
265

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2008, Vol.37, No.4

THE USE OF A SOFTWARE PROTOTYPE FOR VERIFICATION
TEST GENERATION

Eduardas Bareiša, Vacius Jusas, Kęstutis Motiejūnas, Rimantas Šeinauskas
Software Engineering Department, Kaunas University of Technology

Studentų St. 50-404, LT−51368 Kaunas, Lithuania

Abstract. The software prototype model can be used for the generation of the verification test. The input stimuli,
which form essential activity vectors, are selected from randomly generated ones on the base of software prototype.
The essential activity vectors correspond to the terms of logical functions of output the existence of which is tested
during the verification. The verification test is formed on the base of the essential activity vectors according to the
defined rules. The quality of the verification test is measured by the following parameters: the length of test, the fault
coverage of the stuck-at faults, the fault coverage of the pin pair faults, and the number of the essential activity vectors.
The paper presents the experimental results for the benchmark suite ISCAS’85. The value of this approach is high-
lighted by the fact that the selected input stimuli detect the same stuck-at faults as the initially generated test set.

1. Introduction

In the last few years the major challenge, which
the semiconductor industry is confronted with, has
been to design devices in significantly less time with
far more complex logical functionality. At the very top
of the list of challenges to be solved is verification.
The goal of the verification is to ensure that the design
meets the logical functional requirements as defined in
the logical functional specifications. Verification of
the devices takes 40 to 70 percent of the total develop-
ment effort for the design. The increasing complexity
of hardware designs raises the need for the develop-
ment of new techniques and methodologies that can
provide the verification team with the means to
achieve its goals quickly and with limited resources.

The verification of the design based on simulation
is very similar to the testing process of the device. In
the testing case, the manufactured device is checked
against the model of the design. The test patterns are
used for this purpose. The test patterns are generated
on the base of the model of the design in order to
uncover physical defects, which may emerge in the
device during the manufacturing phase. The test pat-
terns are supplied to the manufactured device. If the
response of the test pattern differs from the expected
one according to the model, it is concluded that the
device has a defect.

In the verification case, the design is checked,
whether it meets the requirements and the specifica-
tion. During the verification based on the simulation,
the verification test stimuli are generated on the base
of the model at a high level of the design in order to

uncover the possible mistakes, which emerged during
the design process. The main problem is how to
choose the verification test stimuli and to determine
the expected responses that it would be possible to
state that the design does not have inaccuracies and
meets the specification.

Usually in the initial stages of the design, the soft-
ware prototype of the device is created in order to si-
mulate the logical functionality of the device. We will
use the software prototype model for one clock cycle,
which will determine the responses on the outputs and
the values of the next state according to the stimuli on
the inputs and the values of the previous state. The
input stimuli and the state elements can be chosen on
the base of such a software prototype model. But an
unambiguous relationship has to be defined between
the state bits of software prototype and the flip-flops
of the synthesized circuit that it would be possible to
compare the responses on the outputs and the state
values of these two different models. Generally, let’s
assume that verification test consists of input stimuli
and output responses neglecting the fact that some
inputs and outputs correspond to the state elements.

In the paper, the input stimuli, which form essen-
tial activity vectors, are selected from randomly gene-
rated ones on the base of software prototype. The out-
put activity vector shows which input values have the
influence on the output values. The essential activity
vectors have the largest amount of active inputs. The
essential activity vectors correspond to the terms of
logical functions of output the existence of which is
tested during the verification. The number of activity
vectors depends on the termination condition of the

E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

266

generation. The different values of the termination
condition allow obtaining the different completeness
of the verification test.

The paper is organized as follows. We review the
problems of the verification in Section 2. We intro-
duce the activity vectors in Section 3. We explore the
process of the verification in Section 4. We present the
results of the experiment in Section 5. We finish with
conclusions in Section 6.

2. Related work

Logical functional verification of the devices is
crucial and takes a substantial part of the entire design
cycle time. Logical functional verification is widely
acknowledged as the bottleneck in the hardware de-
sign cycle.

A wide variety of verification technology options
are available, broadly classified as simulation-based
technologies, static technologies, and formal techno-
logies [1]. Simulation-based technologies allow the
verification of the devices early in the design cycle,
enabling fast time-to-market. Although design time
can be shortened in a modern design environment, the
verification effort grows exponentially as devices be-
come more complex. Under time-to-market pressure,
we must have a proper verification methodology for
complex device development flow. The simulation is
still the most widely used form of device verification:
millions of cycles are spent during simulation using a
combination of random and directed test cases in tra-
ditional design flow. Certain heuristics and design abs-
tractions are used to generate directed random test
cases. However, it is very time-consuming to write all
the test programs manually. This brings about the
necessity of developing an automatic program gene-
rator to speed up the verification work.

