
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.1

PERFORMANCE OF HYBRID GENETIC ALGORITHM
FOR THE GREY PATTERN PROBLEM♣

Alfonsas Misevičius, Dalius Rubliauskas
Kaunas University of Technology, Department of Practical Informatics

Studentų St. 50−416a, LT−51368 Kaunas, Lithuania

Abstract. Recently, genetic algorithms (GAs) are quite popular by solving combinatorial optimization problems.
In this paper, we discuss a hybrid genetic algorithm that uses a new kind of solution recombination operators − a so-
called multiple parent crossover. We examined this innovative crossover operator on the grey pattern problem, which
is as special case of the well-known problem, the quadratic assignment problem. The results obtained during the
experimentation with the set of 62 instances of the grey pattern problem demonstrate promising efficiency of the
multiple parent crossover. All the instances tested were solved to pseudo-optimality within surprisingly small
computation times.

Keywords: combinatorial optimization, heuristic algorithms, genetic algorithms, multiple parent crossover, grey
pattern problem.

Indroduction r, t = 1, ..., n1, s, u = 1, ..., n2. frstu may be thought of as

an electrical repulsion force between two electrons (to
be put on the grid points) i and j (i, j = 1, ..., n) located
in the positions k = π(i) and l = π(j) with the
coordinates (r, s) and (t, u). The ith (i ≤ m) element of
the permutation (solution) π, π(i) = n2(r − 1) + s, gives
the location in the rectangle (grid) where a black point
(case) has to be placed in. The coordinates of the
location π(i) are derived according to the formulas:
r = (π(i) − 1)/n2 + 1, s = ((π(i) − 1) mod n2) + 1,
i ≤ m. See [22] for more details. One can obtain plenty
of different instances of the grey pattern problem by
varying the choices of n1, n2 and m (see Section 3).

The grey pattern problem − firstly introduced by
Taillard [22] − is based on a rectangle (grid) of dimen-
sions n1 × n2 containing n = n1 × n2 points (square
cases) with m black points (cases) and n − m white
points. By juxtaposing many of these rectangles, one
gets a grey pattern (frame) of density m/n. The objec-
tive is to get the finest grey pattern, that is, the black
points have to be spread on the rectangle as regularly
as possible. The grey pattern problem is a special case
of a more general problem, the quadratic assignment
problem (QAP) [11] which is known to be NP-hard.
The QAP is formulated in the following way. Let two
matrices A = (aij)n×n and B = (bkl)n×n and the set Π of
all possible permutations of the integers from 1 to n be
given. The goal is to find a permutation π = (π(1),
π(2), ..., π(n)) ∈ Π that minimizes

.)(
1 1

)()(∑∑
= =

=
n

i

n

j
jiijbaz πππ (1)

Many heuristic approaches may be applied for
solving both the QAP and, at that time, its particular
case − the grey pattern problem. For serveys of the
heuristics for the QAP, see [2,3,22]. Genetic algo-
rithms and their hybrids have recently achieved great
success in solving the QAP [1,5,12,14,15]. In this
paper, we propose, a hybrid genetic algorithm (HGA)
which incorporates an innovative operator of the
recombination of solutions. The template of this algo-
rithm and the details of the new recombination
(crossover) operator are discussed in Section 2. The
computational results of HGA for the various grey
pattern problem instances are presented in Section 3.
Section 4 completes the paper with concluding re-
marks.

In the grey pattern problem (as formulated in [22]),
the matrix (aij)n×n is defined as aij = 1 for i, j =1, 2, ...,
m and aij = 0 otherwise. The matrix (bkl)n×n is defined
by the given values − the distances between every two
of n points. More precisely, =

, where
utnsrnkl bb +−+−=)1()1(22

rstuf

2
2

2
1}1,0,1{,)()(

1max
wnusvntr

f
wv

rstu +−++−
=

−∈
,

♣ This work is supported by Lithuanian State Science and Studies Foundation.

15

A. Misevičius, D. Rubliauskas

2. Hybrid genetic algorithm using multiple
parent crossover for the grey pattern
problem

The original concepts of genetic algorithms (GAs)
were developed by Holland [10] in 1975. A genetic
algorithm operates with a group P (called a popula-
tion) of solutions s1, s2, ..., sPS = |P| (called individuals)
from S − the set of solutions of a combinatorial
optimization problem. Each individual (si) is asso-
ciated with some fitness, i.e. the objective function
value (f(si)). In minimization problems, the less the
objective function value, the more fitting the indivi-
dual, and the larger is the probability that the indivi-
dual will survive in evolution process. During many
generations, best fitting individuals tend to dominate,
while less fitting ones tend to die off.

