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PERFORMANCE OF HYBRID GENETIC ALGORITHM  
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Abstract. Recently, genetic algorithms (GAs) are quite popular by solving combinatorial optimization problems. 
In this paper, we discuss a hybrid genetic algorithm that uses a new kind of solution recombination operators − a so-
called multiple parent crossover. We examined this innovative crossover operator on the grey pattern problem, which 
is as special case of the well-known problem, the quadratic assignment problem. The results obtained during the 
experimentation with the set of 62 instances of the grey pattern problem demonstrate promising efficiency of the 
multiple parent crossover. All the instances tested were solved to pseudo-optimality within surprisingly small 
computation times. 
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Indroduction r, t = 1, ..., n1, s, u = 1, ..., n2. frstu may be thought of as 

an electrical repulsion force between two electrons (to 
be put on the grid points) i and j (i, j = 1, ..., n) located 
in the positions k = π(i) and l = π(j) with the 
coordinates (r, s) and (t, u). The ith (i ≤ m) element of 
the permutation (solution) π, π(i) = n2(r − 1) + s, gives 
the location in the rectangle (grid) where a black point 
(case) has to be placed in. The coordinates of the 
location π(i) are derived according to the formulas: 
r = (π(i) − 1)/n2 + 1, s = ((π(i) − 1) mod n2) + 1, 
i ≤ m. See [22] for more details. One can obtain plenty 
of different instances of the grey pattern problem by 
varying the choices of n1,  n2 and m (see Section 3). 

The grey pattern problem − firstly introduced by 
Taillard [22] − is based on a rectangle (grid) of dimen-
sions n1 × n2 containing n = n1 × n2 points (square 
cases) with m black points (cases) and n − m white 
points. By juxtaposing many of these rectangles, one 
gets a grey pattern (frame) of density m/n. The objec-
tive is to get the finest grey pattern, that is, the black 
points have to be spread on the rectangle as regularly 
as possible. The grey pattern problem is a special case 
of a more general problem, the quadratic assignment 
problem (QAP) [11] which is known to be NP-hard. 
The QAP is formulated in the following way. Let two 
matrices A = (aij)n×n and B = (bkl)n×n and the set Π of 
all possible permutations of the integers from 1 to n be 
given. The goal is to find a permutation π = (π(1), 
π(2), ..., π(n)) ∈ Π that minimizes 

.)(
1 1

)()(∑∑
= =

=
n

i

n

j
jiijbaz πππ  (1) 

Many heuristic approaches may be applied for 
solving both the QAP and, at that time, its particular 
case − the grey pattern problem. For serveys of the 
heuristics for the QAP, see [2,3,22]. Genetic algo-
rithms and their hybrids have recently achieved great 
success in solving the QAP [1,5,12,14,15]. In this 
paper, we propose, a hybrid genetic algorithm (HGA) 
which incorporates an innovative operator of the 
recombination of solutions. The template of this algo-
rithm and the details of the new recombination 
(crossover) operator are discussed in Section 2. The 
computational results of HGA for the various grey 
pattern problem instances are presented in Section 3. 
Section 4 completes the paper with concluding re-
marks. 

In the grey pattern problem (as formulated in [22]), 
the matrix (aij)n×n is defined as aij = 1 for i, j =1, 2, ..., 
m and aij = 0 otherwise. The matrix (bkl)n×n is defined 
by the given values − the distances between every two 
of n points. More precisely, = 
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2. Hybrid genetic algorithm using multiple 
parent crossover for the grey pattern 
problem 

The original concepts of genetic algorithms (GAs) 
were developed by Holland [10] in 1975. A genetic 
algorithm operates with a group P (called a popula-
tion) of solutions s1, s2, ..., sPS = |P| (called individuals) 
from S − the set of solutions of a combinatorial 
optimization problem. Each individual (si) is asso-
ciated with some fitness, i.e. the objective function 
value (f(si)). In minimization problems, the less the 
objective function value, the more fitting the indivi-
dual, and the larger is the probability that the indivi-
dual will survive in evolution process. During many 
generations, best fitting individuals tend to dominate, 
while less fitting ones tend to die off. 

