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Abstract. The evaluation of the arterial wall condition is most frequently based on such markers as arterial pulse 
wave velocity (PWV) and pulse transit time (PTT). To calculate these markers, it is necessary to determine the location 
of the foot of the arterial pulse wave (APW). This foot point is usually determined with the help of the second derivate 
maximum or tangent intersection foot-to-foot methods. This paper proposes two original methods for locating the 
APW foot point, namely: the bottom straight-line and forefront tangent intersection method and the APW foot 
polynomial approximation method. The main objective of this study is to compare the originally proposed methods 
with the tangent intersection and the second derivate maximum methods, with respect to error dispersion under 
different sound-to-noise ratios (SNR) and difference between the foot point of the APW without noise (APW reference  
value) and the foot point of the APW with a certain SNR. 

The analysis of the APW signal with additive noise reveals that the second derivate maximum method results in the 
widest error dispersion, whereas the tangent intersection method results in the greatest difference between the APW 
reference value and the foot point of the APW with additive noise. The least difference between the APW reference 
value and the foot point of the APW with additive noise, as well as the least error dispersion is achieved in the APW 
foot polynomial approximation method. 

 
1. Indroduction 

Arterial wall distensibility is one of the most wide-
ly used characteristics to assess the state of a blood 
circulation system [10]. There are various reasons for 
diminished distensibility: natural aging [17, 16], 
smoking [15, 3], insufficient physical exercise [13, 14, 
12], hypertension [2, 18], etc. 

The aging process and hypertension are the main 
factors accounting for the diminution of arterial dis-
tensibility. The degree of change in the arterial wall 
depends on how long one has been suffering from the 
disease. Arterial pulse wave (APW) velocity and form 
also depend on the health of blood-vessels. Thus, the 
analysis of changes in the APW velocity [1] and form 
[6] provides additional markers (diagnostic indices), 
which allow judgments about the gravity and length of 
hypertension. 

There are a number of non-invasive methods for 
evaluating arterial health. Such markers as the APW 
velocity (pulse wave velocity – PWV) and APW 
transit time (pulse transit time – PTT) are most 
frequently used to asses the health of the arterial wall 
[8, 9]. In order to calculate the APW velocity, it is 

necessary to measure the PTT between two distant 
points [19, 20, 11].  

PTT can be calculated in two ways: 1) by simulta-
neously measuring two APWs at two points a known 
distance apart, and then calculating the foot-to-foot 
time delay between these two APWs; 2) by simulta-
neously measuring the electrocardiogram (ECG) and 
the APW at some point, and then calculating the time 
delay between the ECG R peak point and the APW 
foot point. Both cases involve locating the foot point 
of arterial pulse wave. The process is complicated by 
APW reflections, the triggering effect of the analog – 
digital converter (ADC), and interference in the 
sensor-receiver transmission line [7]. Sometimes, to 
avoid complications in determining the APW foot 
point, the maximum point of the first APW derivate is 
chosen as the characteristic point. 

The objective of this study is to compare the pro-
posed original methods for locating the foot point of 
the APW with the second derivate maximum method 
and the tangent intersection method, on the bases of 
error dispersion under different sound-to-noise ratios 
(SNR), and difference between the APW reference 
value (i.e. the foot point of the APW without noise) 
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and the APW foot estimates (i.e. foot point values 
resulting from the analysis of the APW sequence with 
certain SNR). 

2. Problem formulation 
The APW foot is the minimal amplitude point 

between the rear front of the current wave and the 
forefront of the subsequent wave (Fig.1). 

 
Figure 1. Arterial pulse wave and its foot point 

Locating the foot point of the APW is not as a 
trivial task as it may look at first sight. It is known 
that, depending on a chosen measuring point, the 
APW reflections distort the APW foot to a certain 
degree (Fig.2). 

