in a systematic way is.
However, architectural design may be dependent on
the context which is influential to the variability lead-
ing to the formation of more complex relationships
among features (i.e., domain ontology). Although fea-
ture diagrams provide a mechanism enabling to model
and manage the complexity, their expressiveness is not
enough in this case.

What we suggest in this paper is: 1) to enrich fea-
ture diagrams by context changes and repurposing (i.e.,
by ontology) and then to represent the domain variabil-
ity model explicitly; 2) to encode enriched feature dia-
grams using heterogeneous meta-programming tech-

niques, thus resulting in creating of generative
components for embedded software domain.

Our research to support the introduced methodol-
ogy is based on specialization of data, algorithms and
programs of various embedded software tasks (e.g.,
FFT, sparse matrix multiplication, triple redundancy
solutions, etc.) with enhanced requirements in mind
(e.g., energy consumption estimates). As majority of
computation aggressive tasks (e.g., FFT) are based on
cosine calculations, this function has been chosen as
the most representative one in this paper.

With the energy estimates at the application level
in mind, a discovery of domain ontology requires a
thorough experimentation followed by analysis of the
results in order to obtain various relationships among
features (e.g. energy, performance, accuracy, argument
values, and memory). As we provide experiments
automatically, a huge space of relationships can be

Design of Ontology-Based Generative Components Using Enriched Feature Diagrams and Meta-Programming

309

identified. Therefore, it is possible to transfer the only
part of knowledge (essential) (obtained during experi-
ments) to the highest level of meta-program (meta-
interface) in order the user is being informed to select
the solution relevant to his context (during generation).
The document of an ontology-based generative com-
ponent, which is assumed to be a member of external
repositories, along with feature diagrams can also be
supplemented with more thorough descriptions of ex-
periments (e.g., graphics supplied by conditions of ex-
periments).

References
 [1] P. Clements, L. Northrop. Software Product Lines:

Practices and Patterns. Boston: Addison-Wesley, 2002.
 [2] J. MacGregor. Requirements Engineering in Industrial

Product Lines. Proc. of Int. Workshop on Requirements
Engineering for Product Lines REPL’02, Essen, Ger-
many, 2002, 5–11.

 [3] K.C. Kang, K. Lee, J. Lee, S. Kim. Feature-Oriented
Product Line Software Engineering: Principles and
Guidelines. In K. Itoh, S. Kumagai, T. Hirota (Eds.),
Domain Oriented Systems Development - Practices and
Perspectives, Taylor & Francis, 2003.

 [4] K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M.
Huh. FORM: A feature-oriented reuse method with
domain-specific reference architectures. Annals of Sof-
tware Engineering, Vol.5, 1998, 143–168.

 [5] D.M. Weiss, C.T.R. Lai. Software Product-Line Engi-
neering: A Family-Based Software Development Ap-
proach. Addison-Wesley, Reading, MA, USA, 1999.

 [6] J. Coplien, D. Hoffman, D. Weiss. Commonality and
Variability in Software Engineering. IEEE Software
15(6), 1998,37–45.

 [7] M. Lindwer, D. Marculescu, T. Basten, R. Zimmen-
nann, R. Marculescu, S. Jung, E. Cantatore. Am-
bient intelligence visions and achievements: linking
abstract ideas to real-world concepts. Proc. of Design,
Automation and Test in Europe Conference and Exhibi-
tion, DATE 2003, 3–7 March 2003, Munich, Germany,
10–15.

 [8] R. McGreal (ed.). Online Education Using Learning
Objects. Routledge, 2004.

 [9] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility
Study. TR CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, November 1990.

[10] U.W. Eisenecker, K. Czarnecki. Generative Pro-
gramming: Methods, Tools, and Applications. Addison-
Wesley, 2000.

[11] K.C. Kang, J. Lee, P. Donohoe. Feature-Oriented Pro-
duct Line Engineering. IEEE Software, 19(4), 2002,
58–65.

