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Abstract. This paper presents a recurrent fractal interpolation method (approach) for one-dimensional sets of real-
data. The method explores both the local collage idea, developed originally for image compression purposes, and the 
basic platform for generating of non-recurrent fractal interpolation functions – attractors of iterated function systems 
(IFS). The characteristic feature of the developed approach – the recurrent fractal interpolation functions are obtained 
by applying specialized correction procedures to the approximants of the real-data sets, i.e. to the attractors of local 
IFS, generated using self-similarities detected within the data under processing. 
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1. Introduction 

In engineering and science one often has a number 
of data points, as obtained by sampling or experiment, 
and tries to construct a function which closely fits 
those data points. This is called curve fitting or regres-
sion analysis. Interpolation is a specific case of curve 
fitting, in which the function must go exactly through 
the data points. 

Methods for modelling (fitting, interpolating, ap-
proximating) piecewise smooth curves and surfaces 
are abundant. “Rough” curves (for instance, mountain 
range silhouettes, noisy radio-signals, etc.) that are 
differentiable almost nowhere are generally more dif-
ficult to model accurately with the economy of para-
meters (say, using polynomial or spline interpolation 
approach). Fractal interpolation and approximation 
functions are attractive for their compact representa-
tion of real-data - “rough” shapes (one-dimensional 
images or signals). 

Fractal interpolation functions were founded over 
a decade ago and have been used mainly to represent 
uncertainty in the visualisation of scientific data and to 
imply the shape of a dropping leaf [1, 2]. Barnsley and 
Hutchinson were pioneers in the use of fractal func-
tions to interpolate sets of data [3-5]. Soon it became 
clear that fractal interpolants can be defined for any 
continuous function defined on a real compact interval 
[6, 7]. This method constitutes an advance in the 
techniques of approximation, since all the classical 

methods of real-data interpolation can be generalized 
using fractal techniques [8, 9]. 

Fractal interpolation functions (FIF) are defined as 
fixed points of transformations between spaces of 
functions using iterated function systems (IFS). The 
theorem of Barnsley and Harrington proves the exis-
tence of differentiable fractal interpolation functions 
[10].  

In the paper, a generalization of the FIF, called  the 
recurrent FIF, is proposed. Like the FIF, the recurrent 
FIF represents a function (signal, one-dimensional 
image) with a set of affine shear transformations (local 
IFS). However, whereas the FIF models the graph of 
the function out of smaller copies of itself, the 
recurrent FIF models the graph out of smaller copies 
of sections of the function. Interestingly, the local IFS 
based approach originally was developed and applied 
to fractal encoding of two-dimensional digital images 
[11, 12]. 

2. Fractal interpolation functions 

Suppose that a particular experiment consists in 
measuring values of a certain real-valued function F. 
Measurement results – the set of real-data 

2{( , ) R | 0,1, , }i ix F i∈ = … N i, where ( )iF F x= , for 
all 0,1, ,i N= … ; 0 1 Nx x x< < <… . 

Classically, F is assumed to be smooth, and the 
input points are interpolated with a single degree N 
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polynomial, or a piecewise smooth low-degree poly-
nomial (splines). Recent research has proved an alter-
native assumption that the function F is self-similar, 
and typically not smooth but fractal. 

We construct an iterated function system (IFS) 
whose attractor is the graph of a function 

. Such a function is called a fractal 
interpolation function (FIF) [3]. 

0: [ , ] RNF x x →

Let 0 0: [ , ] R [ , ] R ,i N Nx x x xω × → × 1, 2, ,i = … N

ie ⎞
⎟
⎠

1

, 
be affine (shear) transformations of the form 

0
( , ) i

i
i i i

a xx y
c d y f

ω ⎛ ⎞ ⎛⎛ ⎞= ⋅ +⎜ ⎟ ⎜⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝

, (1) 

where  is given as a parameter controlling the 
roughness of the function, and  and 

| |id <
, ,i i ia c e if  are 

determined either by the constraints 

0 0 1 1( , ) ( , )i i ix F x Fω − −= ( , ) ( , )i N N i i, x F x Fω =  

or by the “reflected” constraints 

1 1( , ) ( , )i N N i ix F x Fω − −= , 0 0( , ) ( , )i i ix F x Fω = , 

for all . For instance, in the case of 
former constraints, coefficients  and 

1, 2, ,i = … N
, ,i i ia c e if  are 

defined as follows: 

1
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f d

x x x x
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Given the metric 

1 1 1 1(( , ), ( , )) | | | |i i i i i i i id x F x F x x F Fθ− − − −= − + ⋅ − , (2) 

where 1θ = , for , and 1 2 0Nc c c= = = =…
min {1 | |} max{2 | |}ia icθ = − ⋅ , otherwise, it is 

shown that each  iω  has contractivity factor  

max{| | min{1 | |} 2, max{| |}} 1i i i is a a d= + − < . 