 
Figure 2. Arterial pulse wave with a reflection wave (a), 
arterial pulse wave without a reflection wave (b), zoomed 

interval of arterial pulse wave foot (c) 
As Figures 2(b) and 2(c) show, the APW foot is 

long and flat, and the differences between nearby 
values are small. Consequently, even a slight noise 
caused by ADC triggering effect or interference in the 
sensor-receiver transmission line (Fig.2c) complicates 
the task of locating the APW foot point. The APW 
amplitude is normally thousands times as big as 
interference in the sensor-receiver transmission line; 
thus, the effect of interference on the whole system is 
insignificant. However, at the foot of the APW, where 
the signal is described as a slowly altering trend, this 
interference drowns the APW foot point completely. 

3. Methods 

The most widely used methods for determining the 
PWV are to measure the time delay between the 
characteristic, or ‘timing’, point on the two pressure 
waveforms that are a known distance apart. Most of 

the methods use the “foot of the wave” as the charac-
teristic point, because this feature is sharply delineated 
and unaffected by differences in the shape of the 
pressure pulse waveform and the two recording sites. 
There are several mathematical methods (algorithms) 
for identifying the location of the “foot of the wave”. 
SphygmoCor Vx offers a range of options for the 
algorithm to be used to locate the “foot of the wave”. 

The second derivate maximum method and the 
tangent intersection method are most often used to 
locate the APW foot point. This article offers two 
original methods – the APW foot polynomial approxi-
mation method and the method of bottom straight-line 
and forefront tangent intersection 

In all the above-mentioned methods the ECG R 
peak point is used as the marker indicating the begin-
ning of a cardio cycle. 

3.1. The Second Derivate Maximum Method 
An assumption is made, that the APW foot point 

corresponds to the maximum alter point in signal 
acceleration. The latter point corresponds to the maxi-
mum value of the second derivate of the signal. 

At first, the APW sequence is passed through a low 
frequency filter characterized by a straight-line phase. 
Then the first and the second derivates are calculated. 
The second derivative is very sensitive to interference. 
If noise is yet not noticeable in the first derivative, in 
the signal of the second derivative it is obvious. 
Before locating the maximum point of the second 
derivative, the second derivative is smoothed by 
triangle moving average filter.  

 
Figure 3. The APW and foot point (a), the first derivative of 

the APW (b), the second derivative of the APW (c) 
The minimum of the second derivative corres-

ponds to the maximal negative acceleration, i.e., to the 
maximal deceleration point at the forefront peak of the 
APW. The maximum of the second derivate corres-
ponds to the maximal acceleration point at the foot of 
APW forefront (Fig.3). 

3.2. Tangent Intersection Method 

This method is based on the assumption that the 
APW foot point is located at the intersection of the 
straight-lines drawn through the rear and the fore-
fronts of the APW (Fig. 4). The straight-lines are 
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obtained by least mean squares method. Since the rear 
front of the APW ends at the ECG R peak, the APW 
rear front straight-line is drawn through the points just 
above the R peak, which occupy 2/5 of the whole RR. 
Forward front straight-line equation is calculated from 
the segment between the maximum point of the fore-
front first derivative and the five points below it. 

 
Figure 4. ECG (a), the first derivate of the APW (b),  

APW (c) 

3.3. APW Foot Approximation Method 

In this method, first it is necessary to determine a 
search interval, which begins at the ECG R peak and 
ends at the APW forefront point corresponding to the 
maximum of the first derivate. Then the search inter-
val is divided into ten segments, straight-lines are 
drawn through the values of these segments following 
the least square method. Further analysis focuses on 
the start and the end points of the straight-lines.  

 
Figure 5. ECG (a), the first derivate of the APW (b),  

APW (c), zoomed search interval (d) 

The abscissa value of the starting point of the 
current straight-line is summed up with the abscissa 
value of the end point of the previous straight-line, 
and the average abscissa value at a particular point is 

accumulated. The sequence of average abscissa values 
– the APW foot – is fit with the cubic polynomial. The 
point at which the APW foot gains the least value is 
considered to be the APW foot point (Fig. 5). 

3.4. Bottom straight-line and Forefront Tangent 
Intersection Method 

In this method, it is assumed that the APW foot 
point is at the intersection point of the straight-line 
drawn at the bottom of the APW sequence and the 
straight-line drawn through the forefront of the APW 
(Fig. 6).  