Built-in Self Test (BIST) methodology can be used
for the verification of the devices [1]. But the test for
this methodology can be obtained only when the struc-
tural level of the device is available and the complete-
ness of this test is always problematic. Lichtenstein et
al. [2] proposed an approach to verification test gene-
ration called as Model Based Test-Generation. This
approach allows the incorporation of complex testing
knowledge. The architecture model, which is compri-
sed of logical functional blocks, is used. Fournier et al.
[3] proposed a pseudo-random test program generator,
Genesys, a follow-on of the model based test genera-
tion. Genesys enables the combination of randomness
and control, thus generating high quality tests. The
architecture model is used, as well. Fine and Ziv [4]
addressed one of the main challenges of simulation
based verification, by providing a new approach for
Coverage Directed Test Generation. This approach is
based on Bayesian networks and computer learning
techniques. The specification driven and constraints
solving based method to automatically generate test
programs from simple to complex ones for advanced
microprocessors is presented in [5]. Microprocessor

architectural automatic test program generator can
produce not only random test programs but also a
sequence of instructions for a specific constraint by
specifying a user constraints file. It is well studied and
reported in the literature that for a tool to be scalable
with larger designs, it is important to handle the
design at higher levels of abstraction. An Automatic
Assembly Program Generator that handles the design
at the behavioral RTL level is presented in [6]. The
Generator is based on logical function-oriented test
generation schemes, hence making it scalable and
usable for some specific tasks. In recent years special
purpose verification languages have been developed to
support automatic stimulus generation. Behm et al [7]
reported on experience with a new test generation
language for processor verification. Al-Asaad and
Hayes [8] presented a simulation-based method for
combinational design verification that aims at comp-
lete coverage of specified design errors using conven-
tional ATPG tools. All common design errors can
readily be mapped into stuck-at faults and a systematic
method to perform this mapping is presented. The
experimental results show that complete test sets for
stuck-at faults detect almost all detectable errors. The
experiments demonstrate that high coverage of the
modeled design errors can be achieved with small test
sets. Ugarte and Sanchez [9] presented an assertion
checking technique for behavioral models that com-
bines a non-linear solver and state exploration techni-
ques and avoids expanding behavior into logic equa-
tions. In order to generate proper verification patterns
for core-based design, the stuck-at fault model and
automatic test pattern generation (ATPG) tools are
usually used. In order to reduce the core-based design
verification time, a connectivity-based port order fault
(POF) model was proposed [10]. The POF assumes
that a faulty cell has at least two I/O ports misplaced.
In [11], a set of metrics, the Event Sequence Coverage
Metrics are introduced. The approach is based on an
automatic method to extract the control flow of a
circuit which can be explored for coverage analysis
and ATPG.

All the mentioned above verification methods rely
on the behavior model written in the special language,
on the architecture models consisting of the logical
functional blocks or manipulate the ATPG used mo-
dels. The software prototype model can be used for
the verification purposes, as well. The software proto-
type model is written in the programming language at
the early stages of the design process. Therefore, it is
purposeful to use this model for the generation of the
verification test. The software prototype model allows
expressing the logical functionality of the device on
the base of input stimuli and state variable values. The
state variables are considered as inputs. They are
considered as outputs when response is captured. The
logical functionality of the device is defined by one
clock cycle model. Next, we will introduce the activity
vectors, which are obtained on the base of software
prototype and form the verification test.

The Use of a Software Prototype for Verification Test Generation

267

3. Activity vectors

Let’s assume that the software prototype model has
n inputs and m outputs. We denote the input stimulus
by P=<p1, p2, …, pi, …, pn>, where pi= {0, 1}, i=1, 2,
…, n. The activity vector Pj=<pj

1, pj
2, …, pj

i, …, pj
n>

is associated with output j. A component of the
activity vector can take on one of the following
values: 0, 1, N, V. The value V shows that the comple-
ment of the value 1 on the input i changes the value to
the opposite on the output j. The value N shows that
the complement of the value 0 on the input i changes
the value to the opposite on the output j. The activity
vectors P1j set the value 1 on the output j, meanwhile
the activity vectors P0j set the value 0 on the output j.
The values V and N are the active values. The activity
vector summarizes n + 1 input stimuli that differ only
by single value. Let’s say, we assign the following
input stimulus <X1, X2, X3, X4, X5> = <01011> for the
benchmark circuit C17 (0). This input stimulus sets
the value 1 on the output y1. We complement every
value of this stimulus one by one and we derive the
following activity vector: <0VN11>. The activity
vector summarizes the following input stimuli:
<01011>, <11011>, <00011>, <01111>, <01001>,
<01010>. These input stimuli set the value 1 on the
output, except the third one and the fourth one.

M activity vectors P1j or P0j can be derived for
every input stimulus P (M denotes the number of out-
puts). The activity vector Pa can dominate the activity
vector Pb, and we will represent this feature like
Pa>Pb. The activity vector Pb has the active values
only on the same inputs as the activity vector Pa, and
the active values of the vector Pb are equal to the ac-
tive values of the vector Pa on the same inputs. If the
active values of the vectors Pa and Pb are the same,
then the activity vectors Pa and Pb are equal. The
prerequisites of dominating the vector Pb by the vector
Pa are presented in Table 1.

Table 1. The prerequisites of covering

Pa V N V V N N
Pb V N 1 0 0 1

The activity vector Pa dominates the activity vector
Pb, if at least one of the conditions, which are in the
last four columns of Table 1, is satisfied. The vector,
which is not dominated by the other vectors, is
essential. After analysis of input stimuli, the sets of
essential vectors A1j and A0j are formed for every
output j. The vectors in set A1j set the value 1 on the
output j, while the vectors of set A0j set the value 0 on
the output j.