The main components of GA are as follows [4, 8,
21]: a) a mechanism of selecting individuals from the
population; b) an operator for creation new solutions
by combining pairs of previous solutions (i.e. "pa-
rents") (this operator is known as a crossover); c) a
mutation procedure that generates new solutions by
random perturbations of the existing solutions; d) a
population replacement (culling) scheme. Our focus is
on the crossover operator, which is responsible for the
efficiency of the genetic search in a high degree. It
should be noted that the state-of-the-art genetic
algorithms are rather hybrid algorithms which incor-
porate additional heuristic components [19]. In such
algorithms there is used a post-crossover procedure
that play the role of a local improvement algorithm
applied to the solution produced by the crossover.
However, this fact does not imply that the perfor-
mance of recombination operators is not important
anymore. In this paper, we propose an improvement of
HGA which is exactly due to the new enhanced
crossover operator.

Dozens of crossover operators for the permutation-
based problems are known from the literature, for
example, cohesive crossover [5], cycle crossover [20],
distance preserving crossover [13], partially mapped
crossover [9], uniform (like) crossover [24], and many
others. As a rule, these crossovers share one principle
characteristic: the offspring is created by using two
parents. There are two aspects of these crossovers.
Firstly, they are distinguished for the conceptual simp-
licity and relatively high efficiency in solving such
problems, like the quadratic assignment problem or
the traveling salesman problem. On the other hand,
some shortcomings of the typical crossover operators
might be discovered. For example, some useful infor-
mation may be left out of account by using two pa-
rents only. The other negative aspect is related to the
fact that there exists a quite large degree of
randomness. This is especially true when parents are
selected in a pure random manner. In this case, it is
obvious that the parents will, most probably, produce a
"child" of rather poor quality. This kind of behaviour
may be viewed as one of the most pessimistic factors

related to the traditional crossover operators. In order
to try to overcome these difficulties, innovative cross-
over procedures should be proposed. In this paper, we
introduce such a non-ordinary crossover − we call it
"µ-crossover" (or shortly ΜX). This name can be
thought of as a derivative from the term "multiple
parent crossover", i.e. "crossover based on µ parents".
So, the heart of the new crossover is generation of the
offspring by means of several parents. The details of
this crossover are discussed below.

The main criterion for high quality ΜX operator is
the ability of inheritance of the features contained in
all the parents that take part in generation of the
offspring. Which way we can implement this crite-
rion? Our idea is to use so-called desirability measures
for the elements of a solution∗. Let µ be the number of
the solutions-parents (i.e. chromosomes in the context
of GA) to produce a solution-offspring. The solution is
organized as a certain permutation π = (π(1), π(2), ...,
π(n)), where π(i) denotes the position (also called a
locus) that the element i (also called a gene) is
assigned to. Then, the desirability information can be
maintained in a matrix D of size n × n, where the entry
dij is simply equal to the number of times that the
element, i.e. gene i is assigned to the position, i.e.
locus j = π(i) in the parents (i.e. the set that consists of
µ chromosomes). The following are the simple
properties of the entries of D: 1) 0 ≤ dij ≤ µ, i, j = 1, 2,

..., n; 2) ∑ , j = 1, 2, ..., n; 3) , i = 1,

2, ..., n. Naturally, the larger the value of d

µ=
=

n

i
ijd

1
µ=∑

=

n

j
ijd

1

ij, the more
is desirable that π(i) is set to j (π(i) = j) in the
offspring. Let ()ji =)(offsprPr π denote the probability
that the gene i will be assigned to the locus j in the
offspring πoffspr. We assume that this probability is
equal to the aspect ratio

parents
)(that ji

ofnumber
 timesof

 number =π , that is,

()
µ
ijd

i

) 1=

)(Pr(offspr i =

πPr offspr

Pr
1
∑
=

n

j
π

ji ==)(

()(offspr = ji

. Then, it is obvious from the

properties (2), (3) that: 1) ∑ ,

j = 1, 2, ..., n (this means that, in the offspring’s
chromosome, every locus will necessary be associated
with one of the genes); 2) similarly,

, i = 1, 2, ..., n (this means that

every gene will be associated with one of the loci).
Taking the above facts into account, a natural way to
create a gene i (i.e. to obtain a locus for the current
gene i) is to choose such a number j (among those not
yet chosen) that

() 1Pr
1

=
=

n
j

)j

)(offspr =iπ

π is maximized. (Of

∗ Note that this idea has some similarities with the

adaptive memory principle (see [7] for more details).

