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Abstract. The software prototype model can be used for the generation of the verification test. The input stimuli, 
which form essential activity vectors, are selected from randomly generated ones on the base of software prototype. 
The essential activity vectors correspond to the terms of logical functions of output the existence of which is tested 
during the verification. The verification test is formed on the base of the essential activity vectors according to the 
defined rules. The quality of the verification test is measured by the following parameters: the length of test, the fault 
coverage of the stuck-at faults, the fault coverage of the pin pair faults, and the number of the essential activity vectors. 
The paper presents the experimental results for the benchmark suite ISCAS’85. The value of this approach is high-
lighted by the fact that the selected input stimuli detect the same stuck-at faults as the initially generated test set. 

 
 

1. Introduction 

In the last few years the major challenge, which 
the semiconductor industry is confronted with, has 
been to design devices in significantly less time with 
far more complex logical functionality. At the very top 
of the list of challenges to be solved is verification. 
The goal of the verification is to ensure that the design 
meets the logical functional requirements as defined in 
the logical functional specifications. Verification of 
the devices takes 40 to 70 percent of the total develop-
ment effort for the design. The increasing complexity 
of hardware designs raises the need for the develop-
ment of new techniques and methodologies that can 
provide the verification team with the means to 
achieve its goals quickly and with limited resources. 

The verification of the design based on simulation 
is very similar to the testing process of the device. In 
the testing case, the manufactured device is checked 
against the model of the design. The test patterns are 
used for this purpose. The test patterns are generated 
on the base of the model of the design in order to 
uncover physical defects, which may emerge in the 
device during the manufacturing phase. The test pat-
terns are supplied to the manufactured device. If the 
response of the test pattern differs from the expected 
one according to the model, it is concluded that the 
device has a defect.  

In the verification case, the design is checked, 
whether it meets the requirements and the specifica-
tion. During the verification based on the simulation, 
the verification test stimuli are generated on the base 
of the model at a high level of the design in order to 

uncover the possible mistakes, which emerged during 
the design process. The main problem is how to 
choose the verification test stimuli and to determine 
the expected responses that it would be possible to 
state that the design does not have inaccuracies and 
meets the specification. 

Usually in the initial stages of the design, the soft-
ware prototype of the device is created in order to si-
mulate the logical functionality of the device. We will 
use the software prototype model for one clock cycle, 
which will determine the responses on the outputs and 
the values of the next state according to the stimuli on 
the inputs and the values of the previous state. The 
input stimuli and the state elements can be chosen on 
the base of such a software prototype model. But an 
unambiguous relationship has to be defined between 
the state bits of software prototype and the flip-flops 
of the synthesized circuit that it would be possible to 
compare the responses on the outputs and the state 
values of these two different models. Generally, let’s 
assume that verification test consists of input stimuli 
and output responses neglecting the fact that some 
inputs and outputs correspond to the state elements.  

In the paper, the input stimuli, which form essen-
tial activity vectors, are selected from randomly gene-
rated ones on the base of software prototype. The out-
put activity vector shows which input values have the 
influence on the output values. The essential activity 
vectors have the largest amount of active inputs. The 
essential activity vectors correspond to the terms of 
logical functions of output the existence of which is 
tested during the verification. The number of activity 
vectors depends on the termination condition of the 
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generation. The different values of the termination 
condition allow obtaining the different completeness 
of the verification test.  

The paper is organized as follows. We review the 
problems of the verification in Section 2. We intro-
duce the activity vectors in Section 3. We explore the 
process of the verification in Section 4. We present the 
results of the experiment in Section 5. We finish with 
conclusions in Section 6.  

2. Related work 

Logical functional verification of the devices is 
crucial and takes a substantial part of the entire design 
cycle time. Logical functional verification is widely 
acknowledged as the bottleneck in the hardware de-
sign cycle. 

A wide variety of verification technology options 
are available, broadly classified as simulation-based 
technologies, static technologies, and formal techno-
logies [1]. Simulation-based technologies allow the 
verification of the devices early in the design cycle, 
enabling fast time-to-market. Although design time 
can be shortened in a modern design environment, the 
verification effort grows exponentially as devices be-
come more complex. Under time-to-market pressure, 
we must have a proper verification methodology for 
complex device development flow. The simulation is 
still the most widely used form of device verification: 
millions of cycles are spent during simulation using a 
combination of random and directed test cases in tra-
ditional design flow. Certain heuristics and design abs-
tractions are used to generate directed random test 
cases. However, it is very time-consuming to write all 
the test programs manually. This brings about the 
necessity of developing an automatic program gene-
rator to speed up the verification work. 