Let’s consider the benchmark C17 presented in 0.
The input stimulus P = <X1, X2, X3, X4, X5> = <01110>
sets the following output values: <y1, y2> = <00>.
The results of complementing every input value one
by one are presented in 0. We obtain the following
activity vectors according to this table: P0y1 =
<N1VV0>, P0y2 = <01VV0>. In the same way, for the

input stimulus P = <00110> we obtain the following
activity vectors according to 0: P0y1 = <N0110>, P0y2
= <00110>. These vectors are not essential, because
they are covered by the previous vectors.

Figure 1. Benchmark circuit C17

Table 2. The complement of input values of stimulus
<01110>

p1 p2 p3 p4 p5 y1 y2
0 1 1 1 0 0 0
1 1 1 1 0 1 0
0 0 1 1 0 0 0
0 1 0 1 0 1 1
0 1 1 0 0 1 1
0 1 1 1 1 0 0

Table 3. The complement of input values of stimulus
<00110>

p1 p2 p3 p4 p5 y1 y2
0 0 1 1 0 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 1 0 0

After analysis of all the possible input stimuli, we
obtain the following essential activity vectors:

A0y1 = {< N1VV0>, <1NN10>, <NN100>}
A1y1 = {< V0V10>, <0V1N1>, <0VN10>}
A0y2 = {< 1N01N>, <11VV1>}
A1y2 = {< 101NV>, <10N1V>, <1V1N0>, <0VN10>}
We notice that the active values of the essential

activity vectors correspond to the variables of the
terms of the direct and inverse logical functions. Then,
we obtain the following logical functions:

3242311 XXXXXXy ++=

21324311 XXXXXXXy ++=

324253542 XXXXXXXXy +++=

43522 XXXXy +=

But the complete correspondence not always exists
between the values of the essential activity vectors and

e10

e11

e22

e16

e19
e23

x4

x1
x3

x2

x5

y1

y2

E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

268

the variables of the terms of the logical function. It is
possible to think of the example where the active
values of the activity vectors are a subset of the
variables of the terms of the logical function. Let’s
consider the logical function TTF of three logical
variables:

321321 XXXXXXY +=

323132213121 XXXXXXXXXXXXY +++++=
After analysis of all the possible input stimuli, we

obtain the following essential activity vectors:
A1 = {< VVV>, <NNN>}
A0 = {< V00>, <0V0>, <00V>, <N11>, <1N1>,
<11N>}.
That corresponds to the following terms of the

logical function:
321321 XXXXXXY +=

321321 XXXXXXY +++++=
We notice that the active values of the activity

vectors of the set A0 form the incomplete terms of the
inverse logical function. The active values of the
activity vectors can produce the incomplete terms if
not all possible input stimuli are considered. Such a
situation arises for the large circuits. But that it is not
the case for the example logical function TTF.

Conjecture. The active values of the essential acti-
vity vectors of the sets A1j and A0j of the output j
correspond to the complete or incomplete terms of the
direct and inverse logical function.

We cannot prove this conjecture, but, on the other
hand, we were unable to find the example that would
contradict to our conjecture. The investigation is diffi-
cult because the logical function of the output can be
expressed in many different ways. The logical func-
tion is not obligatory minimal in all the cases.

Because the essential activity vectors correspond
to the complete or incomplete terms of the logical
function of the outputs, there is a possibility to check
whether the output responses of the synthesized circuit
not contradict to the existence of the term of the
logical function. Let’s consider how it is possible to
determine the membership of the term in the logical
function of the output. The term consists of the input
logical variables. The variable of the term can be in
complemented or uncomplemented form. The term is
completely defined if the values of the uncomplemen-
ted variables are equal to 1, whereas the values of the
complemented variables are equal to 0. The term
X1 2X X3 will be completely defined, if the value 1
will be assigned to the variables X1 and X3, and the
value 0 – to the variable X2. The input stimulus, which
completely defines the term of the direct (inverse)
logical function, sets the value 1 (0) on the output. If
the term X1 2X X3 belongs to the direct logical func-
tion, then any input stimulus, which completely de-
fines the considered term, sets the value 1 on the
output. If the term X1 2X X3 belongs to the inverse

logical function, then any input stimulus, which
completely defines the considered term, sets the value
0 on the output. Generally, the term of the logical
function determines the input stimuli that set the same
value on the output.

Condition 1. All the input stimuli, which complete-
ly define the term, always set the same value on the
output.

This condition is necessary, but not sufficient. Any
two terms of the logical function, the variables of
which do not contradict each other, will satisfy Con-
dition 1. The Condition 2 defines the prerequisites for
the single term.

Condition 2. Every variable of the term has the
corresponding input stimulus that the assignment of
the opposite value to the variable of the term invokes
the value change on the output.