16

Performance of Hybrid Genetic Algorithm for the Grey Pattern Problem

course, if the gene is assigned to the same locus in all
the parents, then this gene remains at the same locus
for the offspring.) This process is to be continued until
all the genes are assigned to their loci. The detailed
template of the resulting multiple parent crossover
procedure (in the Pascal-language like notation) is
presented Figure 1. The memory size and time comp-

lexity of this crossover is O(n2). An illustrative
example of ΜX is shown in Figure 2. It should be
noted that ΜX offers some degree of randomization.
Randomness is achieved by the existence of many
variants for choosing different sequences of the genes.

function ΜX(parents, µ); // µ-crossover //
 // input: parents − the structure, i.e. the matrix containing the parents, µ − the number of parents //
 // output: π − the resulting offspring (permutation) produced by µ parents // // output: π − the resulting offspring (permutation) produced by µ parents //
 D := 0; D := 0;
 for i := 1 to µ do for j := 1 to n do D(j, parents(i, j)) := D(j, parents(i, j)) + 1; for i := 1 to µ do for j := 1 to n do D(j, parents(i, j)) := D(j, parents(i, j)) + 1;
 I := {1, 2, ..., n}; J := ∅; I := {1, 2, ..., n}; J := ∅;
 repeat // continue until the offspring is created // repeat // continue until the offspring is created //
 choose i ∈ I; choose i ∈ I;
),(maxarg:)(

,...,2,1
jiDi

Jj
nj

∉
=

=),(maxarg:)(
,...,2,1

jiDi
Jj

nj
∉

=
=π ;

 // ties (i.e. situations when more than one j satisfying the given equation exist) are broken in a random
way //
 I := I \ { i }; J := J ∪ { π(i) }
 until I = ∅;
 return π
end.

Figure 1. Pseudo-code of the template of the µ-crossover

 C)

O

D

S
7
T

4 3 6 7 1 2 9 8 5
4 3 6 7 1 9 5 8 2
4 6 3 1 7 5 9 2 8
4 7 3 1 8 5 9 6 2
5 6 3 1 2 4 9 7 8

0 0 0 4 1 0 0 0 0
0 0 2 0 0 2 1 0 0
0 0 3 0 0 2 0 0 0
3 0 0 0 0 0 2 0 0
2 1 0 0 0 0 1 1 0
0 1 0 1 2 0 0 0 1
0 0 0 0 1 0 0 0 4
0 1 0 0 0 1 1 2 0
0 2 0 0 1 0 0 2 0

4 6 3 7 1 5 9 8 2

Figure 2. Example of produc

The multiple parent crossover distinguishes one-
self for the one more important feature. As long as the
number of parents in the crossover, µ, is equal to the
current population size, PS, there no need in any
selection procedure: the selection is "hidden" in the
crossover itself; in the other words, ΜX performs the
functions of both selection and recombination. This
variant (i.e. µ = PS) was used in our implementation.

In order to increase the performance of GA even
more, the crossover can be applied more than once at
the same generation. In our implementation, the
urrent population (population size: 5
ffspring

esirability matrix

uppose that the genes are picked up in the following order:
, 3, 1, 8, 2, 6, 5, 4, 9.
hen, the offspring’s chromosome is created as follows:

{ } { } 9maxarg))7(Pr(maxarg)7(7 ==== j
jj

djππ ;

{ } 3))3(Pr(maxarg)3(
9

===
≠

j
j

ππ ;

{ } 4))1(Pr(maxarg)1(
9,3

===
≠

j
j

ππ ;
ing of the offspring in µ-crossover (µ = 5)

number of ΜXs per one generation is controlled by
the parameter Noffspr (# of offspring per generation).