The main components of GA are as follows [4, 8, 
21]: a) a mechanism of selecting individuals from the 
population; b) an operator for creation new solutions 
by combining pairs of previous solutions (i.e. "pa-
rents") (this operator is known as a crossover); c) a 
mutation procedure that generates new solutions by 
random perturbations of the existing solutions; d) a 
population replacement (culling) scheme. Our focus is 
on the crossover operator, which is responsible for the 
efficiency of the genetic search in a high degree. It 
should be noted that the state-of-the-art genetic 
algorithms are rather hybrid algorithms which incor-
porate additional heuristic components [19]. In such 
algorithms there is used a post-crossover procedure 
that play the role of a local improvement algorithm 
applied to the solution produced by the crossover. 
However, this fact does not imply that the perfor-
mance of recombination operators is not important 
anymore. In this paper, we propose an improvement of 
HGA which is exactly due to the new enhanced 
crossover operator. 

Dozens of crossover operators for the permutation-
based problems are known from the literature, for 
example, cohesive crossover [5], cycle crossover [20], 
distance preserving crossover [13], partially mapped 
crossover [9], uniform (like) crossover [24], and many 
others. As a rule, these crossovers share one principle 
characteristic: the offspring is created by using two 
parents. There are two aspects of these crossovers. 
Firstly, they are distinguished for the conceptual simp-
licity and relatively high efficiency in solving such 
problems, like the quadratic assignment problem or 
the traveling salesman problem. On the other hand, 
some shortcomings of the typical crossover operators 
might be discovered. For example, some useful infor-
mation may be left out of account by using two pa-
rents only. The other negative aspect is related to the 
fact that there exists a quite large degree of 
randomness. This is especially true when parents are 
selected in a pure random manner. In this case, it is 
obvious that the parents will, most probably, produce a 
"child" of rather poor quality. This kind of behaviour 
may be viewed as one of the most pessimistic factors 

related to the traditional crossover operators. In order 
to try to overcome these difficulties, innovative cross-
over procedures should be proposed. In this paper, we 
introduce such a non-ordinary crossover − we call it 
"µ-crossover" (or shortly ΜX). This name can be 
thought of as a derivative from the term "multiple 
parent crossover", i.e. "crossover based on µ parents". 
So, the heart of the new crossover is generation of the 
offspring by means of several parents. The details of 
this crossover are discussed below. 

The main criterion for high quality ΜX operator is 
the ability of inheritance of the features contained in 
all the parents that take part in generation of the 
offspring. Which way we can implement this crite-
rion? Our idea is to use so-called desirability measures 
for the elements of a solution∗. Let µ be the number of 
the solutions-parents (i.e. chromosomes in the context 
of GA) to produce a solution-offspring. The solution is 
organized as a certain permutation π = (π(1), π(2), ..., 
π(n)), where π(i) denotes the position (also called a 
locus) that the element i (also called a gene) is 
assigned to. Then, the desirability information can be 
maintained in a matrix D of size n × n, where the entry 
dij is simply equal to the number of times that the 
element, i.e. gene i is assigned to the position, i.e. 
locus j = π(i) in the parents (i.e. the set that consists of 
µ chromosomes). The following are the simple 
properties of the entries of D: 1) 0 ≤ dij ≤ µ, i, j = 1, 2, 

..., n; 2) ∑ , j = 1, 2, ..., n; 3) , i = 1, 

2, ..., n. Naturally, the larger the value of d
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is desirable that π(i) is set to j (π(i) = j) in the 
offspring. Let ( )ji =)(offsprPr π  denote the probability 
that the gene i will be assigned to the locus j in the 
offspring πoffspr. We assume that this probability is 
equal to the aspect ratio 

parents
)(that  ji

ofnumber
 timesof

    
    number =π , that is, 

( )
µ
ijd

i

) 1=

)(Pr( offspr i =

πPr offspr

Pr
1
∑
=

n

j
π

ji ==)(

( )(offspr = ji

. Then, it is obvious from the 

properties (2), (3) that: 1) ∑ , 

j = 1, 2, ..., n (this means that, in the offspring’s 
chromosome, every locus will necessary be associated 
with one of the genes); 2) similarly, 

