
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.1

SOFTWARE ENGINEERING PROCESS AND ITS IMPROVEMENT
IN THE ACADEMY1

Eduardas Bareiša, Eimutis Karčiauskas, Virginija Limanauskienė,
Romas Marcinkevičius, Kęstutis Motiejūnas

Software Engineering Department, Kaunas University of Technology
Studentų 50-406, LT-51368 Kaunas, Lithuania

Abstract. Changes in software technology and models for software development require commensurate change in
the education of software developers. One way of teaching software engineering is to organize a course around a
project similar to a real industrial project. The educational community itself is increasingly moving from lecture-format
courses to team projects, problem-solving, direct involvement with actual development, and other formats that require
students to exercise the ideas they are learning. In this paper we investigate the software engineering process
improvement at Kaunas University of Technology to let students experience the realistic software engineering
problems and environments during their software engineering education. Organizing the software engineering process
we implemented some key practices of repeatable level of Capability Maturity Model.

1. Indroduction Apart of the needed technical preparation, the SE
market requires graduated people to be dynamic,
collaborative, and professionally independent. Compa-
nies in the field often observe that graduated emp-
loyees need first a training period to learn how to put
into work their professional skills in real projects.

Software Engineering (SE) is not simply concer-
ned with technical activities, but it also involves both
managerial aspects, e.g., definition, organization and
planning of multiple interrelated activities, and colla-
borative aspects, e.g., information exchange and coor-
dination of people working to fulfil a common
objective.

SE undergoes continuous evolution, because it is a
relatively young discipline and because it strongly
depends on evolution in both current technology and
methods. For these reasons, SE study programs do not
adhere to any common structure, but they rather try to
answer requirements of the local market’s reality.
Hence, both theoretical and practical aspects tackled
by the programs are diverse. Many educators choose
projects as the educational tool to meet SE require-
ments of both industrial and academic sides. For
instance, the SE course at Politecnico di Torino [3] is
based on a project carried out in collaboration with an
industrial organization playing the role of the custo-
mer, and a general process model formalized in a qua-
lity manual given to the students. The overall objec-
tive of this paper is investigating of the SE process
improvement at Kaunas University of Technology
(KUT) to let students experience the realistic software
engineering problems and environments during their
SE education.

Changes in software technology and models for
software development require commensurate change
in the education of software developers. First, the edu-
cational institutions themselves must be able to adapt
quickly, both in the content of their offerings and in
their ability to exploit new technology in support of
education. Second, the educational institutions must
prepare their graduates to assume responsibility for
upgrading their own skills throughout their careers [1].

Students are in general skilled in programming and
up-to-date in current technology innovations, but have
a poor SE background. I.e., they have no experience in
applying known SE concepts and methods to practical
development problems. Also, they are not used to
teamwork, i.e., students often work individually and
dislike collaboration, and mutual responsibilities and
they are not used to communicate and present fruit-
fully their work, or to discuss with people with a dif-
ferent background [2].

1 This work was supported by Lithuanian State Science and Studies Foundation, award B-06/2003

63

E. Bareiša, E. Karčiauskas, V. Limanauskienė, R. Marcinkevičius, K. Motiejūnas

2. Background. SE study program at KUT 3. To teach to evaluate, analyze and simulate soft-
ware system quality factors in order to ensure a
disciplined and controllable development of a
software system.

The aim of Software Engineering Master Studies is
to prepare software development leaders – the future
chief engineers, project executives, experts that can
both acquire and implement efficient design methods
and new technologies in practice. The study program
provides the possibilities for preparing of professional
development of software systems and for scientific
research. Both in the world and in Lithuania the
demand for software projects executives of high quail-
fication is large. Software Engineering Masters will be
able to work in various Lithuanian and foreign infor-
mation technology and telecommunication enterprises.

4. To teach to choose tools, methods and design me-
thodology applicable to the development environ-
ment.

5. To provide with the experience of organizing
individual and team work and with skills of com-
municating and collaborating professionally.