The remaining components of the hybrid genetic
algorithm for the grey pattern problem are identical to
those of HGA for the quadratic assignment problem,
except the specific cases discussed below. The frame-
work of this algorithm (entitled as HGA-ΜX-TS) is
presented in Figure 3. The details can be found in
[17]. Remind that the outstanding performance of
HGA for the QAP was achieved by exploiting the idea
of genetic-tabu search, i.e. combining the genetic ope-
rators with the enhanced tabu search (TS) procedure −

17

A. Misevičius, D. Rubliauskas

as a local improvement (post-crossover) algorithm.
The details of the TS procedure are described in [18].
One important modification should be mentioned. It is
related to the performance of the tabu search, more
precisely, the exploration of neighbourhoods (i.e. the
sets of neighbouring solutions of the current solu-
tions), as well as the calculation of the differences in
the objective function values. A lot of the computa-
tions can be shorten and simplified (consequently, the
large amount of computer’s (CPU) time may be saved)
due to the very special character of the matrix A in the
grey pattern problem, as shown in [22]. For this
problem, the exploration of the neighbourhood in the
TS procedure is restricted to the interchange of one of
the first m elements (black points) with one of the last
n − m elements (white points). Therefore, the
neighbourhood size decreases to O(m(n − m)), instead
of O(n2) for the ordinary QAP. In addition, the
calculation of the differences in the objective function
values becomes more faster because the matrix A is
consisting of entries 0 and 1 only. So, instead of the
standard formula of calculation difference in the
objective function values when exchanging the ith and
jth elements in the current permutation

+−−=))((),,(∆)()()()(iijjjjii bbaajiz πππππ
 +−−))(()()()()(jiijjiij bbaa ππππ

,,...,1,1,...,2,1

),)((

))((

,,1

)()()()(

,,1
)()()()(

∑

∑

≠=

≠=

+=−=

−−

+−−

n

jikk

ikjkkjki

n

jikk
kikjjkik

nijni

bbaa

bbaa

ππππ

ππππ

 (2)

the simplified formula

,)(2),,(∆
,1

)()()()(∑
≠=

−=
m

ikk
kikj bbjiz πππππ

nmjmi ,....1,,...2,1 +== (3)
is used. As a result, the TS algorithm complexity is re-
duced from O(n3) to O(m2(n − m)). As the TS pro-
cedure is invoked many times during the execution of
HGA, the overall effect is even more evident,
especially, in the cases when m << n. All these
favourable circumstances allowed to treat very large
problems (n = 256) with reasonable CPU times (see
Section 3).

function HGA-ΜX-TS(A, B, n); // hybrid genetic algorithm using ΜX-crossover and tabu search //
 // input: A, B − the matrices, n − the problem size; output: π∗ − the best solution (permutation) found //
 // parameters: PS − the population size, Ngen − # of generations, Noffspr − # of offspring per generation, //
 // µ − the number of parents //
 read A, B, n, PS, Ngen, Noffspr, µ;
 create the initial population P ⊂ Π, where | P | = PS;
 ; // π)(ππ

π
z

P∈

∗ = argmin: ∗ denotes the best so far solution //

 for generation := 1 to Ngen do begin // generations cycle //
 for child := 1 to Noffspr do begin // offspring creation cycle //
 select µ solutions, i.e. parents from P: these solutions are
organized
 as µ × n matrix entitled parents, where parents(i) denotes the ith parent,
 and parents(i, j) is the jth element in the ith parent;
 π& :=ΜX(parents, µ); // the offspring is created by applying the multiple parents crossover to µ
parents //
 improve π& by using tabu search, get the resulting solution π• ;
 add the improved permutation π• to the population P;
 if z(π•) < z(π∗) then π∗ := π• // save the best so far solution //
 end; // for child ... //
 cull the population P by removing Noffspr worst individuals;
 if the level of diversity of P is below the predefined threshold
then
 make a "restart"
 end; // for generation ... //
 return π∗
end.

Figure 3. Pseudo-code of the template of the hybrid genetic algorithm

18

Performance of Hybrid Genetic Algorithm for the Grey Pattern Problem

3. Computational experiments

Before extensive testing of HGA-ΜX-TS on the
large grey pattern problems, we have conducted a
small experiment to demonstrate the behaviour of the
new proposed crossover operator. (A data instance
with n = 9 compiled by A. Misevičius was used in this
experimentation.) To show the possible benefits of the
multiple parent crossover, we compared the results
produced by our new crossover and the traditional
two-parent crossover — namely the uniform (like)
crossover due to Tate and Smith [24] (so far, this
crossover and its modifications have been proven to
be quite efficient). The results obtained from this ex-
periment are presented in Figure 4. They confirm the
"aggressiveness" of the multiple parent crossover. It
can be seen that ΜX enables to explore the solution
space and to direct the search in promising regions
quite efficiently. Multiple parents seem to be able to
discover the "building blocks" — these blocks are of
the highest importance in genetic search — surprising-
ly effectively. This can be seen clearly when com-
paring the results of ΜX and the two-parent crossover.