Built-in Self Test (BIST) methodology can be used 
for the verification of the devices [1]. But the test for 
this methodology can be obtained only when the struc-
tural level of the device is available and the complete-
ness of this test is always problematic. Lichtenstein et 
al. [2] proposed an approach to verification test gene-
ration called as Model Based Test-Generation. This 
approach allows the incorporation of complex testing 
knowledge. The architecture model, which is compri-
sed of logical functional blocks, is used. Fournier et al. 
[3] proposed a pseudo-random test program generator, 
Genesys, a follow-on of the model based test genera-
tion. Genesys enables the combination of randomness 
and control, thus generating high quality tests. The 
architecture model is used, as well. Fine and Ziv [4] 
addressed one of the main challenges of simulation 
based verification, by providing a new approach for 
Coverage Directed Test Generation. This approach is 
based on Bayesian networks and computer learning 
techniques. The specification driven and constraints 
solving based method to automatically generate test 
programs from simple to complex ones for advanced 
microprocessors is presented in [5].  Microprocessor 

architectural automatic test program generator can 
produce not only random test programs but also a 
sequence of instructions for a specific constraint by 
specifying a user constraints file. It is well studied and 
reported in the literature that for a tool to be scalable 
with larger designs, it is important to handle the 
design at higher levels of abstraction. An Automatic 
Assembly Program Generator that handles the design 
at the behavioral RTL level is presented in [6]. The 
Generator is based on logical function-oriented test 
generation schemes, hence making it scalable and 
usable for some specific tasks. In recent years special 
purpose verification languages have been developed to 
support automatic stimulus generation. Behm et al [7] 
reported on experience with a new test generation 
language for processor verification. Al-Asaad and 
Hayes [8] presented a simulation-based method for 
combinational design verification that aims at comp-
lete coverage of specified design errors using conven-
tional ATPG tools. All common design errors can 
readily be mapped into stuck-at faults and a systematic 
method to perform this mapping is presented. The 
experimental results show that complete test sets for 
stuck-at faults detect almost all detectable errors. The 
experiments demonstrate that high coverage of the 
modeled design errors can be achieved with small test 
sets. Ugarte and Sanchez [9] presented an assertion 
checking technique for behavioral models that com-
bines a non-linear solver and state exploration techni-
ques and avoids expanding behavior into logic equa-
tions. In order to generate proper verification patterns 
for core-based design, the stuck-at fault model and 
automatic test pattern generation (ATPG) tools are 
usually used. In order to reduce the core-based design 
verification time, a connectivity-based port order fault 
(POF) model was proposed [10]. The POF assumes 
that a faulty cell has at least two I/O ports misplaced. 
In [11], a set of metrics, the Event Sequence Coverage 
Metrics are introduced. The approach is based on an 
automatic method to extract the control flow of a 
circuit which can be explored for coverage analysis 
and ATPG. 

All the mentioned above verification methods rely 
on the behavior model written in the special language, 
on the architecture models consisting of the logical 
functional blocks or manipulate the ATPG used mo-
dels. The software prototype model can be used for 
the verification purposes, as well. The software proto-
type model is written in the programming language at 
the early stages of the design process. Therefore, it is 
purposeful to use this model for the generation of the 
verification test.  The software prototype model allows 
expressing the logical functionality of the device on 
the base of input stimuli and state variable values. The 
state variables are considered as inputs. They are 
considered as outputs when response is captured. The 
logical functionality of the device is defined by one 
clock cycle model. Next, we will introduce the activity 
vectors, which are obtained on the base of software 
prototype and form the verification test. 
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3. Activity vectors 

Let’s assume that the software prototype model has 
n inputs and m outputs. We denote the input stimulus 
by P=<p1, p2, …, pi, …, pn>, where pi= {0, 1}, i=1, 2, 
…, n. The activity vector Pj=<pj

1, pj
2, …, pj

i, …, pj
n> 

is associated with output j. A component of the 
activity vector can take on one of the following 
values: 0, 1, N, V. The value V shows that the comple-
ment of the value 1 on the input i changes the value to 
the opposite on the output j. The value N shows that 
the complement of the value 0 on the input i changes 
the value to the opposite on the output j. The activity 
vectors P1j set the value 1 on the output j, meanwhile 
the activity vectors P0j set the value 0 on the output j. 
The values V and N are the active values. The activity 
vector summarizes n + 1 input stimuli that differ only 
by single value. Let’s say, we assign the following 
input stimulus <X1, X2, X3, X4, X5> = <01011> for the 
benchmark circuit C17 (0). This input stimulus sets 
the value 1 on the output y1. We complement every 
value of this stimulus one by one and we derive the 
following activity vector: <0VN11>. The activity 
vector summarizes the following input stimuli: 
<01011>, <11011>, <00011>, <01111>, <01001>, 
<01010>. These input stimuli set the value 1 on the 
output, except the third one and the fourth one. 

M activity vectors P1j or P0j can be derived for 
every input stimulus P (M denotes the number of out-
puts). The activity vector Pa can dominate the activity 
vector Pb, and we will represent this feature like 
Pa>Pb. The activity vector Pb has the active values 
only on the same inputs as the activity vector Pa, and 
the active values of the vector Pb are equal to the ac-
tive values of the vector Pa on the same inputs. If the 
active values of the vectors Pa and Pb are the same, 
then the activity vectors Pa and Pb are equal. The 
prerequisites of dominating the vector Pb by the vector 
Pa are presented in Table 1. 