6. To teach to understand and to be able to improve
the software engineering process.

7. To develop the understanding of product quality,
price, schedule abidance importance in software
system production. 2.1. Program reasoning and relevance

8. To teach to prepare technical documentation com-
pletely and consistently, to present technical con-
cepts in both written documents and oral presen-
tations.

In the first NATO Software conference that was
held three decades ago Software Engineering was
defined as a discipline and a profession. However, the
ultimate formalization of this profession was perfor-
med only in the last decade and many universities
incorporated Software Engineering studies in their
study plans.

2.3. Study program

Software Engineering Master studies last 2 years
(4 semesters). The program consists of obligatory and
elective modules, research and Master’s thesis (that
together make 80 credits). The overall scope of theore-
tical study modules consists of 44 credits (55% of the
whole study program); the scope of modules for
research and practical design together with the Mas-
ter’s thesis consists of 36 credits (45% of the whole
study program).

Currently Software Engineering knowledge areas
are defined and accreditation regulations of specialist
education programs are discussed globally. In regula-
rizing Software Engineering knowledge areas, the
study content and programs the main task was to sepa-
rate them from the appropriate computer science and
computer engineering areas and study programs [4].

The main work in defining Software Engineering
Body of Knowledge was done by SWECC (Software
Engineering Coordinating Committee). The second
stage (Stone Man) of Software Engineering Studies
program project was presented in 2000 [5]. Software
Engineering Bachelor and Master Programs of 27
universities from various countries were analyzed in
the first stage of the project (Straw Man). It was found
out that only four universities prepare the Bachelors of
this area and the rest universities prepare Masters.
Software Engineering Master Study Program in the
Informatics Faculty of KUT was created under the
recommendations of SWEBOK.

The continuation of Bachelor‘s study program, the
readiness for the research and design is declared in
Master‘s study program. The study program corres-
ponds to the latest Software Engineering development
trends; its structure covers all stages of software
design process. One way of teaching software engi-
neering is to organize a course around a project similar
to a real industrial project [2]. The educational
community itself is increasingly moving from lecture-
format courses to team projects, problem-solving, di-
rect involvement with actual development, and other
formats that require students to exercise the ideas they
are learning [1]. The development of the real industrial
software systems and practice are designated for the
skills nurture of the students. Project lasts 3 semesters
and is implemented using 4 research modules: “Re-
quirements Specification”, “Software System Archi-
tecture Analysis”, “Information Technologies in De-
sign Management” and “Software Implementation
Research” (practice) (Figure 1). Master students have
to apply knowledge acquired in theoretical module
studies in practice and with creativeness, therefore one
can say that practical design “feeds” on the resources
of theoretical module studies. The project is a pivot of
the SE study program at KUT. During these three
semesters Master students have to develop the soft-
ware system and implement it at the client’s
enterprise.

2.2. Study program’s objectives

The objectives of the Software Engineering Master
Study Program are:
1. To combine theoretical knowledge and practical

skills in order that students would be able to de-
sign and produce efficiently software systems
which fulfil users’ and clients’ requirements.

2. To provide students with knowledge and expe-
rience in such knowledge areas: Engineering Eco-
nomy, Software Requirements, Software System
Design, Testing, Software System Maintenance,
Software Engineering Management, Software En-
gineering Processes, Software Engineering Tools
and Methods, Software System Quality.

64

Software Engineering Process and its Improvement in the Academy

65

The first semester. In the first semester the main
attention is paid to requirements analysis and specifi-
cation (modules “Software Requirements Analysis”
and “Simulation and Validation of Systems”). In such
a way Master students learn methods and tools of the
requirement analysis already in the beginning of the
study program and afterwards they can use the
acquired knowledge to form the requirements specifi-
cation of the objective area under computerization
according to the Master thesis. Two courses that gene-
ralize software engineering area – “Software Engi-
neering Process” and “Software Engineering Manage-
ment” – are delivered together with the above mentio-
ned courses; these courses are purposed for expanding
and deepening knowledge acquired in Bachelor’s
studies. During project development students familia-
rize with the standards, prepare proposal, plan and re-
quirement specification of the project.