Further, the more thorough computational experi-
ments have been carried out on a set of 62 instances of
the grey pattern problem. For the instance family
tested, the size of the instances is equal to 256, and the
frames are of dimensions 16 × 16. The parameter m,
i.e. the density of grey varies from 3 to 64. The
instances are denoted by the name grey_16_16_m,
where 2 ≤ m ≤ 64. Remind that, for these instances,
the data matrix B remains unchanged, while the data

matrix A is of the form , where 1 is a sub-

matrix of size m × m composed of 1s only [23]. All
these instances were examined by our hybrid genetic
algorithm with the multiple parent crossover. The goal
was to find out how difficult are the grey pattern
problems for HGA (which has been proven to be







00
01

extremely efficient for the QAP) and, especially, for
ΜX. We focused on the average computation time
needed to find the pseudo-optimal (best know) solu-
tions for these problems. Note that, for many instan-
ces, we performed several independent runs each
consisting of 10 restarts of HGA-ΜX-TS. Various
combinations of the values of the control parameters,
which depend on the particular instance, are used in
the different runs. The best CPU times obtained during
these runs are given in Table 1. The ranges of the main
parameter values for HGA-ΜX-TS are as follows: PS
varies between 4 and 30; Ngen − between 2 and 100;
Noffspr = 1. The number of parents in ΜX is equal to
the population size PS in all the experiments.

It can be viewed from Table 1 that the efficiency of
HGA-ΜX-TS for the grey pattern problem is very
promising. The results indicate that all the instances
examined are most probably solved pseudo-optimally
at really short CPU times. (There were only a
negligible number of instances with relatively large
CPU times. So far, we have no well-founded explana-
tions of these anomalies, except that the algorithm
sometimes tends to converge (in fact, misconverge) to
high-quality locally optimal solutions which may be
quite "far" from a global optimum.) The performance
of HGA-ΜX-TS for the particular instances is
impressive indeed. For example, for the largest
instance tested grey_16_16_64 (m = 64), less than 5
seconds of 3GHz Pentium computer are enough to
find a pseudo-optimal solution. We guess that the
search time may be decreased even more by a careful
tuning of the control parameters of HGA-ΜX-TS.

The quality of the solutions obtained is also
confirmed by the graphical illustrations. In Figure 5,
we give twelve frames that correspond to the pseudo-
optimal solutions of the instances grey_16_16_53..
grey_16_16_64. So, the reader can grasp the quality of
the obtained solutions from the visual point of view,
too.

4 7 2 6 3 9 1 8 5 121476
4 6 2 5 7 3 9 1 8 124142
4 3 9 8 1 5 7 2 6 125376
2 5 7 8 6 3 9 1 4 125578
8 7 9 2 4 5 6 3 1 132120

4 7 2 8 3 5 9 1 6

4 7 2 8 6 3 9 1 5 121034
4 7 2 6 3 9 1 8 5 121476
4 6 2 5 7 3 9 1 8 124142
4 3 9 8 1 5 7 2 6 125376
2 5 7 8 6 3 9 1 4 125578

4 7 2 8 6 3 9 1 5

4 9 2 6 8 5 7 1 3 118180
4 7 2 8 6 3 9 1 5 121034
4 7 2 6 3 9 1 8 5 121476
4 6 2 5 7 3 9 1 8 124142
4 3 9 8 1 5 7 2 6 125376

(a)

Initial (improved) population

1st offspring

Population after crossover and improvement:
2nd generation

2nd offspring

Population after crossover and improvement:
3rd generation
(Pseudo-)optimal solution

19

A. Misevičius, D. Rubliauskas

4 7 2 6 3 9 1 8 5 121476
4 6 2 5 7 3 9 1 8 124142
4 3 9 8 1 5 7 2 6 125376
2 5 7 8 6 3 9 1 4 125578
5 7 9 2 4 8 6 3 1 132120