Table 1. The prerequisites of covering 

Pa V N V V N N 
Pb V N 1 0 0 1 

The activity vector Pa dominates the activity vector 
Pb, if at least one of the conditions, which are in the 
last four columns of Table 1, is satisfied. The vector, 
which is not dominated by the other vectors, is 
essential. After analysis of input stimuli, the sets of 
essential vectors A1j and A0j are formed for every 
output j. The vectors in set A1j set the value 1 on the 
output j, while the vectors of set A0j set the value 0 on 
the output j. 

Let’s consider the benchmark C17 presented in 0. 
The input stimulus P = <X1, X2, X3, X4, X5> = <01110> 
sets the following output values: <y1, y2> = <00>. 
The results of complementing every input value one 
by one are presented in 0. We obtain the following 
activity vectors according to this table: P0y1 = 
<N1VV0>, P0y2 = <01VV0>. In the same way, for the 

input stimulus P = <00110> we obtain the following 
activity vectors according to 0: P0y1 = <N0110>, P0y2 
= <00110>. These vectors are not essential, because 
they are covered by the previous vectors.  

 
Figure 1. Benchmark circuit C17 

Table 2. The complement of input values of stimulus 
<01110> 

p1 p2 p3 p4 p5 y1 y2 
0 1 1 1 0 0 0 
1 1 1 1 0 1 0 
0 0 1 1 0 0 0 
0 1 0 1 0 1 1 
0 1 1 0 0 1 1 
0 1 1 1 1 0 0 

Table 3. The complement of input values of stimulus 
<00110> 

p1 p2 p3 p4 p5 y1 y2 
0 0 1 1 0 0 0 
1 0 1 1 0 1 0 
0 1 1 1 0 0 0 
0 0 0 1 0 0 0 
0 0 1 0 0 0 0 
0 0 1 1 1 0 0 

After analysis of all the possible input stimuli, we 
obtain the following essential activity vectors:  

A0y1  =  {< N1VV0>, <1NN10>, <NN100>} 
A1y1 =  {< V0V10>, <0V1N1>, <0VN10>} 
A0y2  =  {< 1N01N>, <11VV1>} 
A1y2 =  {< 101NV>, <10N1V>, <1V1N0>, <0VN10>} 
We notice that the active values of the essential 

activity vectors correspond to the variables of the 
terms of the direct and inverse logical functions. Then, 
we obtain the following logical functions: 

3242311 XXXXXXy ++=  

21324311 XXXXXXXy ++=  

324253542 XXXXXXXXy +++=  

43522 XXXXy +=  

But the complete correspondence not always exists 
between the values of the essential activity vectors and 
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the variables of the terms of the logical function. It is 
possible to think of the example where the active 
values of the activity vectors are a subset of the 
variables of the terms of the logical function. Let’s 
consider the logical function TTF of three logical 
variables: 

321321 XXXXXXY +=  

323132213121 XXXXXXXXXXXXY +++++=  
After analysis of all the possible input stimuli, we 

obtain the following essential activity vectors:  
A1  =  {< VVV>, <NNN>} 
A0 =  {< V00>, <0V0>, <00V>, <N11>, <1N1>, 
<11N>}. 
That corresponds to the following terms of the 

logical function: 
321321 XXXXXXY +=  

321321 XXXXXXY +++++=   
We notice that the active values of the activity 

vectors of the set A0 form the incomplete terms of the 
inverse logical function. The active values of the 
activity vectors can produce the incomplete terms if 
not all possible input stimuli are considered. Such a 
situation arises for the large circuits. But that it is not 
the case for the example logical function TTF. 

Conjecture. The active values of the essential acti-
vity vectors of the sets A1j and A0j of the output j 
correspond to the complete or incomplete terms of the 
direct and inverse logical function. 

We cannot prove this conjecture, but, on the other 
hand, we were unable to find the example that would 
contradict to our conjecture. The investigation is diffi-
cult because the logical function of the output can be 
expressed in many different ways. The logical func-
tion is not obligatory minimal in all the cases. 

Because the essential activity vectors correspond 
to the complete or incomplete terms of the logical 
function of the outputs, there is a possibility to check 
whether the output responses of the synthesized circuit 
not contradict to the existence of the term of the 
logical function. Let’s consider how it is possible to 
determine the membership of the term in the logical 
function of the output. The term consists of the input 
logical variables. The variable of the term can be in 
complemented or uncomplemented form. The term is 
completely defined if the values of the uncomplemen-
ted variables are equal to 1, whereas the values of the 
complemented variables are equal to 0. The term 
X1 2X X3 will be completely defined, if the value 1 
will be assigned to the variables X1 and X3, and the 
value 0 – to the variable X2. The input stimulus, which 
completely defines the term of the direct (inverse) 
logical function, sets the value 1 (0) on the output.  If 
the term X1 2X X3 belongs to the direct logical func-
tion, then any input stimulus, which completely de-
fines the considered term, sets the value 1 on the 
output. If the term X1 2X X3 belongs to the inverse 

logical function, then any input stimulus, which 
completely defines the considered term, sets the value 
0 on the output. Generally, the term of the logical 
function determines the input stimuli that set the same 
value on the output. 