The second semester. During the second semester
the main attention is paid to the software system
architecture design stage. Master students deepen their
knowledge in architectural and detailed design of
software systems (the module “Software Design”);
software design strategy and methods are introduced
in this module. Models of the internet and the intranet,
documentary and structural objects data models, data
model formation according to the organization model
are presented in the module “Data Design”. Software
verification and validation methods, functional and
structural testing methods are analyzed in the module
“Software Testing Methods”. During project develop-

ment students prepare system and detailed architec-
ture.

The third semester. Only one module which does
not depend to the research ones is in the third
semester; this module is “Software Development
Tools”. CASE tools and their usages throughout the
whole software life-cycle are analyzed in this module.
Practice significance has to be highlighted. During the
practice the research is performed in a real enterprise
under the guidance of the department and the repre-
sentative of the enterprise; an additional material for
the Master thesis is obtained here. The aims of the
practice are to deepen software engineering know-
ledge, to analyze the management of the software
design enterprise and of the projects, to familiarize
with design technologies used in the enterprise, the
applied standards, business environment, the metho-
dology of negotiation with clients, and to acquire
skills of working in the organization. While Lithuania
integrates into the EU, it is important to prepare pro-
fessionals properly in order that our enterprises would
be able to compete and to collaborate with the
enterprises from other countries. Enterprises wish pro-
fessionals with experience, especially with interna-
tional experience. The only way for university gra-
duates to acquire experience is practice. However it is
difficult to find Lithuanian companies designing high
quality software which would welcome the trainees.
Consequently the possibility to practice abroad is very
important.

sem.
Practice

sem.
Electives

SE testing
methods

Architectural
analysis

sem.
SE

management

Requirements
analysis Requirements

specification

SE tools IT in project
management

sem.

SE quality
analysis

Master
thesis SE evolution

Data
design

Program
design

4

3

2

1
SE process

Validation
of systems

Figure 1. Project as pivot of the SE study program at KUT

E. Bareiša, E. Karčiauskas, V. Limanauskienė, R. Marcinkevičius, K. Motiejūnas

The fourth semester. During the fourth semester
the main attention is paid to the Master thesis. Two
modules are delivered; they complete software life-
cycle analysis. Modules are “Software Evolution” and
“Software Quality Analysis”. One of the fundamental
Master thesis sections is purposed for analyzing the
quality of software designed during the 1-3 semesters,
for its experimental research and refinement, so the
material presented in the above mentioned modules is
an important support for preparing of Master thesis.

3. The realization of teaching by designing
(an educational model)

The main principle of study system is the whole-
ness of science and studies and design skills training,
based on systematic and autonomous work of a stu-
dent. The importance of practical design is especially
highlighted. Master project themes and practice places
are chosen according to competence and qualification
of students; in order to evaluate this Master students
qualification evaluation survey is performed at the
beginning of the first semester. In order that students
would apply and deepen theoretical knowledge of
general matters in real design, they design a large
software system and their individual research schedu-
les and deliverables are coordinated. In each stage of
design within the given time students create products
that have to fulfil requirements set in advance. Stu-
dents may use either document templates from the
client‘s enterprise or from the Master design study
program (in the MS Word, MS Project or HTML
formats). The purpose is to train methodical work
skills in a real industrial organization. Therefore the
„penalties“ system is used for the deviation from the
project schedule.

E. learning is widely used in studies. Studies
management information is public and available on
the Internet:
• All the information about the modules is placed in

the university study modules database (http://
www. ktu.lt) and is available for the Master stu-
dents without restraints.

• The learning material is placed by lecturers in
their Internet sites.

• Information on research coordination is published
in the Internet site http://www.soften.ktu.lt/~virga/
mag_atmintine. Project themes, document temp-
lates, examples, standards, requirements for deli-
verables, schedules, requirements for skills, pro-
ject and software quality requirements are placed
there.

• Project theme suggestions are published in the
Internet.