[12] P.-Y. Schobbens, P. Heymans, J.-Ch. Trigaux, Y.
Bontemps. Feature Diagrams: A Survey and a Formal
Semantics. Proc. of 14th IEEE Int. Requirements
Engineering Conference (RE'06), 11–15 September
2006, Minneapolis/St.Paul, Minnesota, USA, 136–145.

[13] B. Bailey, G. Martin, T. Anderson (eds.). Taxono-
mies for the Development and Verification of Digital
Systems. Springer, 2005.

[14] K. Czarnecki, C.H.P. Kim, K.T. Kalleberg. Feature
models are views on ontologies. Proc. of 10th Int. Sof-
tware Product Line Conference (SPLC 2006), 21–24
August 2006, Baltimore, USA, 41–51.

[15] V. Štuikys, R. Damaševičius, I. Brauklytė, V. Lima-
nauskienė. Exploration of Learning Object Ontologies
Using Feature Diagrams. Proc. of World Conference on
Educational Multimedia, Hypermedia & Telecommuni-
cations (ED-MEDIA 08), June 30–July 4, 2008, Vien-
na, Austria, 2144–2154.

[16] G. Guizzardi. On Ontology, ontologies, Conceptuali-
zations, Modeling Languages, and (Meta)Models. In O.
Vasilecas, J. Eder, A. Caplinskas (Eds.), Frontiers in
Artificial Intelligence and Applications, Databases and
Information Systems IV. IOS Press, Amsterdam, 2007,
18–39.

[17] S.-B. Lee, J.-W. Kim, C.-Y. Song, D.-K. Baik. An
Approach to Analyzing Commonality and Variability
of Features using Ontology in a Software Product Line
Engineering. Proc. of 5th ACIS Int. Conf. on Software
Engineering Research, Management & Applications,
SERA 2007, 20-22 Aug. 2007, 727–734.

 [18] S. Robak, A. Pieczynski. Employing fuzzy logic in fe-
ature diagrams to model variability in software pro-
duct-lines. IEEE Int. Conf. and Workshop on the Engi-
neering of Computer Based Systems, 2003, Huntsville,
USA, 305–311.

[19] P.Y.H. Wong. An Investigation in Energy Consump-
tion Analyses and Application-Level Prediction Tech-
niques. MSc. Theses, Univ. of Warwick, UK, 2006.

[20] Ch. Krintz, Y. Wen, R.Wolski. Application-level pre-
diction of battery dissipation. Proc. of Int. Symp. on
Low Power Electronics and Design ISLPED’04, New
York, NY, USA, 2004, 224–229.

[21] N. Ravi, J. Scott, L. Iftode. Context-aware Battery
Management for Mobile Phones. Proc. of 6th Annual
IEEE Int. Conf. on Pervasive Computing and Commu-
nications (PerCom 2008), 17–21 March, Hong Kong,
2008, 224–233.

[22] A. Sagahyroon. Power Consumption in Handheld
Computers. IEEE Asia Pacific Conf. on Circuits and
Systems, APCCAS 2006, Singapore, 4–7 December
2006, 1721-1724.

[23] T. Simunic, G. de Micheli, L. Benini, M.Hans. Sour-
ce code optimization and profiling of energy consump-
tion in embedded systems. Proc. of 13th Int. Symp. on
System Synthesis (ISSS’00), Washington, DC, USA,
2000, 193–198.

[24] J. Flinn, M. Satyanarayanan. Energy-aware adapta-
tion for mobile applications. Proc. of the 17th ACM
Symposium on Operating Systems Principles (SOSP),
1999, Charleston, South Carolina, USA, 48–63.

 [25] A. Peymandoust, T. Simunic, G. de Micheli. Low
power embedded software optimization using symbolic
algebra. Proc. of Design, Automation and Test in Euro-
pe Conference and Exhibition, DATE’02, 4–8 March
2002, Paris, France, 1052–1057.

[26] E.-Y. Chung, L. Benini, G. De Micheli. Source code
transformation based on software cost analysis. Proc.
of 14th Int. Symp. on Systems Synthesis ISSS’01, New
York, NY, USA, 2001, 153–158.