Condition 1. All the input stimuli, which complete-
ly define the term, always set the same value on the 
output. 

This condition is necessary, but not sufficient. Any 
two terms of the logical function, the variables of 
which do not contradict each other, will satisfy Con-
dition 1. The Condition 2 defines the prerequisites for 
the single term.  

Condition 2. Every variable of the term has the 
corresponding input stimulus that the assignment of 
the opposite value to the variable of the term invokes 
the value change on the output. 

Let’s assume that the accordance of the input 
stimuli to the Condition 1 and Condition 2 confirms 
the existence of the term of the logical function. The 
activity vector does not support completely both the 
conditions of the existence of the term. Firstly, the 
only n-k input stimuli, which completely define the 
term, are considered, where n – the number of inputs, 
k – the number of the active inputs. Additionally, the 
accordance to Condition 2 is satisfied only for a single 
input stimulus. For example, Condition 2 for the term 
X1 2X  of the logical function TTF of three variables is 
satisfied by two input stimuli 100 and 101. Therefore, 
when we consider the single input stimulus, we cannot 
obtain a minterm, but only the term X1 2X .  Based on 
this observation, we will introduce a Rule 1 indicating 
how to construct the minterms from the terms. 

Rule 1. The two terms defined by the activity vec-
tors can be combined into a single term, if the com-
bined terms have the different variables and the values 
of the inactive inputs coincide with the values of the 
active inputs.  

The constructed term has to satisfy Condition 1 
and Condition 2. For the logical function TTF on the 
base of Rule 1, we obtain the following essential 
activity vectors: A0 = {<V00>, <0V0>, <00V>, 
<N11>, <1N1>, <11N>}. The combination of <V00> 
and <1N1> allows obtaining the term X1 2X , and the 
combination of <V00> and <11N> allows obtaining 
the term X1 3X . In such a way, we can obtain all the 
terms of inverse function:  

323132213121 XXXXXXXXXXXXY +++++= . 
This logical function is not minimal If we combine the 
activity vector with the single other activity vector, we 
could obtain the minimal logical function: 

313221 XXXXXXY ++= . 
The size of the sets of the activity vectors A1j and 

A0j directly depends on the size of the set of the input 
stimuli considered. The number of the activity vectors 
is directly proportional to the number of the terms of 
the logical function of the output. Therefore, after 
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finding the appropriate number of the activity vectors, 
the number of the activity vectors does not increase 
more. We could use this feature for the generation of 
the verification test. The input stimuli are generated 
randomly and selected only those ones that increase 
the set A1j or the set A0j of the essential activity 
vectors. The input stimuli selected according to this 
rule can be used as the verification test. The 
generation of the random input stimuli becomes 
ineffective when the generation process does not lead 
to the selection of new input stimuli.  If the generation 
does not lead to the increase of the sets A1j or A0j 
during the predefined time limit, the generation is 
stopped. Using this simple algorithm, the verification 
tests were generated for the ISCAS’85 benchmark 
circuits. The results are presented in Section 5. 

The random generation is not the most effective 
way to find the activity vectors. We noticed that the 
process of finding the activity vectors is more effec-
tive, if we use an adjacent generation of the stimuli for 
the selected ones [12, 13]. The adjacent activity vector 
differs from the selected one by a single value only. 
The change of the active value allows obtaining the 
activity vector, which sets the opposite value on the 
output, whereas the change of the inactive value 
allows obtaining the new activity vector in some 
cases. The probability that the randomly generated sti-
muli will differ by a single value is small. Therefore, 
the generation of the stimuli that are adjacent to the 
selected ones allows to enrich the random search and 
to speed up the process of finding the new activity 
vectors [12, 13]. 

Additionally, the active values of the activity 
vectors can be considered as the terms of the logical 
function of the output and they could be used for the 
generation of the new input stimuli. In order to obtain 
the activity vector of the set A1j (A0j) having the most 
possible number of the active values, it needs to define 
as many as possible of the values of the activity vector 
of the opposite set A0j (A1j) having the single comple-
mented active value only. This feature allows creating 
various deterministic input stimuli generation methods 
that enrich ineffective random search. 