• For the management of personal research docu-
ments Master students create their project infor-
mation systems where intermediate products and
documents of the project are placed. Such
information management systems are private;
they can be accessed only with passwords as this
is required by the majority project customers.

• Information on software process improvement is
published in the Internet site http://proin.ktu.lt
/pkp/pkbm/index2.php.

• Hot Master studies’ problems are discussed in the
forum http://proin.ktu.lt

• Lecturers communicate with Master students
through the e-mail, in seminars and individual
consultations.

In the end of each semester Master students pre-
pare a report on the work that has been done and
present it in the seminar.

4. Evaluation of the experience of teaching by
designing

Evaluation should involve an assessment of the
product produced, and an analysis of the effectiveness
of the process used to create the product. The aim of
evaluation is two-fold: to recognise those strategies
and techniques which proved effective during the
course of the project so that their use may be rein-
forced or expanded; and to identify areas in the
process and product that need to be improved in the
next project [6].

Increased understanding
of the software processSoftware

process
Software process

improvement

Evaluation

Figure 2. The link between the software process and the evaluation process

66

http:// www. ktu.lt/
http:// www. ktu.lt/
http://www.soften.ktu.lt/~virga/ mag_atmintine
http://www.soften.ktu.lt/~virga/ mag_atmintine
http://proin.ktu.lt /pkp/pkbm/index2.php
http://proin.ktu.lt /pkp/pkbm/index2.php
http://proin.ktu.lt/

Software Engineering Process and its Improvement in the Academy

67

The benefit of evaluating a software project is greater
understanding of the software project organization,
software development organization and people that are
involved. This understanding is essential for the abili-
ty to perform software process improvements.

The link between the software process and the
evaluation is illustrated in Figure 2. This is a rather
simplified illustration; the actual evaluation should be
seen as a part in the software process. It is not enough
to understand the process and then to improve it; goals
need to be set. These goals have to be defined before
the evaluation; otherwise, the collection of informa-
tion can get out of hand. Furthermore, unnecessary in-
formation will be collected if goals are not defined [6].

After three years of studies according to the Soft-
ware Engineering study program and having, alas,
almost no feedback with manufacturing and scientific
research institutions it is difficult to draw wider con-
clusions about the merits and demerits of this edu-
cation model. On purpose to fill this gap at least in
part after the completing of Master thesis the students
and practice tutors answer an anonymous question-
naire. The results of teaching by designing and the
assessments are presented below.

Master project. Selecting projects the priority is
to such ones that come from manufacturing. Master
Project topics corresponded to occupational interests
of 90% students. Master students admitted in 2001
and 2002 developed software systems ordered by such
firms: “Baltic Software Solutions“, Join-Stock Com-
pany Elsis, LKSoft Baltic, LKSoft Baltic Kaunas,
Join-Stock Company Singleton Labs, "IBS Baltic", the
Institute of Cardiology, Join-Stock Company“Virtuali
tikrovė” (Virtual Reality), the enterprise of T. Valiu-
kėnas, Lithuanian Naval Forces, Join-Stock Company
“Vičiūnai”, the Institute of Information Technologies,
the National Institute of Forestry, Join-Stock Company
“Failanas”, H&S Qualita' nel software S.p.A (Italy),
Navita srl (Italy).

Assessments:
• The average grade for the project quality stated by

Master project tutors is 9.72;
• Master students evaluated their projects on the

average 8.33;
• The average grade for the Master project tutors’

consultations stated by students is 8.28;
• The average grade for Master project design

process arrangement stated by students is 7.71;
• 43% of students referred the number of Master

project deliverables as too large, 57% - as
sufficient and no student referred this number as
too small.

Practice. New relations were settled with the en-
terprises from Italy, Norway and Germany; some
students practiced there. All the executives of both
Lithuanian and foreign enterprises evaluated the
students’ qualification, self-discipline and personal
features positively. However during the practice not

all the Master students performed the tasks that
correspond to the practice goals. It has to be
mentioned that the number of enterprises involved in
large software systems design in Lithuania is low.