Let’s assume that the accordance of the input
stimuli to the Condition 1 and Condition 2 confirms
the existence of the term of the logical function. The
activity vector does not support completely both the
conditions of the existence of the term. Firstly, the
only n-k input stimuli, which completely define the
term, are considered, where n – the number of inputs,
k – the number of the active inputs. Additionally, the
accordance to Condition 2 is satisfied only for a single
input stimulus. For example, Condition 2 for the term
X1 2X of the logical function TTF of three variables is
satisfied by two input stimuli 100 and 101. Therefore,
when we consider the single input stimulus, we cannot
obtain a minterm, but only the term X1 2X . Based on
this observation, we will introduce a Rule 1 indicating
how to construct the minterms from the terms.

Rule 1. The two terms defined by the activity vec-
tors can be combined into a single term, if the com-
bined terms have the different variables and the values
of the inactive inputs coincide with the values of the
active inputs.

The constructed term has to satisfy Condition 1
and Condition 2. For the logical function TTF on the
base of Rule 1, we obtain the following essential
activity vectors: A0 = {<V00>, <0V0>, <00V>,
<N11>, <1N1>, <11N>}. The combination of <V00>
and <1N1> allows obtaining the term X1 2X , and the
combination of <V00> and <11N> allows obtaining
the term X1 3X . In such a way, we can obtain all the
terms of inverse function:

323132213121 XXXXXXXXXXXXY +++++= .
This logical function is not minimal If we combine the
activity vector with the single other activity vector, we
could obtain the minimal logical function:

313221 XXXXXXY ++= .
The size of the sets of the activity vectors A1j and

A0j directly depends on the size of the set of the input
stimuli considered. The number of the activity vectors
is directly proportional to the number of the terms of
the logical function of the output. Therefore, after

The Use of a Software Prototype for Verification Test Generation

269

finding the appropriate number of the activity vectors,
the number of the activity vectors does not increase
more. We could use this feature for the generation of
the verification test. The input stimuli are generated
randomly and selected only those ones that increase
the set A1j or the set A0j of the essential activity
vectors. The input stimuli selected according to this
rule can be used as the verification test. The
generation of the random input stimuli becomes
ineffective when the generation process does not lead
to the selection of new input stimuli. If the generation
does not lead to the increase of the sets A1j or A0j
during the predefined time limit, the generation is
stopped. Using this simple algorithm, the verification
tests were generated for the ISCAS’85 benchmark
circuits. The results are presented in Section 5.

The random generation is not the most effective
way to find the activity vectors. We noticed that the
process of finding the activity vectors is more effec-
tive, if we use an adjacent generation of the stimuli for
the selected ones [12, 13]. The adjacent activity vector
differs from the selected one by a single value only.
The change of the active value allows obtaining the
activity vector, which sets the opposite value on the
output, whereas the change of the inactive value
allows obtaining the new activity vector in some
cases. The probability that the randomly generated sti-
muli will differ by a single value is small. Therefore,
the generation of the stimuli that are adjacent to the
selected ones allows to enrich the random search and
to speed up the process of finding the new activity
vectors [12, 13].

Additionally, the active values of the activity
vectors can be considered as the terms of the logical
function of the output and they could be used for the
generation of the new input stimuli. In order to obtain
the activity vector of the set A1j (A0j) having the most
possible number of the active values, it needs to define
as many as possible of the values of the activity vector
of the opposite set A0j (A1j) having the single comple-
mented active value only. This feature allows creating
various deterministic input stimuli generation methods
that enrich ineffective random search.

4. Generation of the verification test
Verification is used to determine the correspon-

dence of the design to the specification. The software
prototype can be used instead of the specification
during the verification. In such a case, a large amount
of the input stimuli can be generated randomly, and
the comparison of the responses of the software
prototype model and the model of synthesized circuit
can be carried out (Figure 2). The verification process
takes long hours if the long sequences of the input
stimuli are generated. The simulation of the input sti-
muli on the model of the synthesized circuit requires
much more time than the simulation of the input
stimuli on the software prototype model. Therefore, it
is purposeful on the base of the software prototype
model to select the input stimuli, which are essential

for the verification of the model of the synthesized
circuit, and to use them for the verification. The
selection of the input stimuli on the base of the
software prototype can be carried out in parallel with
other design activities. Such a parallelism can shorten
the verification time. The main problem of the
selection is how to determine which input stimuli are
essential. We will base the selection on the conjecture
that the essential activity vectors correspond to the
terms of the logical functions of the output. Therefore,
we will assume that the essential activity vectors,
which will be selected from the randomly generated
stimuli, can form the verification test.

Figure 2. Scheme of the verification

Figure 3.Verification structure

During the verification, it is determined the corres-
pondence of the model of the synthesized circuit to the
software prototype model. The essential activity vec-
tors selected from the randomly generated stimuli can
not reveal completely the functionality of the software
prototype model. But the obtained activity vectors
have to correspond to the functionality of the model of
the synthesized circuit. The verification structure is
shown in Figure 3.