 
Figure 6. ECG (a), the first derivative of the APW (b),  

APW (c) 

From all the APW values, only those values are 
selected which are at ECG R peaks. These value 
points are connected with a straight-line, according to 
the least square method. The straight-line is called the 
bottom line of the APW sequence. The APW forefront 
straight-line equation is calculated from the segment 
between the maximum point of the forefront first 
derivative and the five points below it. The point 
where the APW sequence bottom line and the current 
APW forefront tangent intersect is called the foot of 
the current APW. 

4. Statistics 
When two different methods are applied to mea-

sure the same variable, a question rises whether the 
results obtained from both methods will agree enough 
to allow substituting one method with another.  

When the same method is used to analyze the same 
signal, but with different noise levels in the signal, a 
question rises whether the obtained results will be 
compatible enough to allow using the same method 
for analyzing signals with different noise levels. 

In both cases, it is possible to use the same metho-
dology to determine to what degree the obtained re-
sults agree. 

If the same variable pertaining to one and the same 
object is measured a number of times using two diffe-
rent methods, it is hardly possible to expect that the 
average result values obtained from different methods 
will be the same. 
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The true value of the measured variable is usually 
unknown, thus the average of its values is considered 
to be its most accurate estimate. Using different 
analysis methods or having different noise levels, the 
limits of agreement are calculated by subtracting the 
results of one method from the results obtained 
through another method. The process of subtracting 
annuls the estimate values of variables under investi-
gation, thus leaving only measurement errors, whose 
dispersion is determined by the Normal Law. (This 
can be validated by drawing a histogram.) Therefore, 
the average of measurement errors has to be close to 
zero. If the average d  equals zero or is slightly diffe-
rent, it is claimed that the measure results agree and 
that one method can be substituted with another 
without losing measurement precision. By analogy, 
when the same method is used to analyze the same 
signal but with two different noise levels, the estimate 
values of variables under investigation are annulled by 
subtracting the results of the two measurements, thus 
leaving only estimation errors, 95% of which will be 
found in the interval between the average value and 
the value of the double standard deviation : s sd 2−  
and sd 2+  [4].  

Here N is the number of measurement values;  – 
the values of the first measuring;  – the values of 
the second measuring; 

1x

2x
( )id  – the value difference of 

the ith measurement; d  – the average of measure 
differences. Thus the standard deviation s is calculated 
as follows: 
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−
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N
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Since all the measurements are carried out at the 
same time and under the same conditions, the average 
d  of measurement values is equal to zero, and 95% 
of difference values are less than the  value.  
(When the average is not zero, it is not possible to 
calculate the repeatability coefficient. This happens 
when the results obtained during the first measuring 
affect the results of the second measuring, or the 
measuring method affects the variable under investi-
gation.) Since 

s2

d  is required to equal zero, the repeat-
ability coefficient is calculated by squaring all the 
difference values, summing them up, and then divi-
ding the sum by the number of difference values and 
extracting the square root [4, 5]: 

Thus the question of precision of the results obtai-
ned through different measuring methods arises. ( ) ;1 1

0

2∑
−
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id

N
rc  (4) 

Precision is defined as a particular interval of 
agreement between measure values, obtained under 
certain conditions [21]. Since precision depends on the 
level of error dispersion, it is essential to define the 
conditions under which measurements are carried out, 
in order to accomplish a quantitative estimation of 
precision. 

Here rc is the repeatability coefficient. 

5. Methodology of Conducting the Experiment 

At first, a time axis is modeled with the time pe-
riod s, and a quantization level of 12 bites 
is chosen; then the APW sequence with a constant 
period R=30 is modeled. The APW foot point is a time 
point when the APW gains the minimum value. In this 
sequence, there are R values of the APW foot point. 
When the APW foot point is located, its value is 
approximated to a whole millisecond number. 

3101 −⋅=TConditions, when result values are obtained by the 
same operator, applying the same method to measure a 
number of similar objects, in the same laboratory, and 
using the same equipment, international standard [22] 
defines as repeatability conditions. 

When the same variable is measured a number of 
times under the same repeatability conditions, the 
error dispersion interval does not change; however the 
error values vary. Under different repeatability condi-
tions, both the error dispersion interval and the error 
values vary. This situation can be modeled. It is pos-
sible to model different repeatability conditions into 
sequences of random values, with different dispersions 
and zero average. 

