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Abstract. This paper proposes the novel model of scalar quantizer that combines two classical models, the model 
of scalar compandor and the model of Lloyd-Max’s scalar quantizer. Particularly, the proposed model utilizes the 
advantages of the both models while tending to minimize their deficiencies. The performance analysis of the novel 
quantizer is carried out assuming the Gaussian source of unit variance. It is demonstrated that with the novel model of 
quantizer near to the Lloyd-Max's optimal performances can be achieved. Moreover, we showed that for a fixed num-
ber of quantizaton levels, the average complexity of the novel quantizer is significantly smaller than that of the Lloyd-
Max's scalar quantizer. 
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1. Introduction 

Speech, as the most natural way of communication 
among people, has a precious value for man, hence, a 
great attention is paid to secure and reliable digital 
transmission of speech signals [1, 5, 6, 10]. Speech 
coding is a procedure to represent a digitalized speech 
signal using as few bits as possible, maintaining at the 
same time a reasonable level of signal quality [1, 5, 6, 
10]. Although the great number of compression tech-
niques have been developed [1, 5, 6, 10], an evident 
increase of speech communication subscriber de-
mands, in public digital telephony, mobile telephony, 
multimedia communications, audio techniques, voice 
over IP, satellite and military communications, still 
instigates on the new quantizer models explorations. It 
is important to point out that the development of the 
novel quantizer models is usually focused on the 
maximization of the received speech quality for the 
particular transmission rate, when high level of the 
signal to quantization noise ratio (SQNR) is needed, or 
on the minimization of the transmission rate when the 
high data compression is needed [1, 2, 5, 6, 10]. 

We decided to focus our novel model development 
to provide as maximum as possible the signal to quan-
tization noise ratio and as low as possible the average 
complexity of the quantizer model. Since it is well 
known that Lloyd-Max’s quantizer model of scalar 
quantizer provides maximal optimal performances for 
the unit variance case of the input speech signal [1, 2, 
6, 8], and since we demonstrated that the scalar 

compandor model has very low average complexity 
[3], we decided to start our research from these two 
classical models of scalar quantizers. Let us recapitu-
late that the average complexity was defined as an 
arithmetic mean of arithmetic, memory and implemen-
tation complexities [3]. We decided to use here the 
same definition of the average complexity in order to 
make the novel model average complexity comparable 
with the average complexity of the Lloyd-Max's quan-
tizer model and the scalar compandor model. More-
over, in order to point out the vantages of the novel 
scalar quantizer model, its performances will be com-
pared with the optimal performances (SQNR) that 
correspond to the model of Lloyd-Max's quantizer [6]. 

Let us recall that the non-optimal performances are 
the main deficiency of the scalar compandor. It is well 
known that non-optimality of the scalar compandor is 
caused by the rough approximation of the input signal 
in the region of high amplitudes [1, 6, 10]. However, 
the vantage of this quantizer model repose in its low 
complexity, which as we demonstrated in [3], is 
significantly lower than the average complexity of 
Lloyd-Max's quantizer model. Considering the fact 
that Lloyd-Max's quantizer model provides optimal 
performances, we get an idea to use a suitable 
combination of both models in order to develop a no-
vel model representing the compromise between ave-
rage complexity and relative distortion error. Finally, 
since the short-term statistics of speech signals are 
modeled by Gaussian source [1, 6, 10], we decided to 
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design novel scalar quantizer assuming mentioned 
source, as well as to explore if the performances 
improvement of the novel scalar quantizer model over 
the compandor model can be achieved. 

2. Scalar Quantization 

The function of scalar quantizer is to transform 
instantaneous value of an input signal, which belongs 
in general to countless set of values of continual 
amplitude range, to the nearest allowed value from the 
discrete set of N amplitudes [1, 6]. Particularly, scalar 
quantizer Q with N quantization levels can be defined 
with Q: R→Y, as a functional mapping of the set of 
real numbers R onto the set of the output 
representation [1, 6]. The set of the output 
representation constitutes the code book Y having the 
size N: 

{ } RyyyyY N ⊂≡ ,...,,, 321 . (1) 

It is well known that scalar quantizer is unique 
determined with output values yj, j=1, 2, ..., N also 
called output representation levels, and with partition 
of the input range of values onto N cells, i.e., intervals 
αj, j=1, 2, ..., N [1, 6]. These cells are defined with the 
decision thresholds {t0, t1, …, tN}, such that αj=(tj-1, tj], 
j=1, 2, ..., N. Hence, a quantized signal has value yj 
when the original signal belongs to the quantization 
cell αj [1, 6]: 

jyxQ =)( ,    jx α∈ .  (2) 

Note that symmetrical probability density function 
of the source signal results in symmetry of the deci-
sion thresholds and the representation levels [1, 6]. 
This fact will be considered when performing novel 
scalar quantizer design. 