, i = 1, 2, ..., n (this means that 

every gene will be associated with one of the loci). 
Taking the above facts into account, a natural way to 
create a gene i (i.e. to obtain a locus for the current 
gene i) is to choose such a number j (among those not 
yet chosen) that 
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∗ Note that this idea has some similarities with the 

adaptive memory principle (see [7] for more details). 
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course, if the gene is assigned to the same locus in all 
the parents, then this gene remains at the same locus 
for the offspring.) This process is to be continued until 
all the genes are assigned to their loci. The detailed 
template of the resulting multiple parent crossover 
procedure (in the Pascal-language like notation) is 
presented Figure 1. The memory size and time comp-

lexity of this crossover is O(n2). An illustrative 
example of ΜX is shown in Figure 2. It should be 
noted that ΜX offers some degree of randomization. 
Randomness is achieved by the existence of many 
variants for choosing different sequences of the genes. 

 

function ΜX(parents, µ); // µ-crossover // 
  // input: parents − the structure, i.e. the matrix containing the parents, µ − the number of parents // 
  // output: π − the resulting offspring (permutation) produced by µ parents //   // output: π − the resulting offspring (permutation) produced by µ parents // 
  D := 0;   D := 0; 
  for i := 1 to µ do for j := 1 to n do D(j, parents(i, j)) := D(j, parents(i, j)) + 1;   for i := 1 to µ do for j := 1 to n do D(j, parents(i, j)) := D(j, parents(i, j)) + 1; 
  I := {1, 2, ..., n}; J := ∅;   I := {1, 2, ..., n}; J := ∅; 
  repeat // continue until the offspring is created //   repeat // continue until the offspring is created // 
    choose i ∈ I;     choose i ∈ I; 
        ),(maxarg:)(
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=π ; 

    // ties (i.e. situations when more than one j satisfying the given equation exist) are broken in a random 
way // 
    I := I \ { i }; J := J ∪ { π(i) } 
  until I = ∅; 
  return π 
end. 

Figure 1. Pseudo-code of the template of the µ-crossover 
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4 3 6 7 1 2 9 8 5 
4 3 6 7 1 9 5 8 2 
4 6 3 1 7 5 9 2 8 
4 7 3 1 8 5 9 6 2 
5 6 3 1 2 4 9 7 8 

 

0 0 0 4 1 0 0 0 0 
0 0 2 0 0 2 1 0 0 
0 0 3 0 0 2 0 0 0 
3 0 0 0 0 0 2 0 0 
2 1 0 0 0 0 1 1 0 
0 1 0 1 2 0 0 0 1 
0 0 0 0 1 0 0 0 4 
0 1 0 0 0 1 1 2 0 
0 2 0 0 1 0 0 2 0 

 

4 6 3 7 1 5 9 8 2 
 

Figure 2. Example of produc

The multiple parent crossover distinguishes one-
self for the one more important feature. As long as the
number of parents in the crossover, µ, is equal to the
current population size, PS, there no need in any
selection procedure: the selection is "hidden" in the
crossover itself; in the other words, ΜX performs the
functions of both selection and recombination. This
variant (i.e. µ = PS) was used in our implementation. 

In order to increase the performance of GA even
more, the crossover can be applied more than once at
the same generation. In our implementation, the
urrent population (population size: 5
ffspring
 

esirability matrix 

uppose that the genes are picked up in the following order:
, 3, 1, 8, 2, 6, 5, 4, 9. 
hen, the offspring’s chromosome is created as follows: 
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ing of the offspring in µ-crossover (µ = 5) 

 
 
 
 
 
 

 
 
 

number of ΜXs per one generation is controlled by 
the parameter Noffspr (# of offspring per generation). 