The essential activity vectors can be regarded as
the simplified functional description of the device ob-
tained from the software prototype model. Therefore,
it is possible to verify whether the designed circuit
corresponds to the set of the essential activity vectors.
During the verification between the set of the essential
activity vectors and the model of the designed circuit,
the responses of the every essential activity vector are

VerificationSoftware
prototype

model

Model of the
synthesized

circuit

Essential
activity vectors Verification Calculation

Terms of the logical
function

Software
prototype

model

Model of the
synthesized

circuit

Generator
of random

input
stimuli

Comparison
of the

responses

E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

270

checked against the responses of the model of the
synthesized circuit. We will call this process the
verification of the essential activity vector. The
verification of the essential activity vectors does not
require the use of the responses of the software
prototype model, because the response of the activity
vector is determined by its dependence to the sets A0j
or A1j. If the verification of all essential activity
vectors is complete, we will consider that the model of
the synthesized circuit corresponds to the software
prototype model.

The essential activity vectors correspond to the
terms of the logical functions of the output. Therefore,
we can study the verification of the terms of the lo-
gical functions and compare the verification of the
essential activity vectors and the verification of the
terms. During the term verification, the compliance of
the responses of the model of the design to the exis-
tence of the term is determined. Such an action is
equivalent to the fulfillment of Condition 1 and Con-
dition 2.

The term of the logical function defines the input
stimuli, which set the same value on the output. Let’s
assume, a term of the 10-input logical function con-
sists of the following 4 variables: 10852 XXXX . This
term implies that the values of the other 6 variables
X1X3X4X6X7X9 do not have any influence on the output
value, which will be set to 1, if X2 is assigned to 1, X5
– 0, X8 – 1, X10 – 0. 2n-k input stimuli have to be
considered, where k – the number of the variables of
the term. In such a way, the fulfillment of Condition 1
is checked. If not all the combinations will be
evaluated, the assessment of Condition 1 will not be
complete.

The three following cases have to be considered
for the verification of the essential activity vector:
• V1 – the single input stimulus, which corresponds

to the activity vector, is used for the verification. In
such a way, the fulfillment of Condition 1 is
verified at least once.

• V2 – the k input stimuli, which differ from the
activity vector by one active input value, are used
for the verification, where k – the number of the
active variables of the term. The captured k output
responses have to be opposite to the response of
the activity vector. In such a way, the fulfillment of
Condition 2 is verified for the term of the logical
function that corresponds to the activity vector.

• V3 – the n-k input stimuli, which differ from the
activity vector by one inactive input value, are
used for the verification. In such a way, the fulfill-
ment of Condition 1 is verified additionally n-k
times for the term of the logical function that cor-
responds to the activity vector.
All three cases can be considered during the verifi-

cation of any design. The use of all three cases enables
the generation of n+1 input stimuli, which differ by
single value.

Let’s assume that for the input stimuli
<0110001100> the activity vector 0V10N01V0N is
obtained, which corresponds to the term 10852 XXXX .
For the case V1, we will form the input stimulus
<0110001100>, and we will measure the response of
the model of the synthesized circuit to this stimulus.
The value of the response has to be 1. The existence of
the term is acknowledged by the input stimuli, which
differ by single input value V or N, because these input
stimuli change the output value to the opposite one.
The following input stimulus: <0010001100>,
<0110101100>, <0110001000>, <0110001101> for-
med for the case V2 will set the value 0 at the output.
If this activity vector is essential, the considered input
stimuli check the fulfillment of Condition 2 by the
corresponding term of the logical function. For the
case V3, the input stimuli that differ by the single
inactive input value acknowledge the fulfillment of
Condition 1 by the term. The following input stimuli
fall into this category: <1110001100>, <0100001100>,
<0111001100>, <0110011100>, <0110000100>,
<0110001110>. They set value 1 at the output. Gene-
rally, the use of all three cases for the verification of
the activity vector does not guarantee that all the input
stimuli required for the verification of the term will be
considered. Therefore, the terms obtained from the ac-
tivity vectors cannot be precisely determined. They
cannot be used for the synthesis of the device, but they
can be used for the verification and for the test gene-
ration. The indetermination of the terms can reduce
the reliability of the verification, but this obstacle does
not deny the possibility of the use of the terms ob-
tained from the activity vectors.

During the generation, only those input stimuli are
selected, which form the new activity vectors for the
sets A1j or A0j. The essential activity vectors are in-
cluded into the verification test. The selected stimuli
can be included into the verification test as well. The
activity vectors for several outputs can be obtained
from the single selected input stimuli.

The increase of the size of the random search
space decreases the amount of the selected input
stimuli, which augment the sets A1j and A0j. The same
selected stimuli can appear in several activity vectors
of the different outputs. Such selected stimuli AIP link
together several activity vectors, and they can be used
for the verification of the terms of several outputs at
once. In such a case, the responses at the additional
outputs can be added to the selected input stimuli. The
selected input stimuli can be verified according to all
three cases V1, V2, V3 taking into account the res-
ponses of all the outputs. For the cases V1 and V3, it is
enough to mark the active inputs only, meanwhile for
the case V2, the outputs, on which the value will be
changed according to changed value on the input, have
to be known. The number of the selected input stimuli
can be several times less than the number of the
activity vectors. The appropriate example is presented
in Table 4.