2.1. Scalar Compandor 

The model of a nonuniform scalar quantizer con-
sisting of a compressor, a uniform quantizer and ex-
pandor in cascade, is called a scalar compandor [1, 6]. 
Particularly, the non-uniform quantization is achieved 
by compressing the input signal x, then quantizing it 
with a uniform quantizer and expanding the quantized 
version of the compressed signal using a non-uniform 
transfer characteristic inverse to that of the compres-
sor. 

We decided to define compresor function c(x) at 
decision thresholds tj, j=0, 1, ..., N, similarly as it was 
done in [7]: 
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Note that compresor function c(x), at decision 
thresholds tj, j=0, 1, ..., N can also be defined as 
follows [6]: 
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N
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From the last two equations, it is obvious that, 
using such defined compresor function the compres-
son of an input signal x from range (-∞, ∞) to range [-
1, 1] is enabled. Furthermore, combining Eqs. (3) and 
(4), the following set of equations is derived: 
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from which it is posible to determine decision thres-
holds tj, j=1, 2, ..., N-1. Since we assume infinity 
range of an input signal it is obvious that thresholds t0 
and tN should have the infinity values t0=-∞ and tN=∞. 
Finally, we can determine representation levels from 
the following set of equations: 
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Observe that finding of the mentioned decision 
thresholds and representation level values is actually 
equivalent to scalar compandor design. 

2.2. Lloyd-Max's Algorithm 

Lloyd and Max independently proposed an algo-
rithm to compute optimal quantizers using mean-
square error distortion measure [8]. Particularly, Lloyd 
and Max have shown that necessary conditions of de-
cision thresholds and representation levels optimality 
can be given as follows [6]: 

Condition 1. Every representation level yj, j=1, ..., 
N should be centroid of the probability density func-
tion in the appropriate interval αj=(tj-1,tj]: 
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Condition 2. Decision thresholds tj, j=1, ..., N-1 
should be halfway between the neighbouring represen-
tation levels: 
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Namely, Lloyd-Max's algorithm is based on 
searching the best code book correspondig to the best 
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partition of quantizer range. Note that Lloyd-Max's 
algorithm starts with an estimate of the decision thres-
holds and the representation levels, and the conver-
gence is better if the estimate is better [4, 11]. Here we 
decided to provide better convergence of the Lloyd-
Max's algorithm by using the idea proposed in [4, 11]. 
In general, Lloyd-Max's algorithm is comprised of the 
following steps: 

Step 1: The code book and distortion initializa-
tions.  

Step 2: For the given code book, application of the 
decision thresholds and the representation levels opti-
mality conditions while generating the improved code 
book. 

Step 3: Estimation of the quantizer distortion and 
checking the stopping criteria. 

3. Novel Model of Scalar Quantizer 

Let us assume that the novel model of scalar quan-
tizer divides the quantizer amplitude range into three 
mutually disjoint regions denoted as R1, R2 and R3. 
Further, let us assume that union of regions R1 and R3 
represents outer quantizer region which consists of 2L 
outer cells α1,…,αL and αN-L+1,…,αN. Moreover, let us 
suppose that region R2 represents inner quantizer 
region which comprises range (-tN-L, tN-L) and contains 
N-2L inner cells, αL+1,…,αN-L. Observe that L<<N is 
the number of cells in the region R1 as well as in the 
region R3. Particularly, in this paper we propose 
applying of the compandor model on the inner region 
design and the Lloyd-Max's model on the outer region 
design. It is important to notice that the novel model is 
actually the generalized model since it presents the 
compandor model for L=0 while for L=N/2 it presents 
the Lloyd-Max's quantizer model.  

Here, we destined to initialize the Lloyd-Max's 
algorithm with the code book obtained from Eq. (6). 
Namely, we have already demonstrated in [4, 11] that 
Lloyd-Max's algorithm stops after only one iteration 
when the compandor's code book is used as initial. 

Note that the one of the paper goals is to provide 
the novel scalar quantizer model that reduces average 
complexity of the Lloyd-Max's scalar quantizer. Re-
call that we alredy performed the average complexity 
analysis of the compandor model and the model of 
Lloyd-Max's quantizer [3], where we defined average 
complexity as arithmetic mean value of arithmetic, 
memory and implementation complexities. Moreover, 
the arithmetic complexity was defined by the number 
of arithmetical/logical operations per sample needed 
for implementation of encoding and decoding proce-
dure (quantation procedure), and the memory comple-
xity was defined by the memory size needed for 
storing parameters of the considered scalar quantizer 
model, and finally, the implementation complexity 
was defined by the number of digital circuits needed 
for hardware realization of the considered scalar quan-
tizer model, i.e. defined by the number of instructions 

needed for software realization of scalar quantizer. 
Recall that we demonstrated in [3] that the average 
complexity of the compandor model with N quantiza-
tion levels, denoted by KC, can be determined from the 
following expression: 

( )108
3
1

+= NK C , (9) 

while the average complexity of Lloyd-Max's quanti-
zer with N quantization levels, denoted by KLM, can be 
determined from: 

( )310
3
1

+= NK LM . (10) 

Owing to the fact that the novel model presents a 
combination of compandor model with N-2L quanti-
zation levels and Lloyd-Max quantizer model with 2L 
quantization levels, its average complexity, denoted by 
KN, can be simply determined by combining Eqs. (9) 
and (10): 

( )1348
3
1

++= LNK N , (11) 

and therefore comparision with the mentioned classi-
cal models can be provided. 