The remaining components of the hybrid genetic 
algorithm for the grey pattern problem are identical to 
those of HGA for the quadratic assignment problem, 
except the specific cases discussed below. The frame-
work of this algorithm (entitled as HGA-ΜX-TS) is 
presented in Figure 3. The details can be found in 
[17]. Remind that the outstanding performance of 
HGA for the QAP was achieved by exploiting the idea 
of genetic-tabu search, i.e. combining the genetic ope-
rators with the enhanced tabu search (TS) procedure − 
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as a local improvement (post-crossover) algorithm. 
The details of the TS procedure are described in [18]. 
One important modification should be mentioned. It is 
related to the performance of the tabu search, more 
precisely, the exploration of neighbourhoods (i.e. the 
sets of neighbouring solutions of the current solu-
tions), as well as the calculation of the differences in 
the objective function values. A lot of the computa-
tions can be shorten and simplified (consequently, the 
large amount of computer’s (CPU) time may be saved) 
due to the very special character of the matrix A in the 
grey pattern problem, as shown in [22]. For this 
problem, the exploration of the neighbourhood in the 
TS procedure is restricted to the interchange of one of 
the first m elements (black points) with one of the last 
n − m elements (white points). Therefore, the 
neighbourhood size decreases to O(m(n − m)), instead 
of O(n2) for the ordinary QAP. In addition, the 
calculation of the differences in the objective function 
values becomes more faster because the matrix A is 
consisting of entries 0 and 1 only. So, instead of the 
standard formula of calculation difference in the 
objective function values when exchanging the ith and 
jth elements in the current permutation 
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is used. As a result, the TS algorithm complexity is re-
duced from O(n3) to O(m2(n − m)). As the TS pro-
cedure is invoked many times during the execution of 
HGA, the overall effect is even more evident, 
especially, in the cases when m << n. All these 
favourable circumstances allowed to treat very large 
problems (n = 256) with reasonable CPU times (see 
Section 3). 

 

function HGA-ΜX-TS(A, B, n); // hybrid genetic algorithm using ΜX-crossover and tabu search // 
  // input: A, B − the matrices, n − the problem size; output: π∗ − the best solution (permutation) found // 
  // parameters: PS − the population size, Ngen − # of generations, Noffspr − # of offspring per generation, // 
  //         µ − the number of parents // 
  read A, B, n, PS, Ngen, Noffspr, µ; 
  create the initial population P ⊂ Π, where | P | = PS; 
  ; // π)(ππ

π
z

P∈

∗ = argmin: ∗ denotes the best so far solution // 

  for generation := 1 to Ngen do begin // generations cycle // 
    for child := 1 to Noffspr do begin  // offspring creation cycle // 
      select µ solutions, i.e. parents from P: these solutions are 
organized  
      as µ × n matrix entitled parents, where parents(i) denotes the ith parent,  
      and parents(i, j) is the jth element in the ith parent; 
      π& :=ΜX(parents, µ); // the offspring is created by applying the multiple parents crossover to µ 
parents // 
      improve π&  by using tabu search, get the resulting solution π• ; 
      add the improved permutation π•  to the population P; 
      if z(π•) < z(π∗) then π∗ := π• // save the best so far solution // 
    end; // for child ... // 
    cull the population P by removing Noffspr worst individuals; 
    if the level of diversity of P is below the predefined threshold 
then  
       make a "restart" 
  end; // for generation ... // 
  return π∗ 
end. 

Figure 3. Pseudo-code of the template of the hybrid genetic algorithm 
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3. Computational experiments 

Before extensive testing of HGA-ΜX-TS on the 
large grey pattern problems, we have conducted a 
small experiment to demonstrate the behaviour of the 
new proposed crossover operator. (A data instance 
with n = 9 compiled by A. Misevičius was used in this 
experimentation.) To show the possible benefits of the 
multiple parent crossover, we compared the results 
produced by our new crossover and the traditional 
two-parent crossover — namely the uniform (like) 
crossover due to Tate and Smith [24] (so far, this 
crossover and its modifications have been proven to 
be quite efficient). The results obtained from this ex-
periment are presented in Figure 4. They confirm the 
"aggressiveness" of the multiple parent crossover. It 
can be seen that ΜX enables to explore the solution 
space and to direct the search in promising regions 
quite efficiently. Multiple parents seem to be able to 
discover the "building blocks" — these blocks are of 
the highest importance in genetic search — surprising-
ly effectively. This can be seen clearly when com-
paring the results of ΜX and the two-parent crossover. 