The Use of a Software Prototype for Verification Test Generation

271

 Table 4. Combining of several activity vectors

 Output y1 Output y2 Outputs y1 and y2
 Input

stimuli
response

y1
Input

stimuli
response

y2
Input

stimuli
response

y1,2
V1 1NN11 0 10N1V 1 1NN1V 0,1

11011 1 10111 0 11011 1,0
10111 1 10010 0 10111 1,0

V2

 10010 0,0
00011 0 00011 1 00011 0,1
10001 0 11011 1 10001 0,1

V3

10010 0 10001 1

Let's assume that the selected input stimulus P =
<10011> sets the following values on the outputs:
<01>. We obtain the activity vector A0y1 = <1NN11>
for the first output and the activity vector A1y2 =
<10N1V> for the second output. Then the linked acti-
vity vector for both outputs is <1NN1V>. These
vectors are presented in the row under name V1 of
Table 4, and they correspond to the case V1. The
verification of the activity vector A0y1 according to the
case V2 uses the following input stimuli: <11011>,
<10111>, meanwhile the verification of the activity
vector A1y2 according to the case V2 uses the follo-
wing input stimuli: <10111>, <10010>. The similar
situation is for the case V3. The input stimuli are pre-
sented in the rows under name V3 of Table 4. As we
have mentioned, the linked activity vector for both
outputs is <1NN1V>. Therefore, the verification of the
selected input stimuli according to the case V2 uses
the following three input stimuli: <11011>, <10111>,
<10010>. Meanwhile, the verification of the selected
input stimuli according to the case V3 uses the
following two input stimuli: <00011>, <10001>. As
we can notice, some input stimuli are repeated, when
the activity vectors are used for the verification. When
the verification is based on the selected input stimuli,
we obtain the same input stimuli as in the case of the
activity vectors. The input stimulus is selected if at
least one essential activity vector is constructed on its
base. Therefore, the selected input stimulus can form
inessential activity vectors for the other outputs. When
the verification is based on the selected input stimuli,
the inessential activity vectors will be used, and the
verification will be directed to the larger number of
the outputs. Hence, the selected input stimuli are more
useful for the verification than the activity vectors.
Additionally, the number of the selected stimuli is less
than the number of the activity vectors.

5. Experiments

We will assess the quality of the verification test
by the following parameters: the length of test L, the
fault coverage of the stuck-at faults FC, the fault cove-
rage of the pin pair faults PPC,, and the number of the
essential activity vectors AV. The very important para-
meter is the length L of the test, because the duration

of the verification depends directly on it. As we have
mentioned previously, the fault coverage FC of the
stuck-at faults is the good indicator of the possibility
to assess the presence of the errors in the design. But
this is possible when the synthesized circuit is
available.

During the whole design process from the software
prototype to the synthesized circuit, the relationships
between the inputs and outputs must be kept the same.
Any pair (i, j) of the input and output can be related
through the odd and/or even number of the inversions.
The input i and the output j are connected through the
even number of the inversions, if there exists an input
stimulus that the value on the input i and the value on
the output j are the same, and the change of the value
on the input i invokes the change of the value on the
output j. Analogously, the input i and the output j are
connected through the odd number of the inversions,
if there exists an input stimulus that the value on the
input i and the value on the output j are opposite, and
the change of the value on the input i invokes the
change of the value on the output j. The change of the
parity of the relationship between the input and output
would indicate the fault during the design process.

The relationship between the inputs and outputs
corresponds to the functional fault model, which is
used for the functional test generation according to the
software prototype model [12]. The test patterns are
selected from the random generated ones on the base
of the pin pair (PP) fault model. In the same way, the
activity vectors are selected that possess at least one
active input related to some output. The relationship
between the inputs and outputs (the number of the
functional faults) is the feature of the design that does
not change during the design process. The estimation
of all the possible relationships is complex and not
always it could be established at the functional level.
But generally, the number of the detected functional
PP faults and the coverage PPC of the PP faults
indicate the quality of the verification test, when the
total number of the detectable functional PP faults is
known.

The fourth parameter that indicates the quality of
the functional test is the number AV of the essential
activity vectors. Every essential activity vector is
related to some term of the logical function. The larger

E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

272

number of the activity vectors ensures the better re-
cognition of the existence of the terms of the logical
function. If the verification test reveals the existence
of all the terms of the logical function, then it would
be possible to state that the behavior of the software
prototype and the behavior of the synthesized circuit
are identical. Therefore, the fourth parameter is impor-
tant, as well.

The circuits of the benchmark suite ISCAS’85
have been selected for the experiments because they
are more complicated for testing purposes than
combinational parts of the sequential circuits of the
benchmark suite ISCAS’89. Let’s assume that the in-
put stimuli are used for the verification according to
case V1.