4. Generation of the verification test 
Verification is used to determine the correspon-

dence of the design to the specification. The software 
prototype can be used instead of the specification 
during the verification. In such a case, a large amount 
of the input stimuli can be generated randomly, and 
the comparison of the responses of the software 
prototype model and the model of synthesized circuit 
can be carried out (Figure 2). The verification process 
takes long hours if the long sequences of the input 
stimuli are generated. The simulation of the input sti-
muli on the model of the synthesized circuit requires 
much more time than the simulation of the input 
stimuli on the software prototype model. Therefore, it 
is purposeful on the base of the software prototype 
model to select the input stimuli, which are essential 

for the verification of the model of the synthesized 
circuit, and to use them for the verification. The 
selection of the input stimuli on the base of the 
software prototype can be carried out in parallel with 
other design activities. Such a parallelism can shorten 
the verification time. The main problem of the 
selection is how to determine which input stimuli are 
essential. We will base the selection on the conjecture 
that the essential activity vectors correspond to the 
terms of the logical functions of the output. Therefore, 
we will assume that the essential activity vectors, 
which will be selected from the randomly generated 
stimuli, can form the verification test.  

 
Figure 2. Scheme of the verification 

 
Figure 3.Verification structure 

During the verification, it is determined the corres-
pondence of the model of the synthesized circuit to the 
software prototype model. The essential activity vec-
tors selected from the randomly generated stimuli can 
not reveal completely the functionality of the software 
prototype model. But the obtained activity vectors 
have to correspond to the functionality of the model of 
the synthesized circuit. The verification structure is 
shown in Figure 3.  

The essential activity vectors can be regarded as 
the simplified functional description of the device ob-
tained from the software prototype model. Therefore, 
it is possible to verify whether the designed circuit 
corresponds to the set of the essential activity vectors. 
During the verification between the set of the essential 
activity vectors and the model of the designed circuit, 
the responses of the every essential activity vector are 
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checked against the responses of the model of the 
synthesized circuit. We will call this process the 
verification of the essential activity vector. The 
verification of the essential activity vectors does not 
require the use of the responses of the software 
prototype model, because the response of the activity 
vector is determined by its dependence to the sets A0j 
or A1j. If the verification of all essential activity 
vectors is complete, we will consider that the model of 
the synthesized circuit corresponds to the software 
prototype model. 

The essential activity vectors correspond to the 
terms of the logical functions of the output. Therefore, 
we can study the verification of the terms of the lo-
gical functions and compare the verification of the 
essential activity vectors and the verification of the 
terms.  During the term verification, the compliance of 
the responses of the model of the design to the exis-
tence of the term is determined. Such an action is 
equivalent to the fulfillment of Condition 1 and Con-
dition 2. 

The term of the logical function defines the input 
stimuli, which set the same value on the output. Let’s 
assume, a term of the 10-input logical function con-
sists of the following 4 variables: 10852 XXXX . This 
term implies that the values of the other 6 variables 
X1X3X4X6X7X9 do not have any influence on the output 
value, which will be set to 1, if X2 is assigned to 1, X5 
– 0, X8 – 1, X10 – 0. 2n-k input stimuli have to be 
considered, where k – the number of the variables of 
the term. In such a way, the fulfillment of Condition 1 
is checked. If not all the combinations will be 
evaluated, the assessment of Condition 1 will not be 
complete. 

The three following cases have to be considered 
for the verification of the essential activity vector: 
• V1 – the single input stimulus, which corresponds 

to the activity vector, is used for the verification. In 
such a way, the fulfillment of Condition 1 is 
verified at least once. 

• V2 – the k input stimuli, which differ from the 
activity vector by one active input value, are used 
for the verification, where k – the number of the 
active variables of the term. The captured k output 
responses have to be opposite to the response of 
the activity vector. In such a way, the fulfillment of 
Condition 2 is verified for the term of the logical 
function that corresponds to the activity vector. 

• V3 – the n-k input stimuli, which differ from the 
activity vector by one inactive input value, are 
used for the verification. In such a way, the fulfill-
ment of Condition 1 is verified additionally n-k 
times for the term of the logical function that cor-
responds to the activity vector. 
All three cases can be considered during the verifi-

cation of any design. The use of all three cases enables 
the generation of n+1 input stimuli, which differ by 
single value. 

Let’s assume that for the input stimuli 
<0110001100> the activity vector 0V10N01V0N is 
obtained, which corresponds to the term 10852 XXXX . 
For the case V1, we will form the input stimulus 
<0110001100>, and we will measure the response of 
the model of the synthesized circuit to this stimulus. 
The value of the response has to be 1. The existence of 
the term is acknowledged by the input stimuli, which 
differ by single input value V or N, because these input 
stimuli change the output value to the opposite one. 
The following input stimulus: <0010001100>, 
<0110101100>, <0110001000>, <0110001101> for-
med for the case V2 will set the value 0 at the output. 
If this activity vector is essential, the considered input 
stimuli check the fulfillment of Condition 2 by the 
corresponding term of the logical function. For the 
case V3, the input stimuli that differ by the single 
inactive input value acknowledge the fulfillment of 
Condition 1 by the term. The following input stimuli 
fall into this category: <1110001100>, <0100001100>, 
<0111001100>, <0110011100>, <0110000100>, 
<0110001110>. They set value 1 at the output. Gene-
rally, the use of all three cases for the verification of 
the activity vector does not guarantee that all the input 
stimuli required for the verification of the term will be 
considered. Therefore, the terms obtained from the ac-
tivity vectors cannot be precisely determined. They 
cannot be used for the synthesis of the device, but they 
can be used for the verification and for the test gene-
ration. The indetermination of the terms can reduce 
the reliability of the verification, but this obstacle does 
not deny the possibility of the use of the terms ob-
tained from the activity vectors. 