Further, the more thorough computational experi-
ments have been carried out on a set of 62 instances of 
the grey pattern problem. For the instance family 
tested, the size of the instances is equal to 256, and the 
frames are of dimensions 16 × 16. The parameter m, 
i.e. the density of grey varies from 3 to 64. The 
instances are denoted by the name grey_16_16_m, 
where 2 ≤ m ≤ 64. Remind that, for these instances, 
the data matrix B remains unchanged, while the data 

matrix A is of the form , where 1 is a sub-

matrix of size m × m composed of 1s only [23]. All 
these instances were examined by our hybrid genetic 
algorithm with the multiple parent crossover. The goal 
was to find out how difficult are the grey pattern 
problems for HGA (which has been proven to be  
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extremely efficient for the QAP) and, especially, for 
ΜX. We focused on the average computation time 
needed to find the pseudo-optimal (best know) solu-
tions for these problems. Note that, for many instan-
ces, we performed several independent runs each 
consisting of 10 restarts of HGA-ΜX-TS. Various 
combinations of the values of the control parameters, 
which depend on the particular instance, are used in 
the different runs. The best CPU times obtained during 
these runs are given in Table 1. The ranges of the main 
parameter values for HGA-ΜX-TS are as follows: PS 
varies between 4 and 30; Ngen − between 2 and 100; 
Noffspr = 1. The number of parents in ΜX is equal to 
the population size PS in all the experiments. 

It can be viewed from Table 1 that the efficiency of 
HGA-ΜX-TS for the grey pattern problem is very 
promising. The results indicate that all the instances 
examined are most probably solved pseudo-optimally 
at really short CPU times. (There were only a 
negligible number of instances with relatively large 
CPU times. So far, we have no well-founded explana-
tions of these anomalies, except that the algorithm 
sometimes tends to converge (in fact, misconverge) to 
high-quality locally optimal solutions which may be 
quite "far" from a global optimum.) The performance 
of HGA-ΜX-TS for the particular instances is 
impressive indeed. For example, for the largest 
instance tested grey_16_16_64 (m = 64), less than 5 
seconds of 3GHz Pentium computer are enough to 
find a pseudo-optimal solution. We guess that the 
search time may be decreased even more by a careful 
tuning of the control parameters of HGA-ΜX-TS. 

The quality of the solutions obtained is also 
confirmed by the graphical illustrations. In Figure 5, 
we give twelve frames that correspond to the pseudo-
optimal solutions of the instances grey_16_16_53.. 
grey_16_16_64. So, the reader can grasp the quality of 
the obtained solutions from the visual point of view, 
too. 

 
 
 
 

 

 

 

 

 

 

 

4 7 2 6 3 9 1 8 5 121476 
4 6 2 5 7 3 9 1 8 124142 
4 3 9 8 1 5 7 2 6 125376 
2 5 7 8 6 3 9 1 4 125578 
8 7 9 2 4 5 6 3 1 132120 

 

4 7 2 8 3 5 9 1 6 
 

4 7 2 8 6 3 9 1 5 121034 
4 7 2 6 3 9 1 8 5 121476 
4 6 2 5 7 3 9 1 8 124142 
4 3 9 8 1 5 7 2 6 125376 
2 5 7 8 6 3 9 1 4 125578 

 

4 7 2 8 6 3 9 1 5 
 

4 9 2 6 8 5 7 1 3 118180 
4 7 2 8 6 3 9 1 5 121034 
4 7 2 6 3 9 1 8 5 121476 
4 6 2 5 7 3 9 1 8 124142 
4 3 9 8 1 5 7 2 6 125376 

(a)

Initial (improved) population 

1st offspring 

Population after crossover and improvement:
2nd generation 

2nd offspring 

Population after crossover and improvement:
3rd generation 
(Pseudo-)optimal solution 
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4 7 2 6 3 9 1 8 5 121476 
4 6 2 5 7 3 9 1 8 124142 
4 3 9 8 1 5 7 2 6 125376 
2 5 7 8 6 3 9 1 4 125578 
5 7 9 2 4 8 6 3 1 132120 