V. Štuikys, R. Damaševičius

310

[27] M. Kandemir, N. Vijaykrishnan, M. Irwin, W. Ye.
Influence of Compiler Optimizations on System Power.
IEEE Trans. on Very Large Scale Integration (VLSI)
Systems 9(6), 2001, 801–804.

[28] H. Mehta, R.M. Owens, M.J. Irvin, R. Chen, D.
Ghosh. Techniques for Low Energy Software. Proc. of
Int. Symp. on Low Power Electronics and Design, Au-
gust 18-20, Monterey, CA, USA, 1997, 72–75.

[29] L. Benini, G. de Micheli. System-level power
optimization: techniques and tools. ACM Trans. Des.
Autom. Electron. Syst., 5(2), 2000, 115–192.

[30] R. Kirner, M. Grossing, P. Puschner. Comparing
WCET and Resource Demands of Trigonometric Func-
tions Implemented as Iterative Calculations vs. Table-
Lookup. In F. Mueller (Ed.), 6th Intl. Workshop on
Worst-Case Execution Time (WCET) Analysis, July 4,
2006, Dresden, Germany. Dagstuhl Seminar Procee-
dings 06902, Schloss Dagstuhl, Germany, 2006.

[31] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C.V. Lopes, J.-M. Loingtier, J. Irwin. Aspect-
Oriented Programming. Proc. of 11th European Confe-
rence on Object-Oriented Programming, ECOOP'97,
Jyväskylä, Finland, June 9–13, 1997. Springer LNCS
Vol.1241, 220–242.

[32] Y.C. Cheong, S. Jarzabek. Frame-Based Method for
Customizing Generic Software Architectures. Proc. of
the Fifth Symp. on Software Reusability, SSR 1999,
May 21-23, 1999, Los Angeles, CA, USA, 103–112.

[33] T. Sheard. Accomplishments and Research Challenges
in Meta-Programming. Proc. of 2nd Int. Workshop on
Semantics, Application, and Implementation of Pro-
gram Generation (SAIG’2001), Florence, Italy, 2001.
Springer LNCS, Vol. 2196, 2–44.

[34] V. Štuikys, R. Damaševičius. Metaprogramming
Techniques for Designing Embedded Components for
Ambient Intelligence. In T. Basten, M. Geilen, H. de
Groot (eds.), Ambient Intelligence: Impact on Embed-
ded System Design. Kluwer Academic Publishers, Bos-
ton, November 2003, 229–250.

[35] D.S. Batory. Feature Models, Grammars, and Proposi-
tional Formulas. In J.H. Obbink, K. Pohl (Eds.), Proc.
of 9th Int. Conf. on Software Product Lines, SPLC
2005, Rennes, France, September 26–29, 2005. Sprin-
ger LNCS, Vol. 3714, 7–20.

[36] R. Damaševičius, V. Štuikys, E. Toldinas. Domain
Ontology-Based Generative Component Design Using
Feature Diagrams and Meta-Programming Techniques.
In R. Morrison, D. Balasubramaniam, K. Falkner
(Eds.), Proc. of 2nd European Conf. on Software Ar-
chitecture ECSA 2008, Paphos, Cyprus. LNCS 5292,
Springer-Verlag, 2008, 338-341.

[37] T. Knoblock, E. Ruf. Data Specialization. ACM
SIGPLAN Notices 31(5), 1998, 215–225.

[38] N.D. Jones, C.K. Gomard, P. Sestoft. Partial Evalua-
tion and Automatic Program Generation. Prentice Hall
International, 1993.

[39] L. Nyland, M. Snyder. Fast Trigonometric Functions
Using INTEL’s SSE2 Instructions. Intel Tech. Rep.,
available online at: http://www.weblearn.hs-bremen.
de/risse/RST/docs/Intel/03-041.pdf.

[40] D. Beuche, O. Spinczyk, W. Schroeder-Preikschat.
Fine-grain Application Specific Customization for Em-
bedded Software. Proc. of Design and Analysis of Di-
stributed Embedded Systems, DIPES 2002, August 25–
29, 2002, Montréal, Canada, 141–151.

Received August 2008.