Table 5. The parameters of the verification test

Circuit L FC% PPC% #AV #AIP
C432 500000 100.00 100.00 14803 12423
C499 500000 100.00 100.00 69336 68870
C880 500000 100.00 100.00 23086 17001
C1355 500000 100.00 100.00 69336 68870
C1908 500000 100.00 100.00 28561 20632
C2670 500000 96.03 81.69 63838 39349
C3540 500000 100.00 99.96 67520 45441
C5315 500000 100.00 100.00 426629 180931
C6280 500000 100.00 100.00 53197 26440
C7552 500000 98.80 69.08 551981 273212
Average 500000 99.48 95.07 136829 75317

Table 5 presents the results of the verification test
that was obtained from the 500 000 input stimuli
generated randomly. The initial randomly generated
test detects all the stuck-at faults, except for the
circuits C2670 and C7552. The randomly generated
input stimuli especially were unsuitable for the detec-
ting of the stuck-at faults of the circuit C2670. The
randomly generated test does not fully cover the PP
faults for the mentioned circuits and the circuit C3540.
The number of the PP faults for the circuits of the
benchmark suite ISCAS’85 is known, therefore, the
PP fault coverage can be calculated. The number of
the essential activity vectors is shown in the column
under name #AV. The last column holds the number of
the selected input stimuli from set of the initial 500
000 random input stimuli. These stimuli form the
essential activity vectors. The selected input stimuli
allow shortening the verification test on the average
500 000 / 75317 = 6.64 times. We have to notice that
the selected input stimuli detect the same stuck-at
faults and PP faults, and they form the same essential
activity vectors as the initial random stimuli.
Therefore, the quality of the selected stimuli according
to parameters FC, PPC and AV does not decrease but
the number of them is 6.64 times less. The verification
test based on the selected stimuli allows shortening the
verification time in the same quantity except for the

circuit C7552, for which the verification time can be
less only about 2 times.

Let’s consider the suitability for the verification
of the functional test for the pin pair triplets PT faults
[12]. This test differs from the PP fault test that every
input pattern detects PP faults in pairs. The results are
presented in Table 6.

Table 6. The PT fault test

Circuit L FC% PPC% #AV
C432 873 100.00 100.00 2304
C499 3458 100.00 100.00 7015
C880 7011 100.00 100.00 12917
C1355 3481 100.00 100.00 7043
C1908 2901 99.62 100.00 16879
C2670 4575 100.00 100.00 13388
C3540 7175 100.00 100.00 35296
C5315 8578 100.00 100.00 66599
C6280 2016 100.00 100.00 41888
C7552 15409 99.91 100.00 127876
Average 5512 99.95 100.00 33120

As we can see, the use of PT fault test for the
verification allows shortening the length of test 75315
/ 5512 = 13.66 times in comparison with the length of
the verification test that is based on the selected
stimuli. The PT fault test detects more stuck-at faults,
detects all the PP faults, but it allows to form 136829 /
33120 = 4.13 times less essential activity vectors.

We also present the results of the PP fault test for
the comparison purposes (Table 7). The PP fault test is
5512 / 772 = 7.14 times shorter than the PT fault test.
The PP fault test detects fewer stuck-at faults, and it
allows forming 33120 / 7916 = 4.18 times less essen-
tial activity vectors.

Table 7. The PP fault test

Circuit L FC% PPC% #AV
C432 117 97.8 100.00 395
C499 1077 100.0 100.00 4462
C880 381 100.0 100.00 1810
C1355 1011 100.0 100.00 4384
C1908 620 96.6 100.00 5272
C2670 448 99.6 100.00 3001
C3540 515 98.9 100.00 4978
C5315 1169 100.0 100.00 20436
C6280 268 100.0 100.00 6478
C7552 2115 99.6 100.00 27942
Average 772 99.25 100.00 7916

As we can notice, the significantly shorter verifi-
cation test can detect almost all the stuck-at faults and
PP faults, but its ability to check the existence of the
terms of the logical function is much lesser. Therefore,
the dominant factor of the assessment of the quality of

The Use of a Software Prototype for Verification Test Generation

273

the verification test is the number of the essential acti-
vity vectors.

The procedure that selects the input stimuli from
the randomly generated ones for the formation of the
essential activity vectors is the verification test genera-
tion procedure. The quality of the verification test is
assessed by the number of the selected stimuli, which
depends on the termination condition of the genera-
tion. In such a way, the proportion of the number GP
of the randomly generated stimuli to the number AIP
of the selected stimuli is the indicator of the quality of
the verification test. This proportion shows how many
times the time of the verification is shortened and it
can be used as the termination condition of the gene-
ration.

The ratio GP/AIP is shown in 0 (column 2) when
500 000 random input stimuli were generated. We see
that this ratio does not exceed 10 for four circuits, and
500 000 random input stimuli are not enough in order
to obtain the high quality of the verification test for
these circuits. The smallest ratio for the circuit C7552
makes clear why the selected input stimuli do not
detect all the stuck-at faults. The ratio for the circuit
C2670 is larger than 10, but nevertheless some stuck-
at faults remain undetected. Of course, the ratio GP /
AIP can be set, for example, to 100, but the
experimental research revealed that the use of the
value of the proportion larger than 10 makes the
generation ineffective, because the generation selects
only few new activity vectors. In such a way, the
termination condition of the generation is tightly rela-
ted to the quality of the verification test.