Assessments:
• The average grade for the Master students’ work

in the enterprises stated by practice tutors is very
high – 9.93;

• Only 76% of students consider the practice as
useful for their skills development;

• The practice place corresponded to the Master
project topic for 62% of students.

5. SE process improvement

Software quality and software process improve-
ment are central topics in modern IT industry. How-
ever, there is no standard consensus about how to
educate future software engineers in such topics. Soft-
ware quality and software process improvement com-
prise both technical and managerial issues. Among the
technical, we list design, testing, inspection, and con-
figuration management. On the other hand, the quality
and improvement models, like Capability Maturity
Model (CMM) [7], ISO 1554 (SPICE) [8], Bootstrap
[9], etc. derive from managerial and organisational
theories. When teaching technical methods, such as
design, one can employ the same educational methods
that are commonly used to teach programming langua-
ges or mathematics. First, the teacher explains the
method and provides examples. Then, the students are
asked to solve toy problems, alone or in groups, by
employing the method. This educational method does
not properly work when applied to teaching of the
managerial part of software process improvement and
software quality [10].

Concerning the SE process organization, the use of
a defined process model is an important step forward
as it permits the students to better understand the work
to be done, and thus better focus on engineering acti-
vities [2]. The process model followed by the students
at KUT is a waterfall process model. The process mo-
del is organized into three main development phases.
The requirement engineering phase focuses on use
case driven requirement engineering by refining the
initial high-level use case specification. The construc-
tion phase consists of both object-oriented modelling
and implementation, whereas the testing phase focuses
on both unit and integration testing, and produces
documentation of test specifications and results. All
phases produce documentation of the corresponding
results.

Software process improvement concepts, applied
in an effort to increase productivity and quality in
industry are also needed in the academic environment.
By applying process improvement we can prepare
students for the future and simultaneously improve
our own understanding and teaching of the software
engineering. The reasoning is, if attention to software

E. Bareiša, E. Karčiauskas, V. Limanauskienė, R. Marcinkevičius, K. Motiejūnas

process improves the commercial software develop-
ment environment, then the application of software
process techniques should also strengthen the class-
room environment. Two positive effects could be
expected. First, successful experience with the tech-
niques on the class project would result in students
even better prepared to meet the challenges of modern
software technology. Second, the use of quality impro-
vement techniques, applied to the software enginee-
ring project, would be a step in the direction of impro-
ving academic education [11].

Software process issues become even more impor-
tant in the classroom, working with inexperienced
students. Using the CMM [7] role definitions and job
descriptions in classes can ease students transition to
working as a cohesive software engineering team in a
professional environment. They have a better appre-
ciation of why software development can be so diffi-
cult and it gives students a high-level model for
reducing this complexity. The transfer of knowledge
from university to industry should begin to include
process material in software engineering classes. Even
if they do not apply most of the ideas on a class
project, students can gain a clearer idea of the compli-

cations inherent in developing large software products
and how they can be managed [11].

The most common way of transforming a student
project into a real industrial experience is the involve-
ment of an industrial organization to play the role of
the customer, see [6, 12]. This is a valuable for en-
suring that the project be a successful educational
experience for the students who feel in fact strongly
motivated. However, this choice requires a lot of work
from both academic and industrial sides. Other ways
of transforming a student project into a real industrial
experience is to adopt industrial CASE tools, indust-
rial standards and/or a process model from an indust-
rial organization [2, 13].

The Capability Maturity Model developed by the
Software Engineering Institute provides a theoretical
framework for the software engineering process im-
provement. This model consists of five levels of
maturity and the key practices that organizations must
implement to achieve each level. Table 1 provides a
definition of the various levels of sophistication and
allows the measurement of one organisation against
another [7].

Table 1. Maturity levels defined in Capability Maturity Model

Level Description
1. Initial Software process is ad hoc and occasionally chaotic. Few processes are defined and success

depends upon individual effort and heroics.
2. Repeatable Basic project management processes are established to track cost, schedule and functionality. The

necessary process discipline is in place to repeat earlier successes on projects with similar
applications.