Before applying one or another method, the APW 
sequence is filtered through a 200th order low frequen-
cy FIR filter. 

5.1. Estimating Measuring Method Precision on 
the Basis of Repeatability Coefficient 

Different repeatability conditions are modeled into 
APW signal with different noise levels: Precision obtained under repeatability conditions is 

called the coefficient of repeatability (rc). This coeffi-
cient defines error dispersion under discussed mea-
surement conditions, when the average d  of result 
differences (i.e. of errors) is equal to zero.  

taAPWSy kk += . (5) 

Having carried out a number of measures of the 
same variable of the same object, the average of result 
differences is calculated as follows: 

( ) ( ) ( )( ixixid 12 −= ) ; (1) 

Here t is the noise signal, and its noise values are dis-
persed according to the Normal Law with a single 
dispersion and zero average; APWS is the signal of the 
pulse wave sequence; ak is the multiplier which affects 
the dispersion of noise values; and k refers to the kth 
repeatability conditions. 
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∑
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=
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Under repeatability conditions k, the signal yk noise 
ratio SNRk remains the same (Table2). The sequence xk 
of APW foot point values is obtained from the analysis 
the signal yk. 
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To obtain more reliable results, twenty (n = 1 .. 20) 
realizations are generated, with a different noise t but 
with the same ak. In this way one gets 20 different 
realizations of the signal yk, with the same SNRk. 

Table 2 
k 0 1 2 3 4 5 
SNRk ∞ 90.94 45.47 30.31 22.74 18,19 

taAPWSy knkn += . (6) The comparison of  coefficients allows draw-
ing certain conclusions about the error dispersion in 
the method, when there are different noise levels. The 
smaller is the repeatability coefficient , the better 
the results of separate measurements agree when the 
signal contains the k

kRC

kRC

th noise level. 

Here n is the noise realization number under the kth 
conditions. 

The analysis of the signal  provides us with the 
sequence  of the APW foot point values. To esti-
mate the repeatability coefficient, all N=20 sequences 

 are grouped by two to form all the possible se-
quence  pairs. The total number M of such pairs is 
equal to: 

kny

knx

kn

knx
x

5.2. Calculating Agreement between APW foot 
point (reference value) and its estimate at 
Different Noise Levels 
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For every noise level SNRk, N=20 of APW 
sequences are generated. Then n=1..N of x estimates 

knx  are calculated: 
For each pair, differences are calculated: 

( ) ( ) ( )( ixixid mkmkmk 21 −= ) ; (8) =x ( )∑
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0
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i
knkn ix

R
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Here – the first sequence of the APW foot point 
values of the m

mkx1
th pair, under repeatability conditions k; 

– the second sequence of the APW foot point 
values of the m

mkx2
th pair, under repeatability conditions k; 

m = 1 .. M; and I =1 . .R; R is the number of periods in 
the APW sequence; 

Here – the nknx th APW foot point sequence, when the 
noise level in the signal equals SNRk; R is the number 
of periods in the APW signal; n=1..20. 

For each group k, the value kx  of the APW foot 
point estimate is calculated as follows: 

The APW foot point values obtained using the 
same method and under the same conditions are 
calculated as follows: 
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To evaluate the accuracy of the method under 
different noise levels in the signal, it is necessary to 
compute the difference between the value x  and its 
estimate kx : Here R is the number of periods in the APW sequence. 

The repeatability coefficient of the mth pair is equal 
to: kk xxd −= ; (14) 
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If the difference  (14) equals zero or is close to 
zero, a conclusion can be drawn that noise does not 
affect the accuracy of the results at a given noise level 
in group k. 

kd

The repeatability coefficient for all the m pairs 

under kth conditions is obtained by calculating the 
average: 6. Results of the Experiment 

;1 1

0
∑
−

=

=
M

m
mkk rc

M
RC  (11) When assessing the health of arterial blood-ves-

sels, one frequently calculates pulse wave transit time 
PTT. 