During the generation, only those input stimuli are 
selected, which form the new activity vectors for the 
sets A1j or A0j. The essential activity vectors are in-
cluded into the verification test. The selected stimuli 
can be included into the verification test as well. The 
activity vectors for several outputs can be obtained 
from the single selected input stimuli. 

The increase of the size of the random search 
space decreases the amount of the selected input 
stimuli, which augment the sets A1j and A0j. The same 
selected stimuli can appear in several activity vectors 
of the different outputs. Such selected stimuli AIP link 
together several activity vectors, and they can be used 
for the verification of the terms of several outputs at 
once. In such a case, the responses at the additional 
outputs can be added to the selected input stimuli. The 
selected input stimuli can be verified according to all 
three cases V1, V2, V3 taking into account the res-
ponses of all the outputs. For the cases V1 and V3, it is 
enough to mark the active inputs only, meanwhile for 
the case V2, the outputs, on which the value will be 
changed according to changed value on the input, have 
to be known. The number of the selected input stimuli 
can be several times less than the number of the 
activity vectors. The appropriate example is presented 
in Table 4. 



The Use of a Software Prototype for Verification Test Generation 

271 

 Table 4. Combining of several activity vectors 

 Output y1 Output y2 Outputs y1 and y2 
 Input 

stimuli 
response 

y1 
Input 

stimuli 
response 

y2 
Input 

stimuli 
response 

y1,2 
V1 1NN11 0 10N1V 1 1NN1V 0,1 

11011 1 10111 0 11011 1,0 
10111 1 10010 0 10111 1,0 

V2 

    10010 0,0 
00011 0 00011 1 00011 0,1 
10001 0 11011 1 10001 0,1 

V3 

10010 0 10001 1   
 

Let's assume that the selected input stimulus P = 
<10011> sets the following values on the outputs: 
<01>. We obtain the activity vector A0y1 = <1NN11> 
for the first output and the activity vector A1y2 = 
<10N1V> for the second output. Then the linked acti-
vity vector for both outputs is <1NN1V>. These 
vectors are presented in the row under name V1 of 
Table 4, and they correspond to the case V1. The 
verification of the activity vector A0y1 according to the 
case V2 uses the following input stimuli: <11011>, 
<10111>, meanwhile the verification of the activity 
vector A1y2 according to the case V2 uses the follo-
wing input stimuli: <10111>, <10010>. The similar 
situation is for the case V3. The input stimuli are pre-
sented in the rows under name V3 of Table 4. As we 
have mentioned, the linked activity vector for both 
outputs is <1NN1V>. Therefore, the verification of the 
selected input stimuli according to the case V2 uses 
the following three input stimuli: <11011>, <10111>, 
<10010>. Meanwhile, the verification of the selected 
input stimuli according to the case V3 uses the 
following two input stimuli: <00011>, <10001>. As 
we can notice, some input stimuli are repeated, when 
the activity vectors are used for the verification. When 
the verification is based on the selected input stimuli, 
we obtain the same input stimuli as in the case of the 
activity vectors. The input stimulus is selected if at 
least one essential activity vector is constructed on its 
base. Therefore, the selected input stimulus can form 
inessential activity vectors for the other outputs. When 
the verification is based on the selected input stimuli, 
the inessential activity vectors will be used, and the 
verification will be directed to the larger number of 
the outputs. Hence, the selected input stimuli are more 
useful for the verification than the activity vectors. 
Additionally, the number of the selected stimuli is less 
than the number of the activity vectors. 

5. Experiments 

We will assess the quality of the verification test 
by the following parameters: the length of test L, the 
fault coverage of the stuck-at faults FC, the fault cove-
rage of the pin pair faults PPC,, and the number of the 
essential activity vectors AV. The very important para-
meter is the length L of the test, because the duration 

of the verification depends directly on it. As we have 
mentioned previously, the fault coverage FC of the 
stuck-at faults is the good indicator of the possibility 
to assess the presence of the errors in the design. But 
this is possible when the synthesized circuit is 
available. 