3. Defined The software process for management and development activities is documented, standardised
and integrated into the organisation. All projects use an approved, tailored version of the process.

4. Managed Detailed metrics of the software process and product quality are collected. Both the software
process and products are quantitatively understood and controlled.

5. Optimised Continuous process improvement is enabled by the quantitative feedback from the process and
from piloting innovative ideas and technologies.

As a rough guide, most software development

organisations would like to be at, or would be satisfied
with level 3; fewer reach level 5. However, based on
observations most organisations have a process flip-
flop between levels 2 and 1. Those with no process at
all would undoubtedly remain at level 1, with the em-
phasis on individual effort and heroics for any degree
of project success [14].

Of course, the maturity of software engineering
process at all or almost at all universities is at initial
level. Organizations at the initial level are assumed to
have a chaotic software engineering process and they
would need to implement some key management
practices: Requirement Management; Software Project
Planning; Software Project Tracking and Oversight;
Software Subcontract Management; Software Quality
Assurance; and Software Configuration Management.
These management practices help to put in place a

basic disciplined process with the aim of obtaining a
repeatable process.

Improved process maturity results in an increased
productivity, better quality and more accurate schedule
time. However, it is difficult for most organizations to
even achieve the first step of the ladder (Level 2),
since there is not a practical implementation strategy
for the key practices within each level. There is a need
for determining an implementation strategy for the
key practices within each level according to the sup-
port they provide each other [15].

On the other hand, small software organizations,
and small team projects (such are all students projects
at universities) may find it difficult to achieve higher
levels of maturity according to the CMM, since many
of the key practices suggested by this model are
inappropriate to small businesses and projects. Small
project teams cannot cope with the overheads
produced by the amount of documentation required by

68

Software Engineering Process and its Improvement in the Academy

the CMM and they must use combined documents to
reduce time. In small projects, teams usually have a
flat structure, resulting in developers being assigned
several roles due to scarce resources. This contrasts
with the team structure and positions suggested by the
CMM practices and makes the implementation of
some practices difficult [15].

• Design process corresponds to the software life-
cycle;

• The relation with manufacturing is realized
through practice;

• Software engineering process includes some key
practices of repeatable level of CMM model.

• The practice of Master students in foreign soft-
ware design companies allows the staff of the
Informatics faculty gaining experience from the
Western Europe enterprises, being aware of
contemporary requirements for professionals;

Organizing the software engineering process at
KUT we strive to implement some key practices of
repeatable level, that are appropriate for student
projects. Below we will shortly summarize the main
results of software engineering process improving at
KUT. • IT tools widely used in education for the collabo-

ration and the communication develop contempo-
rary work organization skills;

Requirements management. The requirements
elicitation phase is standardized. To achieve this, we
have created a requirements analysis template with
standard sections. The requirements document is sub-
sequently used for controlling the requirements chan-
ges or/and the introduction of new requirements at any
time and for the acceptance of the final product by the
client and by the teacher. Different versions of the
requirements document are kept and each of these
versions includes the requirements changes made to
the previous one.

• The tool of e. learning – Master studies site on the
Internet allows presenting the latest information,
coordinating the design, having a feedback with
the students.

Problems that have to be solved:
• A week feedback with manufacturing and re-

search institutions;
• Not all the Master students practise in manufac-

turing enterprises; Project planning and tracking. The project plan-
ning and tracking process is supported by Microsoft
Project tool. The students create an initial plan, which
subsequently is continually updated and refined. The
Microsoft Project allows us to: keep track of actual
versus estimated; produce status report at any time,
earlier recognize risks.

• The internet system for the management of Mas-
ter project design has to be created.

The objective of education is learning. Even in the
classroom, the objective of teaching is to create a
fertile setting for the student to learn. After graduation,
though, the student becomes responsible for his or her
own further education. Even with the best graduate
education, software developers – especially software
engineers – will need to periodically update their skills
and their mastery of new technology. So one of the
responsibilities of the formal education is to prepare
the student with skills for independent lifelong
learning.