5 7 2 1 4 8 9 3 6

4 7 2 6 3 9 1 8 5 121476
4 6 2 5 7 3 9 1 8 124142
4 3 9 8 1 5 7 2 6 125376
2 5 7 8 6 3 9 1 4 125578
5 7 9 2 4 8 6 3 1 132120

2 7 1 8 3 5 9 6 4

4 7 2 6 3 9 1 8 5 121476
4 6 2 5 7 3 9 1 8 124142
4 3 9 8 1 5 7 2 6 125376
2 5 7 8 6 3 9 1 4 125578
2 7 1 5 4 3 6 8 9 131536

4 7 2 5 3 9 1 6 8

..

4 7 2 6 3 9 1 8 5 121476
4 7 2 6 3 9 1 8 5 121476
4 7 2 6 3 9 1 8 5 121476
4 6 2 5 7 3 9 1 8 124142
4 3 9 8 1 5 7 2 6 125376

4 6 2 5 3 7 1 8 9

4 1 2 6 3 5 7 9 8 118592
4 7 2 6 3 9 1 8 5 121476
4 7 2 6 3 9 1 8 5 121476
4 7 2 6 3 9 1 8 5 121476
4 6 2 5 7 3 9 1 8 124142

..

4 1 2 6 3 5 7 9 8 118592
4 1 2 6 3 5 7 9 8 118592
4 1 2 6 3 5 7 9 8 118592
4 1 2 6 3 5 7 9 8 118592
4 1 2 6 3 5 7 9 8 118592

Parents

3rd offspring

Population after crossover and improvement:
5th generation

Parents

5th offspring

Population after crossover and improvement:
6th generation

Population at 11th generation

It can be seen that, eventually, the algorithm
has prematurely converged without finding the
(pseudo-)optimal solution

(b)

Figure 4. Comparison of the genetic processes by using the multiple parent crossover (a) and 2-parent crossover (b).
Note. The elements (items) that correspond to "building blocks" (i.e. the elements that are likely to be contained in the

optimal solution) are printed in bold face

Table 1. Results of the experiments for grey pattern problems

Instance
name Best known value Time‡ Instance

name Best known value Time‡

grey_16_16_3 7810 0.0 grey_16_16_34 4560162 a 5.1
grey_16_16_4 15620 0.0 grey_16_16_35 4890132 a 6.3
grey_16_16_5 38072 0.0 grey_16_16_36 5222296 a 3.4
grey_16_16_6 63508 0.0 grey_16_16_37 5565236 a 3.9
grey_16_16_7 97178 0.0 grey_16_16_38 5909202 a 1.6
grey_16_16_8 131240 0.0 grey_16_16_39 6262248 a 1.9
grey_16_16_9 183744 a 0.1 grey_16_16_40 6613472 a 1.6
grey_16_16_10 242266 a 0.0 grey_16_16_41 7002794 a 0.9
grey_16_16_11 304722 a 0.1 grey_16_16_42 7390586 a 1.5

Initial population

Parents

1st offspring

Population after crossover and improvement:
2nd generation

Parents

2nd offspring

Population after crossover and improvement:
3rd generation

20

Performance of Hybrid Genetic Algorithm for the Grey Pattern Problem

21

Instance
name Best known value Time‡ Instance

name Best known value Time‡

grey_16_16_12 368952 a 0.1 grey_16_16_43 7794422 b 6.6
grey_16_16_13 457504 a 0.1 grey_16_16_44 8217264 b 18
grey_16_16_14 547522 a 0.1 grey_16_16_45 8674910 c ∼130
grey_16_16_15 644036 a 0.1 grey_16_16_46 9129192 c ∼90
grey_16_16_16 742480 a 0.1 grey_16_16_47 9575736 a 6.7
grey_16_16_17 878888 a 0.3 grey_16_16_48 10016256 a 4.1
grey_16_16_18 1012990 a 0.2 grey_16_16_49 10518838 b 7.1
grey_16_16_19 1157992 a 0.3 grey_16_16_50 11017342 a 8.9
grey_16_16_20 1305744 a 0.4 grey_16_16_51 11516840 b 12.5
grey_16_16_21 1466210 a 0.7 grey_16_16_52 12018388 b 11.9
grey_16_16_22 1637794 a 0.6 grey_16_16_53 12558226 a 14
grey_16_16_23 1820052 a 0.5 grey_16_16_54 13096646 b 8.9
grey_16_16_24 2010846 a 0.9 grey_16_16_55 13661614 b 19
grey_16_16_25 2215714 b 5.5 grey_16_16_56 14229492 b 5.8
grey_16_16_26 2426298 c ∼50 grey_16_16_57 14793682 b 5.0
grey_16_16_27 2645436 a 1.6 grey_16_16_58 15363628 b 3.7
grey_16_16_28 2871704 a 1.7 grey_16_16_59 15981086 a 7.3
grey_16_16_29 3122510 a 1.4 grey_16_16_60 16575644 a 5.5
grey_16_16_30 3373854 a 0.9 grey_16_16_61 17194812 b 4.8
grey_16_16_31 3646344 a 1.2 grey_16_16_62 17822806 b 6.1
grey_16_16_32 3899744 a 0.9 grey_16_16_63 18435790 a 2.6
grey_16_16_33 4230950 a 1.3 grey_16_16_64 19050432 a 4.6