Hence, by the fixed point theorem, there exists one 
and only one function F satisfying the relationship 

1
( )N

ii
F Fω

=
=∪ , 

i.e. F can be represented as the union (collage) of 
smaller copies of itself [3]. 

In the section below we present a newly developed 
procedure (method) for constructing a generalization 
of the FIF, called the recurrent (local) FIF. The pro-
cedure comprises three steps – construction of a local 
IFS for a given set of input points (real-data), genera-
tion of an intermediate recurrent real-data approxi-
mation function and formation of a recurrent fractal 
interpolation function. It is worth emphasizing that the 
developed approach provides much more flexibility in 
representing “rough” curves.  

3.  Generating of recurrent fractal 
interpolation functions 

Like the FIF, the recurrent FIF models the graph F 
with a set of affine (shear) transformations, i.e. with 
an IFS 2

1 2{R ; , , , }Nω ω ω… . However, whereas the FIF 
models the graph F out of smaller copies of F, the 
recurrent FIF models the graph of F out of smaller 
copies of sections of F. 

For each {1, 2, , }i N∈ … , we have indices  and 
 such that  

ij

ik

1 1( , ) ( , )
i ii j j i ix F x Fω − −= , ( , ) ( , )

i ii k k i ix F x Fω = , 

and 1| | |
i ik j i i |x x x x −− > − . If all of the shears are 

contractive under (2), then there is one and only one 
graph F that satisfies the relationship (local collage 
condition) 

1
( [ , ])

i i

N
i j ki

F F x xω
=

=∪ . 

Thus, given a sequence of input points ( , ) ,i ix F  
we can construct a recurrent IFS that interpolates these 
points by forcing the curve that lies between ( , )i ix F  
and  to be a contracted copy, say, of the cur-
ve that begins at 

1 1( ,i ix F+ + )
)1 1( ,i ix F− −  and ends at . 2 2( ,i ix F+ + )

In the sections below, we shortly present a develo-
ped approach for generating of recurrent fractal 
interpolation functions for real-data sets, with the use 
of local IFS. 

3.1. Constructing local iterated function systems 

Let  be the set of 
real-data, i.e. the set of input points. Without loss of 
generality, we assume that , for all 

2{( , ) R | 0,1, , }i iS x F i N= ∈ = …

1 2n
i ix x h+ − = =

0,1, , 1i N= −… ; here {1, 2, }n∈ … . 
To construct a local collage-based IFS, associated 

with the given real-data set , the latter set is 
partitioned at two scales (one twice the other), i.e. into 
the fixed size range subsets (blocks)  

S

1 ({ , , , }i i i iR F F Fλ λ λ+ +1)= … , 

supported by the segments , ( 1)[ ,i ix xλ λ + ]
0,1, , 1i N λ= −… a b , and the domain subsets (blocks) 

1 ({ , , ,j j j jD F F Fλ λ λ+ + 2)}= … , 

supported by the segments , ( 2)[ ,j jx xλ λ + ]

0,1, , 2j N λ= −… a b ; here 2 pλ = , , 
and 

{1, 2, }p∈ …
xa b  stands for the integral part of the real number 

x. As it can be seen, the former (range) blocks are non-
overlapping and contain every input point. The latter 
ones (domain blocks) may overlap and not necessarily 
contain every input point. 
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The essence of the approach is the pairing of each 
range block  to a domain block  such that the 
mean squared error 

R D
( , )R Dδ δ=  is minimal. 

The search for the best domain block jD  
( {0,1, , 2}j N λ∈ … a b− ) for a particular range block 

 (iR 0,1, , 1i N λ= … a b− ) is complicated by the re-
quirement that the range block matches the trans-
formed version ˆ

jD  of the domain block jD , i.e. the 

block , where: 1 (
ˆ ˆ ˆ ˆ{ , , , }j j j jD F F Fλ λ λ+= … 1)+

ˆ
j jF Fλ λ= , , ( 1) ( 2)

ˆ
j jF Fλ λ+ +=

1
21

1ˆ
3j r j r s+s

F Fλ λ+ +=−
= ∑ 1,2, , 1r, λ= −… . 