During the whole design process from the software 
prototype to the synthesized circuit, the relationships 
between the inputs and outputs must be kept the same. 
Any pair (i, j) of the input and output can be related 
through the odd and/or even number of the inversions. 
The input i and the output j are connected through the 
even number of the inversions, if there exists an input 
stimulus that the value on the input i and the value on 
the output j are the same, and the change of the value 
on the input i invokes the change of the value on the 
output j. Analogously, the input i and the output j are 
connected through the odd number of the inversions, 
if there exists an input stimulus that the value on the 
input i and the value on the output j are opposite, and 
the change of the value on the input i invokes the 
change of the value on the output j. The change of the 
parity of the relationship between the input and output 
would indicate the fault during the design process. 

The relationship between the inputs and outputs 
corresponds to the functional fault model, which is 
used for the functional test generation according to the 
software prototype model [12]. The test patterns are 
selected from the random generated ones on the base 
of the pin pair (PP) fault model. In the same way, the 
activity vectors are selected that possess at least one 
active input related to some output. The relationship 
between the inputs and outputs (the number of the 
functional faults) is the feature of the design that does 
not change during the design process. The estimation 
of all the possible relationships is complex and not 
always it could be established at the functional level. 
But generally, the number of the detected functional 
PP faults and the coverage PPC of the PP faults 
indicate the quality of the verification test, when the 
total number of the detectable functional PP faults is 
known. 

The fourth parameter that indicates the quality of 
the functional test is the number AV of the essential 
activity vectors. Every essential activity vector is 
related to some term of the logical function. The larger 
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number of the activity vectors ensures the better re-
cognition of the existence of the terms of the logical 
function. If the verification test reveals the existence 
of all the terms of the logical function, then it would 
be possible to state that the behavior of the software 
prototype and the behavior of the synthesized circuit 
are identical. Therefore, the fourth parameter is impor-
tant, as well. 

The circuits of the benchmark suite ISCAS’85 
have been selected for the experiments because they 
are more complicated for testing purposes than 
combinational parts of the sequential circuits of the 
benchmark suite ISCAS’89. Let’s assume that the in-
put stimuli are used for the verification according to 
case V1. 

Table 5. The parameters of the verification test 

Circuit L FC% PPC% #AV #AIP 
C432 500000 100.00 100.00 14803 12423 
C499 500000 100.00 100.00 69336 68870 
C880 500000 100.00 100.00 23086 17001 
C1355 500000 100.00 100.00 69336 68870 
C1908 500000 100.00 100.00 28561 20632 
C2670 500000 96.03 81.69 63838 39349 
C3540 500000 100.00 99.96 67520 45441 
C5315 500000 100.00 100.00 426629 180931 
C6280 500000 100.00 100.00 53197 26440 
C7552 500000 98.80 69.08 551981 273212 
Average 500000 99.48 95.07 136829 75317 

Table 5 presents the results of the verification test 
that was obtained from the 500 000 input stimuli 
generated randomly. The initial randomly generated 
test detects all the stuck-at faults, except for the 
circuits C2670 and C7552. The randomly generated 
input stimuli especially were unsuitable for the detec-
ting of the stuck-at faults of the circuit C2670. The 
randomly generated test does not fully cover the PP 
faults for the mentioned circuits and the circuit C3540. 
The number of the PP faults for the circuits of the 
benchmark suite ISCAS’85 is known, therefore, the 
PP fault coverage can be calculated. The number of 
the essential activity vectors is shown in the column 
under name #AV. The last column holds the number of 
the selected input stimuli from set of the initial 500 
000 random input stimuli. These stimuli form the 
essential activity vectors. The selected input stimuli 
allow shortening the verification test on the average 
500 000 / 75317 = 6.64 times. We have to notice that 
the selected input stimuli detect the same stuck-at 
faults and PP faults, and they form the same essential 
activity vectors as the initial random stimuli. 
Therefore, the quality of the selected stimuli according 
to parameters FC, PPC and AV does not decrease but 
the number of them is 6.64 times less. The verification 
test based on the selected stimuli allows shortening the 
verification time in the same quantity except for the 

circuit C7552, for which the verification time can be 
less only about 2 times.  

Let’s consider the suitability for the verification 
of the functional test for the pin pair triplets PT faults 
[12]. This test differs from the PP fault test that every 
input pattern detects PP faults in pairs. The results are 
presented in Table 6.  

Table 6. The PT fault test 

Circuit  L FC% PPC%  #AV 
C432 873 100.00 100.00 2304 
C499 3458 100.00 100.00 7015 
C880 7011 100.00 100.00 12917 
C1355 3481 100.00 100.00 7043 
C1908 2901 99.62 100.00 16879 
C2670 4575 100.00 100.00 13388 
C3540 7175 100.00 100.00 35296 
C5315 8578 100.00 100.00 66599 
C6280 2016 100.00 100.00 41888 
C7552 15409 99.91 100.00 127876 
Average 5512 99.95 100.00 33120 

As we can see, the use of PT fault test for the 
verification allows shortening the length of test 75315 
/ 5512 = 13.66 times in comparison with the length of 
the verification test that is based on the selected 
stimuli. The PT fault test detects more stuck-at faults, 
detects all the PP faults, but it allows to form 136829 / 
33120 = 4.13 times less essential activity vectors. 