4. Quantizer Performances 

Performances of quantizers are often specified in 
terms of SQNR (signal to quantization noise ratio), 
that can be evaluated from [1, 6]: 
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where σ2 denotes the variance of the input signal x and 
D is distortion  introduced during quantization 
process. In order to make performances of the desig-
ned novel quantizer comparable with theoretical opti-
mal performances, we assume unit variance case of 
the signal to be quantized. In the mentioned case, sig-
nal to quantization noise ratio actually depends only 
on distortion: 
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Let us define now deviation of the qunatizer’s dis-
tortion  in respect to optimal distortion, i.e. let us 
introduce relative distortion error δ [1, 6]: 

opt

opt

D
DD −

=δ , (14) 

where Dopt represents the optimal value of distortion 
corresponding to the Lloyd-Max's quantizer having N 
quantization levels. It is obvious that the relative dis-
tortion error can also be expressed as: 

110 10 −=
Δ

−
SQNR

δ , (15) 
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where: 
optSQNRSQNRSQNR −=Δ , (16) 

and SQNRopt denotes the optimal value of the signal to 
quantization noise ratio. 

Considering that the novel model presents a com-
bination of compandor model with N-2L quantization 
levels and Lloyd-Max's quantizer with 2L quantization 
levels, we can now provide expression for determina-
tion of the total distortion introduced by the novel 
model during quantization procedure: 
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where the first term represents distortion of the com-
pandor model while the second term represents Lloyd-
Max's quantizer distortion. Since the good approxima-
tion of the compandor distortion can be achieved by 
using Bennett's integral, here we use such integral 
assuming the range [-tN-L, +tN-L] for the N-2L compan-
dor [9]. Finally, since we decided to consider Gaussian 
source of unit variance, distortion as well as signal to 
quantization noise ratio will be evaluated taking into 
acount the following probability density function [1, 
6]: 
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5. Numerical Results 

Numerical values for SQNR determined for the 
different quantization level numbers N (N=32 and 
N=64) with linear change of value L within range 0 to 
4, are shown in Table 1. Comparing these values with 
the theoretical optimal values of signal to quantization 
noise ratio shown in Table 2 [6], one can notice that 
performances of the novel scalar quantizer approach 
optimal performances by  increasing  the number of 
the outer cells. In order to provide better insight in the  
performances of the novel quantizer, the numerical 
values of relative distortion error are listed in Table 3. 
Introducing a criterion which states that practically 
acceptable relative distortion error has to be less than 
0.01, from Table 3 it is easy to notice that such a 
criterion is satisfied for L=4. Combining this fact with 
the results given in Table 4, from which one can notice 
that the novel model provides significant complexity 
reduction over Lloyd-Max's quantizer model, we can 
reasonably believe that quantizer solution with L=4 
can easily find the way to its practical implementation. 

Table 1. Numerical values of SQNR for different number of 
quantizer levels N with L within range 0 to 4 

SQNR N=32 N=64 

L=0 25.756 31.777 

L=1 25.898 31.848 

L=2 25.932 31.865 

L=3 25.947 31.872 

L=4 25.956 31.877 

Table 2. Optimal values of SQNR for different number of 
quantizer levels (N=32, N=64) 

 N=32 N=64 

SQNRopt 26.01 31.89 

Table 3. Relative distortion error δ 

δ N=32 N=64 

L=0 0.060 0.026 

L=1 0.026 0.010 

L=2 0.018 0.006 

L=3 0.015 0.004 

L=4 0.010 0.003 

Table 4. Comparison of average complexities for the Lloyd-
Max quantizer model, scalar compandor model and novel 
scalar quantizer model 

KN  

 
KLM KC 

L=1 L=2 L=3 L=4 

N=32 107.7 88.7 91 92.3 93.7 95 

N=64 214.3 174 176.3 177.7 179 180.3 

6. Conclusion  

Combining the Lloyd-Max's scalar quantizer mo-
del with the scalar compandor model we developed 
the novel scalar quantizer model which presents a 
compromise between design complexity and deviation 
of the qunatizer's distortion  in respect to optimal dis-
tortion. Importance of this model development stands 
in the fact that it represents generalized scalar quan-
tizer model, which for L=0 presents compandor model 
while for L=N/2 presents Lloyd-Max's quantizer mo-
del. Moreover, the importance of the novel model 
development is additionaly propound via complexity 
reduction over the Lloyd-Max's scalar quantizer model 
while keeping  the performances near to the optimal. 
In  respect to the  near  optimal  performances,   we  
believe  that  the  novel quantizer model can reason-
ably find the way to its practical implementation. 
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Consequently, the novel model provides justification 
for near-optimal and complexity-reducing design stra-
tegies of scalar quantizers. 
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