The mean squared error ( , )i jR Dδ δ=  for any pair 
“range block  - domain block iR jD ” is found using 
an expression 

( )
1 2

21

1

1 ˆ( , ) ;
1i j i r i j rr

R D F k Fλ
λ λδ

λ
−

+ +=

⎛ ⎞= Δ − ⋅Δ⎜ ⎟−⎝ ⎠
∑

)

)

 

here:  and  (i r i r i i rF F y xλ λ λ+ + +Δ = −
ˆ ˆ (j r j r j jF F y xλ λ λ+ + +Δ = − r , for all 1,2, , 1r λ= −… ; 

 is the equation of a straight line connecting 
the points 

( )iy y x=
( , )i ix Fλ λ  and , whereas ( 1) ( 1)( ,i ix Fλ λ+ + )

ˆ ( )jy y x=  is the equation of a straight line connecting 

another two points, ˆ( , )j jx Fλ λ  and ;  
(

( 1) ( 1)
ˆ( , )j jx Fλ λ+ + ik

0,1, , 1i N λ= −… a b )  is chosen to draw the range 
and the domain blocks closer, in other words, to 
minimize the value of δ , i.e. 

1

1

1 ˆ
i i rr

j

k Fλ
λ λα

−

j rF+ +=−
= Δ ⋅ Δ∑ , 

for 1 2
1

ˆ( )j j rr
Fλ
λα −

+=
0= Δ∑ ≠ , and , otherwise 

(Figure 1). 
0ik =

As a result of above calculations, a local 
IFS 2

1 2 1{ ; , , , }NR λω ω ω −a b…  is constructed. Each 
transformation iω  ( 0,1, , 1i N λ= −… a b ) is determi-

ned by a triple of numbers ,  where the 

coefficient  is assumed to be:  , if 

ˆ, , ii j k〈 〉

îk ˆ 1ik = − 1ik < − ; 

iîk k= , if 1ik ≤ ; ˆ 1, if 1i ik k= > . Let us note here 

that îk di= , for all 0,1, , 1i N λ= −… a b  (expression 

(1); Section 2). To say more,  is introduced to 
ensure convergence in generating attractor of the 
constructed local IFS. 

îk

 

1+′Δ jF

ixλ 1ixλ +  ( 1)ixλ +  ( 1)jxλ +

( 1)iFλ +

1iFλ +Δ

( )iy y x=

( 1)
ˆ

jFλ +

ˆ ( )jy y x=

1
ˆ

jFλ +

ˆ
jFλ

jxλ 1jxλ +

 
Figure 1. Organizing local collage for the set of real-data ( 32 8λ = = ) 

3.2. Generating recurrent approximation functions 

The set of ordered triples ,  ˆ, , ii j k〈 〉
0,1, , 1i N λ= … a b− , obtained in the previous section, 

is processed in a consecutive order. 
Since 2 pλ = , it becomes clear that precisely p 

iterations are needed to reconstruct the initial set of 
real-data, i.e. to get an approximant of the set 

2{( , ) R | 0,1, , }i ix F i N λ∈ = … a b . Since, for each i, 
, additional n iterations are necessary 

to fill in “gaps” between the input points ( ,
1 2n

i ih x x+= − =

)i ix F , 
0,1, ,i N λ= … a b . 
So, if we denote the whole set of points on the 

number line (monitor’s screen) by  

2{( , ) R | 0,1, , }i ix F i N λ′ ′ h∈ = … a b ⋅

)

, then the first 
iteration of the generation process implies (Figure 2): 

 ( , ) : ( , ) ( ,h i h i i j j i ix F x F xλ λ λ λ λ λFω′ ′ = = , 

 ( 1 2) ( 1 2) ( 1) ( 1)( , ) : ( ,h i h i i j jx F x Fλ λ λ λ )ω+ + + +′ ′ = , 

 ( 1) ( 1) ( 2) ( 2)

( 1) ( 1)

( , ) : ( , )
( ,

h i h i i j j

i i

x F x F
x F

λ λ λ λ

λ λ

ω+ + + +

+ + ) ,
′ ′ = =

=
 

for all  0,1, , 1i N λ= −… a b . 
The s-th iteration ( 2,3, ,s p n= … + ) yields the 

following results (for all 0,1, , 1i N λ= −… a b ): 

1 1

( (2 1) 2 ) ( (2 1) 2 )

( (2 1) 2 ) ( (2 1) 2 )

( , ) :

: ( , )
s s

s s

h i t h i t

i h j t h j t

x F

x F
λ λ

λ λ
ω − −

+ − + −

+ − + −
;

′ ′ =

′ ′=
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here 11, 2, , 2st −= … . 
Application of the local collage to the above gene-

ration process leads to the conclusion that the resulting 
function (curve), in general, does not pass through the 
initially given input points , whose indi-
ces 

2( , ) Ri ix F ∈
i tλ≠ ⋅ , 0,1, ,t N λ= … a b . This fact distorts the 

essence of the interpolation problem. In the next sec-
tion we propose a correction procedure providing a 
way out of a difficulty. 