‡ time (in seconds of 3GHz Pentium computer) needed to find the best known solution (BKS) under condition that all
 the 10 restarts out of 10 succeeded in finding the BKS;
 the optimality of these values has been proven by Drezner [6];

a reference: Taillard, Gambardella, 1997 [23]; b reference: Misevicius, 2003 [16]; c reference: Misevicius, 2003 [15].

4. Concluding remarks

In this paper, we proposed a hybrid genetic algo-
rithm that involves the innovative solution recombina-
tion operator − the so-called multiple parent crossover
(ΜX). ΜX is distinguished for the important fact that
the offspring derives the information from many
parents − this is a quite contrast to the classical cross-
over operators where the inheritance of the informa-
tion by the child is limited to two parents only. This
original recombination operator coupled with other
components of the hybrid genetic-tabu search resulted
in a powerful optimization tool − the algorithm HGA-
ΜX-TS. HGA-ΜX-TS was applied to the special case
of the quadratic assignment problem, the grey pattern
problem. The results obtained show promising perfor-
mance of HGA-ΜX-TS. Sixty two instances of the
grey pattern problem have been solved to pseudo-
optimality at surprisingly short computational times
with few exceptions. Some of these pseudo-optimal
solutions were brought out in the graphical representa-
tion form.

Our ΜX crossover is very aggressive and robust.
Still, there is a room for the further enhancements.
This is especially true due to the fact that some disad-
vantages of ΜX might be observed by performing
more thorough experiments. One of the shortcomings
is the loss of the diversity, especially, in the cases
when the genetic search progresses and the individuals
of the population tend to become very similar to each
other. Consequently, if the degree of the diversity of
the population is low, then the child produced by ΜX
will, most likely, be just a copy of one of the parents.
To overcome these (and other) difficulties, some
improvements of the proposed ΜX are possible:
a) incorporating the additional knowledge by
constructing the desirability matrix, for example, the
fitness (cost) of the individuals (solutions); b) adding
noise (or some sort of fuzziness) to the desirability
matrix; c) experimenting with the different numbers of
the parents and/or population sizes. All these and,
possibly, other extensions could be proper directions
of the future research.

A. Misevičius, D. Rubliauskas

22

(a) (b)

(c) (d)

(f) (e)

Figure 5. Examples of grey frames of densities 53/256 (a), 54/256 (b), 55/256 (c), 56/256 (d), 57/256 (e), 58/256 (f) (Part I)

Performance of Hybrid Genetic Algorithm for the Grey Pattern Problem

23

(i) (j)

(g) (h)

 (k) (l)

Figure 5. Examples of grey frames of densities 59/256 (g), 60/256 (h), 61/256 (i), 62/256 (j), 63/256 (k), 64/256 (l) (Part II)

A. Misevičius, D. Rubliauskas

References
 [1] R.K. Ahuja, J.B. Orlin, A. Tiwari. A greedy genetic

algorithm for the quadratic assignment problem. Com-
puters & Operations Research, 2000, Vol.27, 917–
934.

 [2] R.E. Burkard, E. Çela, P.M. Pardalos, L. Pitsoulis.
The quadratic assignment problem. In D.Z.Du, P.M.
Pardalos (eds.), Handbook of Combinatorial Optimi-
zation, Kluwer, Dordrecht, 1998, Vol.3, 241−337.