We also present the results of the PP fault test for 
the comparison purposes (Table 7). The PP fault test is 
5512 / 772 = 7.14 times shorter than the PT fault test. 
The PP fault test detects fewer stuck-at faults, and it 
allows forming 33120 / 7916 = 4.18 times less essen-
tial activity vectors. 

Table 7. The PP fault test 

Circuit  L FC% PPC%  #AV 
C432 117 97.8  100.00 395 
C499 1077 100.0 100.00 4462 
C880 381 100.0 100.00 1810 
C1355 1011 100.0 100.00 4384 
C1908 620 96.6 100.00 5272 
C2670 448 99.6 100.00 3001 
C3540 515 98.9 100.00 4978 
C5315 1169 100.0 100.00 20436 
C6280 268 100.0 100.00 6478 
C7552 2115 99.6 100.00 27942 
Average 772 99.25 100.00 7916 

As we can notice, the significantly shorter verifi-
cation test can detect almost all the stuck-at faults and 
PP faults, but its ability to check the existence of the 
terms of the logical function is much lesser. Therefore, 
the dominant factor of the assessment of the quality of 
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the verification test is the number of the essential acti-
vity vectors.  

The procedure that selects the input stimuli from 
the randomly generated ones for the formation of the 
essential activity vectors is the verification test genera-
tion procedure. The quality of the verification test is 
assessed by the number of the selected stimuli, which 
depends on the termination condition of the genera-
tion. In such a way, the proportion of the number GP 
of the randomly generated stimuli to the number AIP 
of the selected stimuli is the indicator of the quality of 
the verification test.  This proportion shows how many 
times the time of the verification is shortened and it 
can be used as the termination condition of the gene-
ration. 

The ratio GP/AIP is shown in 0 (column 2) when 
500 000 random input stimuli were generated. We see 
that this ratio does not exceed 10 for four circuits, and 
500 000 random input stimuli are not enough in order 
to obtain the high quality of the verification test for 
these circuits.  The smallest ratio for the circuit C7552 
makes clear why the selected input stimuli do not 
detect all the stuck-at faults. The ratio for the circuit 
C2670 is larger than 10, but nevertheless some stuck-
at faults remain undetected. Of course, the ratio GP / 
AIP can be set, for example, to 100, but the 
experimental research revealed that the use of the 
value of the proportion larger than 10 makes the 
generation ineffective, because the generation selects 
only few new activity vectors. In such a way, the 
termination condition of the generation is tightly rela-
ted to the quality of the verification test. 

Table 8. Ratio GP / AIP 

Circuit  GP/AIP Length TetraMAX 
C432 40.25 73 57 
C499 7.27 99 54 
C880 29.41 78 62 
C1355 7.27 99 86 
C1908 24.23 142 118 
C2670 12.70 122 105 
C3540 11.00 242 167 
C5315 2.76 193 130 
C6280 18.91 115 43 
C7552 1.83 309 211 
Average 15.56 147 103 

The obtained verification test can be the initial 
basis for the construction of the manufacturing test in 
order to detect all the stuck-at faults. The simple way 
is to use the fault simulation of the synthesized circuit 
and on this base to select the test patterns that detect 
stuck-at faults. If the obtained verification test is too 
large for the fault simulation, then this test can be 
minimized on the base of the functional faults at the 
functional level of the circuit. The input stimuli that 
do not detect the new faults also should be removed, 
and then the number of the remaining input stimuli is 

quite similar to the number of the input stimuli 
obtained at the gate level of the circuit. These numbers 
are shown in the third and fourth columns of 0, 
respectively. We see that the manufacturing test 
obtained on the base of the verification test is on the 
average 147 / 103 = 1.43 longer than the test obtained 
at the gate level by the test generation tool TetraMAX. 

6. Conclusion 

 
The paper presents an approach to the generation of 
the verification test, which is based on the software 
prototype written according to the specification. The 
formation of the essential activity vectors from the 
randomly generated input stimuli decreases the 
number of the input stimuli used for the verification. 
The selected input stimuli that form the essential 
activity vectors also can be used for the verification 
without loss of the verification coverage. The number 
of the input stimuli used for the verification and the 
quality of the verification test depend on the 
termination condition of the generation. The value of 
this approach is confirmed by the fact that the selected 
input stimuli detect the same stuck-at faults as the 
initially generated test set. The essential activity 
vectors and selected input stimuli can be augmented 
by the adjacent input stimuli that differ by the single 
value. The number of the essential activity vectors that 
corresponds to the number of the verified terms of the 
logical function is the measure of the quality of the 
verification test. The larger number of the essential 
activity vectors means the higher quality of the 
verification. An ideal case is when the essential 
activity vectors are obtained for all the terms of the 
logical function. The verification test can be used in 
order to obtain the manufacturing test. 
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