3.3. Passing from recurrent approximation 
functions to fractal interpolation functions. 

The final fractal interpolation function (curve) 
associated with the given set of real-data  

2{( , ) R | 0,1, , }i iS x F i N λ λ= ∈ = ⋅… a b   is obtai-
ned by evaluating anew ordinates of the points in the 
blocks supported by the segments , ( 1)[ , ]h i h ix x +

0,1, , 1i N λ λ= ⋅ −… a b .  
The given below procedure serves the purpose – 

for each value of i ( 0,1, , 1i N λ λ= ⋅ −… a b ) the 
necessary corrections are made: 

( ):hi r h i r
a h r brF F

h+ +

− +′′ ′= + , 

for all values of 0,1, ,r h= … ; here: hi h ia F F ′= − , 

( 1) ( 1)h i h ib F F+ +′= − . 

ixλ ( 2)jxλ +jxλ( 1)ixλ +

ixλ ( 2)jxλ +  jxλ( 1)ixλ +

Iteration 1

ixλ ( 2)jxλ +jxλ( 1)ixλ +

Iteration 2

 
Figure 2. Generating recurrent approximation functions (curves) 

The sought-for fractal interpolation function (cur-
ve), associated with the initial set of real-data S 
(Section 3.1), now is represented by the newly 
generated set of points 

 2{( , ) R | 0,1, , }i iS x F i N λ′′′ ′= ∈ = … a b h⋅ . 

4. Experimental results 

To examine application of the proposed theoretical 
developments to practice, an exploratory test has been 
carried out. Computer realization (Programming lan-
guage – .NET C#) was done by Edvinas Medišauskas 
– Master of Science in Applied Mathematics. 

The objective set of real-data was formed using a 
seismogram of the earthquake, as recorded on the 
British Geological Survey (BGS) seismograph net-
work (Figure 3). Herewith, the earthquake measuring 
3.5 on Richter scale has shaken parts of Dumfries and 
Galloway (Scotland; December 26, 2006; 10:40 
GMT). 

Worth emphasizing that the “shape” of an earth-
quake, it was observed some time ago, is self-reflec-
tive. Warning tremors and aftershocks are like mini-
quakes. This sort of behaviour is difficult to model 
with traditional curves but seems well suited for 
fractals. 

To construct the working set of real-data (input 
points) S, every fourth pixel value of the seismogram 
(Figure 3) has been retrieved, i.e. 

. So, the step size 2{( , ) R | 0,1, ,316}i iS x F i= ∈ = …
2

1 2 4i ih x x+= − = = , 0,1, ,315i = … , and two itera-
tions were needed to fill in gaps between the inter-
polation points. 

Initially, for organizing of a local collage, the para-
meter λ  was equated to  (Figure 4). After six 
iterations and necessary corrections a final recurrent 
fractal interpolation function has been generated 
(Figure 5). 

42 16=

One can easily see that the generated fractal inter-
polation curve follows the overall shape of the real 
earthquake (Figure 6; the real-data points are coloured 
in black). 

To make comparative analysis results more pre-
cise, the mean squared error δ  and the proportionate 
mean squared error δΔ  were found, namely: 10.61δ =  
and 100 % 3.4 %Bδ δΔ = ⋅ =  (here B indicates the 
range of the seismogram). Tolerable modelling results 
were obtained also for 8λ = , i.e.  10.61δ =  and 

4.1 %δΔ = . 
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Figure 3. The seismogram of the earthquake (bitmap image of size 3792 402× ), as recorded on the BGS seismograph network 

 
Figure 4. The digitized third of the seismogram ( 316N = , 22 4h = = ) and sampling points  

for organizing of a local collage ( 42 16λ = = ) 

 
Figure 5. The fractal interpolation function, obtained after performing six iterations 

 
Figure 6. Visualization of comparative analysis results (the seismogram is coloured in black)  

5. Conclusion 

In the paper, a challenging approach (method) to 
interpolation (modelling) of “rough” curves (signals, 
one-dimensional images) by fractal techniques is 

proposed. The method is built on the analysis of self-
similarities found within the sets of real-data under 
processing, explores recurrent iterated function sys-
tems, local collage relationships and a newly develo-
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ped procedure for passage from fractal approximation 
models of “rough” shapes to fractal interpolation ones. 

The obvious advantage of the developed approach 
– calculation complexity marginally depends on the 
amounts of real-data sets. Preliminary experimental 
analysis results are promising - shape modelling errors 
are tolerable. 

Despite the fact that the recurrent FIF models are 
general enough and can be used to describe a wide 
variety of shapes, they also require that the “domain 
blocks” of each affine transformation were the union 
of “range blocks” (Section 3.1). In the future, we are 
to concentrate our attention on a special class of 
recurrent IFS which allow the “domain block” to be 
arbitrary. 

Finally, we observe that the developed fractal 
“rough” curve modelling approach can be successi-
vely and profitably employed under circumstances 
where the measurement (experimental, observation) 
results are obtained at a great cost or, say, the duration 
of measurements themselves is time consuming. 
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