 [3] E. Çela. The Quadratic Assignment Problem: Theory
and Algorithms. Kluwer, Dordrecht, 1998.

 [4] L. Davis. Handbook of Genetic Algorithms. Van Nost-
rand, New York, 1991.

 [5] Z. Drezner. A new genetic algorithm for the quadratic
assignment problem. INFORMS Journal on Com-
puting, 2003, Vol.15, 320−330.

 [6] Z. Drezner. Finding a cluster of points and the grey
pattern quadratic assignment problem. Working paper,
College of Business and Economics, California State
University-Fullerton, Fullerton, CA, 2005.

 [7] C. Fleurent, F. Glover. Improved constructive multi-
start strategies for the quadratic assignment problem
using adaptive memory. INFORMS Journal on Com-
puting, 1999, Vol.11, 198−204.

 [8] D.E. Goldberg. Genetic Algorithms in Search, Opti-
mization and Machine Learning. Addison-Wesley,
Reading, 1989.

 [9] D.E. Goldberg, R. Lingle. Alleles, loci, and the tra-
veling salesman problem. In J.J.Grefenstette (ed.),
Proceedings of the First International Conference on
Genetic Algorithms and their Applications, Lowrence
Erlbaum, Hillsdale, 1985, 154−159.

[10] J.H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
1975.

[11] T. Koopmans, M. Beckmann. Assignment problems
and the location of economic activities. Econometrica,
1957, Vol.25, 53−76.

[12] M.H. Lim, Y. Yuan, S. Omatu. Efficient genetic
algorithms using simple genes exchange local search
policy for the quadratic assignment problem. Compu-
tational Optimization and Applications, 2000, Vol.15,
249−268.

[13] P. Merz, B. Freisleben. A genetic local search
approach for the quadratic assignment problem. In
T.Bäck (ed.), Proceedings of the Seventh International
Conference on Genetic Algorithms, Morgan Kauf-
mann, East Lansing, 1997, 465–472.

[14] P. Merz, B. Freisleben. Fitness landscape analysis
and memetic algorithms for the quadratic assignment
problem. IEEE Transactions on Evolutionary
Computation, 2000, Vol.4, 337−352.

[15] A. Misevicius. Genetic algorithm hybridized with ruin
and recreate procedure: application to the quadratic
assignment problem. Knowledge-Based Systems, 2003,
Vol.16, 261−268.

[16] A. Misevicius. Ruin and recreate principle based ap-
proach for the quadratic assignment problem. In
E.Cantú-Paz, J.A.Foster, K.Deb et al. (eds.), Lecture
Notes in Computer Science, Vol.2723, Genetic and
Evolutionary Computation − GECCO 2003, Procee-
dings, Part I, Springer, Berlin-Heidelberg, 2003,
598−609.

[17] A. Misevicius. An extension of hybrid genetic algo-
rithm for the quadratic assignment problem. Infor-
mation Technology and Control, 2004, Vol.4(33),
53−60.

[18] A. Misevicius. A tabu search algorithm for the quad-
ratic assignment problem. Computational Optimiza-
tion and Applications, 2005, Vol.30, 95−111.

[19] P. Moscato. Memetic algorithms: a short introduction.
In D.Corne, M.Dorigo, F.Glover (eds.), New Ideas in
Optimization, McGraw-Hill, London, 1999, 219–234.

[20] I.M. Oliver, D.J. Smith, J.R.C. Holland. A study of
permutation crossover operators on the traveling
salesman problem. In J.J.Grefenstette (ed.), Genetic
Algorithms and their Applications: Proceedings of the
Second International Conference on Genetic
Algorithms, Lawrence Erlbaum, Hillsdale, 1987, 224–
230.

[21] C.R. Reeves, J.E. Rowe. Genetic Algorithms: Prin-
ciples and Perspectives. Kluwer, Norwell, 2001.

[22] E. Taillard. Comparison of iterative searches for the
quadratic assignment problem. Location Science,
1995, Vol.3, 87−105.

[23] E. Taillard, L.M. Gambardella. Adaptive memories
for the quadratic assignment problem. Tech. Report
IDSIA-87-97, Lugano, Switzerland, 1997.

[24] D.M. Tate, A.E. Smith. A genetic approach to the
quadratic assignment problem. Computers & Opera-
tions Research, 1995, Vol.1, 73–83.

24