 

5 7 2 1 4 8 9 3 6 
 

4 7 2 6 3 9 1 8 5 121476 
4 6 2 5 7 3 9 1 8 124142 
4 3 9 8 1 5 7 2 6 125376 
2 5 7 8 6 3 9 1 4 125578 
5 7 9 2 4 8 6 3 1 132120 

 

2 7 1 8 3 5 9 6 4 
 

4 7 2 6 3 9 1 8 5 121476 
4 6 2 5 7 3 9 1 8 124142 
4 3 9 8 1 5 7 2 6 125376 
2 5 7 8 6 3 9 1 4 125578 
2 7 1 5 4 3 6 8 9 131536 

 

4 7 2 5 3 9 1 6 8 
 

.......................................... 
 

4 7 2 6 3 9 1 8 5 121476 
4 7 2 6 3 9 1 8 5 121476 
4 7 2 6 3 9 1 8 5 121476 
4 6 2 5 7 3 9 1 8 124142 
4 3 9 8 1 5 7 2 6 125376 

 

4 6 2 5 3 7 1 8 9 
 

4 1 2 6 3 5 7 9 8 118592 
4 7 2 6 3 9 1 8 5 121476 
4 7 2 6 3 9 1 8 5 121476 
4 7 2 6 3 9 1 8 5 121476 
4 6 2 5 7 3 9 1 8 124142 

 
.......................................... 

 

4 1 2 6 3 5 7 9 8 118592 
4 1 2 6 3 5 7 9 8 118592 
4 1 2 6 3 5 7 9 8 118592 
4 1 2 6 3 5 7 9 8 118592 
4 1 2 6 3 5 7 9 8 118592 

Parents 

3rd offspring 

Population after crossover and improvement:
5th generation 

Parents 

5th offspring 

Population after crossover and improvement:
6th generation 

Population at 11th generation 
 

It can be seen that, eventually, the algorithm
has prematurely converged without finding the
(pseudo-)optimal solution 

(b)

Figure 4. Comparison of the genetic processes by using the multiple parent crossover (a) and 2-parent crossover (b).  
Note. The elements (items) that correspond to "building blocks" (i.e. the elements that are likely to be contained in the 

optimal solution) are printed in bold face 

Table 1. Results of the experiments for grey pattern problems 

Instance  
name Best known value Time‡ Instance  

name Best known value Time‡ 

grey_16_16_3  7810  0.0 grey_16_16_34  4560162 a 5.1 
grey_16_16_4  15620  0.0 grey_16_16_35  4890132 a 6.3 
grey_16_16_5  38072  0.0 grey_16_16_36  5222296 a 3.4 
grey_16_16_6  63508  0.0 grey_16_16_37  5565236 a 3.9 
grey_16_16_7  97178  0.0 grey_16_16_38  5909202 a 1.6 
grey_16_16_8  131240  0.0 grey_16_16_39  6262248 a 1.9 
grey_16_16_9  183744 a 0.1 grey_16_16_40  6613472 a 1.6 
grey_16_16_10  242266 a 0.0 grey_16_16_41  7002794 a 0.9 
grey_16_16_11  304722 a 0.1 grey_16_16_42  7390586 a 1.5 

Initial population 

Parents 

1st offspring 

Population after crossover and improvement:
2nd generation 

Parents 

2nd offspring 

Population after crossover and improvement:
3rd generation 
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21 