Table 8. Ratio GP / AIP

Circuit GP/AIP Length TetraMAX
C432 40.25 73 57
C499 7.27 99 54
C880 29.41 78 62
C1355 7.27 99 86
C1908 24.23 142 118
C2670 12.70 122 105
C3540 11.00 242 167
C5315 2.76 193 130
C6280 18.91 115 43
C7552 1.83 309 211
Average 15.56 147 103

The obtained verification test can be the initial
basis for the construction of the manufacturing test in
order to detect all the stuck-at faults. The simple way
is to use the fault simulation of the synthesized circuit
and on this base to select the test patterns that detect
stuck-at faults. If the obtained verification test is too
large for the fault simulation, then this test can be
minimized on the base of the functional faults at the
functional level of the circuit. The input stimuli that
do not detect the new faults also should be removed,
and then the number of the remaining input stimuli is

quite similar to the number of the input stimuli
obtained at the gate level of the circuit. These numbers
are shown in the third and fourth columns of 0,
respectively. We see that the manufacturing test
obtained on the base of the verification test is on the
average 147 / 103 = 1.43 longer than the test obtained
at the gate level by the test generation tool TetraMAX.

6. Conclusion

The paper presents an approach to the generation of
the verification test, which is based on the software
prototype written according to the specification. The
formation of the essential activity vectors from the
randomly generated input stimuli decreases the
number of the input stimuli used for the verification.
The selected input stimuli that form the essential
activity vectors also can be used for the verification
without loss of the verification coverage. The number
of the input stimuli used for the verification and the
quality of the verification test depend on the
termination condition of the generation. The value of
this approach is confirmed by the fact that the selected
input stimuli detect the same stuck-at faults as the
initially generated test set. The essential activity
vectors and selected input stimuli can be augmented
by the adjacent input stimuli that differ by the single
value. The number of the essential activity vectors that
corresponds to the number of the verified terms of the
logical function is the measure of the quality of the
verification test. The larger number of the essential
activity vectors means the higher quality of the
verification. An ideal case is when the essential
activity vectors are obtained for all the terms of the
logical function. The verification test can be used in
order to obtain the manufacturing test.

References
 [1] K. Batcher, C. Papachristou. Instruction Randomiza-

tion Self Test For Processor Cores. Proceedings of the
17th IEEE VLSI Test Symposium (VTS’99), San Diego,
CA, USA, IEEE Computer Society, April 25-30,1999,
34-40.

 [2] Y. Lichtenstein, Y. Malka, and A. Aharon. Model-
Based Test Generation for Processor Design Verifica-
tion. Innovative Applications of Artificial inteligence
(IAAI), AAAI Press, 1994.

 [3] L. Fournier, Y. Arbetman, and M. Levinger. Logi-
cal Functional Verification Methodology for Micro-
processors Using the Genesys Test-Program Generator
– Application to the x86 Microprocessors Family.
Proceedings of the Design, Automation and Test in
Europe (DATE’99), Munich, Germany, March 9-12,
1999, 434-441.

 [4] S. Fine, A. Ziv. Coverage Directed Test Generation
for Functional Verification using Bayesian Networks.
Proceedings of the 40th Design Automation Confe-
rence (DAC’03), 2003, 286-291.

E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

274

 [5] T. Li, D. Zhu, Y. Guo, G. Liu, S. Li. MA2TG: A
Functional Test Program Generator for Microproces-
sor Verification. Proceedings of the 2005 8th Euro-
micro conference on Digital System Design (DSD’05),
2005, 76-183.

 [6] K.U. Bhaskar, M. Prasanth, V. Kamakoti, K. Ma-
neparambil. A Framework for Automatic Assembly
Program Generator (A2PG) for Verification and
Testing of Processor Cores. Proceedings of the 14th
Asian Test Symposium (ATS ’05), 2005, 40-45.

 [7] M. Behm, J. Ludden, Y. Lichtenstein, M. Rimon,
M. Vinov. Industrial Experience with Test Generation
Languages for Processor Verification. Proceedings of
the 41st Design Automation Conference (DAC’04),
2004, 36-40.

 [8] H. Al-Asaad, J.P. Hayes. Design Verification via
Simulation and Automatic Test Pattern Generation.
Proceedings of the 1995 International Conference on
Computer-Aided Design (ICCAD '95), 1995, 174-180.

 [9] I. Ugarte, P. Sanchez. Functional Vector Generation
for Assertion-Based Verification at Behavioral Level
Using Interval Analysis. Proceedings of the Eighth
IEEE International Workshop on High-Level Design
Validation and Test Workshop, 2003, 102-107.

[10] S.-W. Tung, J.-Y. Jou. Verification Pattern Genera-
tion for Core-Based Design Using Port Order Fault
Model. Proceedings of the 7th Asian Test Symposium,
1998, 402-407.

[11] D. Moundanos, J.A. Abraham. Using Verification
Technology for Validation Coverage Analysis and
Test Generation. Proceedings of VLSI Test Sympo-
sium, 1998, 254-259.

[12] E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas.
The Realization-Independent Testing Based on the
Black Box Fault Models. Informatica, 2005, Vol.16,
No.1, 19-36.

[13] E. Bareisa, V. Jusas, K. Motiejunas, R. Seinauskas.
Logical Functional Digital Systems Testing. Kaunas,
Technologija, 2006.

Received August 2008.