Subcontract management. There is no subcont-
ract management at KUT and there are no plans to
implement it. The reason is very simple – the student’s
projects are too small.

Configuration management. Now there is no
configuration management at KUT. The reason is the
same– the student’s projects are too small. However,
we plan to introduce bigger projects with teams
involving more than 5 students. In this case some
configuration management practices will be
implemented.

References
 [1] M. Shaw. Software engineering education: A

roadmap. In The Future of Software Engineering.,
New York, ACM, 2000, 371–380.

Software quality assurance. We have created
design, detailed design and test plan templates with
standard sections. The design and development
process has been aided by the usage UML tools. The
usage of UML tools helps us to standardize the
development process. The unit testing is standardized
too. The test cases in the system test plan are aligned
with functional requirements.

 [2] M.L. Jaccheri, P. Lago. How Project-based Courses
face the Challenge of educating Software Engineers.
Proc. of the joint World Multi-conference on Systemic,
Cybernetics and Informatics (SCI'98) and the 4th
International Conference on Information Systems Ana-
lysis and Synthesis (ISAS'98), Orlando, USA, Jul.
1998.

 [3] M.L. Jaccheri, P. Lago. Applying Software Process
Modeling and Improvement in Academic Setting. Pro-
ceedings of the 10th Conference on Software Enginee-
ring Education & Training, Virginia Beach, Virginia,
IEEE Computer Society Press, Apr. 1997.

6. Conclusions

The advantages of teaching by designing are:
• Design corresponds to the latest Software Engi-

neering development trends; [4] Computing Curricula 2001. Internet access:
www.computer.org/education/cc2001/final/, last
visited 2004 11 22. • Design is supported by knowledge acquired in

studies of theoretical modules;

69

http://www.computer.org/education/cc2001/final/

E. Bareiša, E. Karčiauskas, V. Limanauskienė, R. Marcinkevičius, K. Motiejūnas

 [5] Guide to the Software Engineering Body of Know-
ledge. Internet access: http://www.swebok.org, last
visited 2004 11 15.

 [6] J.M. Hogan, G. Smith, R. Thomas. The Real World
Software Process. Software Engineering Conference
2002, ISSN: 1530-1362, Ninth Asia-Pacific Publica-
tion, 366- 375

 [7] Software Engineering Institute, Carnegie Mellon Uni-
versity. CMMI for Systems Engineering. Software
Engineering, Integrated Product and Process Deve-
lopment and SupplierSourcing (CMMI-SE/SW/IPPD
/SS) Version 1.1, 2002.

 [8] ISO/IEC TR 15504. International Standard for Soft-
ware Process Assessment, 2003.

 [9] P. Kuvaja, J. Simila, L. Krzanik, A.Bicego, G.
Koch, S. Saukkonen. Software process assessment
and improvement, the BOOTSTRAP approach.
Blackwell Publishers, Oxford, UK, 1994.

[10] T. Dingsyr, M. Letizia Jaccheri, A. I. Wang. Teach-
ing software process improvement through a case stu-
dy. Computer Applications in Engineering Education,
Vol.8, 2000, pp. 229-234.

[11] L. Werth. An Adventure in Software Process Impro-
vement. In J. L.Dìaz-Herrera (ed.), Software Enginee-
ring Education: 7th SEI CSEE Conference. New York:
Springer-Verlag, 1994, 191-210.

[12] H. Saiedian, D. J. Bagert, N. R. Mead. Software En-
gineering Programs: Dispelling the Myths and Mis-
conceptions. IEEE Software, September-October
2002. IEEE Computer Society, 2002.

[13] B. Meyer. Software Engineering in the Academy. In
Computer (IEEE), Vol.34, No.5, May 2001, 28-35.

[14] G. Stone. Making the most of the software develop-
ment process. In Software World, 2003.

[15] S. Otoya, N. Cerpa. An Experience: A Small Soft-
ware Company Attempting to Improve its Process.
Proc. Software Technology and Engineering Practice,
STEP '99, 1999, 153-160.

http://www.swebok.org/