Instance  
name Best known value Time‡ Instance  

name Best known value Time‡ 

grey_16_16_12  368952 a 0.1 grey_16_16_43  7794422 b 6.6 
grey_16_16_13  457504 a 0.1 grey_16_16_44  8217264 b 18 
grey_16_16_14  547522 a 0.1 grey_16_16_45  8674910 c ∼130 
grey_16_16_15  644036 a 0.1 grey_16_16_46  9129192 c ∼90 
grey_16_16_16  742480 a 0.1 grey_16_16_47  9575736 a 6.7 
grey_16_16_17  878888 a 0.3 grey_16_16_48  10016256 a  4.1 
grey_16_16_18  1012990 a 0.2 grey_16_16_49  10518838 b 7.1 
grey_16_16_19  1157992 a 0.3 grey_16_16_50  11017342 a 8.9 
grey_16_16_20  1305744 a 0.4 grey_16_16_51  11516840 b 12.5 
grey_16_16_21  1466210 a 0.7 grey_16_16_52  12018388 b 11.9 
grey_16_16_22  1637794 a 0.6 grey_16_16_53  12558226 a 14 
grey_16_16_23  1820052 a 0.5 grey_16_16_54  13096646 b 8.9 
grey_16_16_24  2010846 a 0.9 grey_16_16_55  13661614 b 19 
grey_16_16_25  2215714 b 5.5 grey_16_16_56  14229492 b 5.8 
grey_16_16_26  2426298 c ∼50 grey_16_16_57  14793682 b 5.0 
grey_16_16_27  2645436 a 1.6 grey_16_16_58  15363628 b 3.7 
grey_16_16_28  2871704 a 1.7 grey_16_16_59  15981086 a 7.3 
grey_16_16_29  3122510 a 1.4 grey_16_16_60  16575644 a 5.5 
grey_16_16_30  3373854 a 0.9 grey_16_16_61  17194812 b 4.8 
grey_16_16_31  3646344 a 1.2 grey_16_16_62  17822806 b 6.1 
grey_16_16_32  3899744 a 0.9 grey_16_16_63  18435790 a 2.6 
grey_16_16_33  4230950 a 1.3 grey_16_16_64  19050432 a 4.6 

‡ time (in seconds of 3GHz Pentium computer) needed to find the best known solution (BKS) under condition that all  
 the 10 restarts out of 10 succeeded in finding the BKS; 
 the optimality of these values has been proven by Drezner [6]; 

a reference: Taillard, Gambardella, 1997 [23]; b reference: Misevicius, 2003 [16]; c reference: Misevicius, 2003 [15]. 
 
4. Concluding remarks 

In this paper, we proposed a hybrid genetic algo-
rithm that involves the innovative solution recombina-
tion operator − the so-called multiple parent crossover 
(ΜX). ΜX is distinguished for the important fact that 
the offspring derives the information from many 
parents − this is a quite contrast to the classical cross-
over operators where the inheritance of the informa-
tion by the child is limited to two parents only. This 
original recombination operator coupled with other 
components of the hybrid genetic-tabu search resulted 
in a powerful optimization tool − the algorithm HGA-
ΜX-TS. HGA-ΜX-TS was applied to the special case 
of the quadratic assignment problem, the grey pattern 
problem. The results obtained show promising perfor-
mance of HGA-ΜX-TS. Sixty two instances of the 
grey pattern problem have been solved to pseudo-
optimality at surprisingly short computational times 
with few exceptions. Some of these pseudo-optimal 
solutions were brought out in the graphical representa-
tion form. 

Our ΜX crossover is very aggressive and robust. 
Still, there is a room for the further enhancements. 
This is especially true due to the fact that some disad-
vantages of ΜX might be observed by performing 
more thorough experiments. One of the shortcomings 
is the loss of the diversity, especially, in the cases 
when the genetic search progresses and the individuals 
of the population tend to become very similar to each 
other. Consequently, if the degree of the diversity of 
the population is low, then the child produced by ΜX 
will, most likely, be just a copy of one of the parents. 
To overcome these (and other) difficulties, some 
improvements of the proposed ΜX are possible: 
a) incorporating the additional knowledge by 
constructing the desirability matrix, for example, the 
fitness (cost) of the individuals (solutions); b) adding 
noise (or some sort of fuzziness) to the desirability 
matrix; c) experimenting with the different numbers of 
the parents and/or population sizes. All these and, 
possibly, other extensions could be proper directions 
of the future research. 
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Figure 5. Examples of grey frames of densities 53/256 (a), 54/256 (b), 55/256 (c), 56/256 (d), 57/256 (e), 58/256 (f) (Part I) 
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Figure 5. Examples of grey frames of densities 59/256 (g), 60/256 (h), 61/256 (i), 62/256 (j), 63/256 (k), 64/256 (l) (Part II) 
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