Simultaneously analyzing the signal with different 
SNRk and different repeatability conditions, different 
result dispersions are obtained. This situation is 
modeled by generating six (K=6) groups, each 
consisting of twenty (N=20) sequences of the signal y, 
calculated using equation (6). The signals of separate 
groups vary with respect to the value dispersion of the 
noise signal (Table 1). 

Method precision depends on several factors. The 
smaller is the method error dispersion under the same 
SNRk (repeatability conditions), the more precise is the 
method. The less vary the method repeatability 
coefficient RCk under different SNRk, the more stable 
is the method, since the limits of error dispersion vary 
insignificantly under different SNR. If the limits of 
error dispersion in a particular method remain stable 
under different noise levels in the signal, the method 
can be applied for different SNR values without 
loosing its precision. 

Table 1 
k 1 2 3 4 5 6 
ak 0 100 200 300 400 500 

Since the time axis is modeled according to 
s period, the results of the method are 

approximated to whole millisecond numbers. 

3101 −⋅=TDifferent noise signal value dispersions lead to 
different signal-noise ratios (Table 2). 
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6.1. Tangent Intersection Method 

This method, in which the APW foot point is 
identified as the intersection point of two tangents 
drawn through the forefront and the rear front of the 
APW, results in the following error dispersion 
intervals  with different SNR( kRC×± 96.1 ) k (Fig.7). 

 
Figure 7. Error dispersion at different noise levels in the 
signal (a), the average of errors at different noise levels  

in the signal (b) 
As we can see from Figure 7(a), under the maxi-

mal signal-noise ratio SNR=18.19, the error dispersion 
limits do not exceed +11ms, with 95% confidence 
interval. The probability of errors exceeding the 
+11ms boundary equals p<0.05. 

The tangent intersection method meets the repeat-
ability condition under all SNRk (k=1..5), i.e., the 
average difference values mkd  (9) are equal to zero 
(Fig.7(b)). 

The difference between the reference value (i.e. 
the foot point of the APW obtained from the analysis 
of the APW sequence without noise) and its estimate 
(i.e. the foot estimate of the APW obtained from the 
analysis of the APW sequence with a certain SNRk 
(14) )is shown in Figure 8. 

 
Figure 8. Difference between the standard foot point of  
the APW and the foot estimate obtained when analyzing  

the APW with certain SNRk 

The greater is the signal-noise ratio, the higher are 
the foot estimate values of the APW. 

6.2. Second Derivate Maximum Method 

The method, in which the APW foot point is 
identified as the maximum point of the second 
derivate of the APW, results in the following error 

dispersion intervals ( )kRC×± 96.1  with different 
SNRk (Fig.9). 

 
Figure 9. Error dispersion at different noise levels in  
the signal (a), the average of errors at different noise  

levels in the signal (b) 

As Figure 9(a) shows, under the maximal signal-
noise ratio SNR=18.19 the error dispersion limits do 
not exceed +14ms, with 95% confidence interval. The 
probability of errors exceeding the +14ms boundary 
equals p<0.05. 

The method meets the repeatability condition 
under all SNRk (k=1..5), i.e., the average difference 
values mkd  (9) equal zero (Fig.9(b)). 

The difference between the APW reference value 
and its estimate is shown in Figure 10. 

 
Figure 10. Difference between the standard foot point of 

APW and the foot estimate obtained when analyzing  
APW with certain SNRk 

The application of the second derivative maximum 
method to analyze the APW sequence reveals that the 
greater is the signal-noise ratio, the higher are the foot 
estimate values of the APW. The maximum difference 
is 1ms. 

6.3. APW Foot Approximation Method 

The method, in which locating the APW foot point 
involves finding the minimum point at the foot of the 
APW obtained with the help of the least square 
method and fit cubic polynomial, results in the 
following error dispersion intervals ( )kRC×± 96.1  
with different SNRk  as shown in Figure 11. 
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Figure 11. Error dispersion at different noise levels  
in the signal (a), the average of errors at different  

noise levels in the signal (b) 

Figure 11(a) shows that, under the maximal signal-
noise ratio SNR=18.19, the error dispersion limits do 
not exceed +6ms, with 95% confidence interval. The 
probability of errors exceeding the +6ms boundary 
equals p<0.05. 

The APW polynomial approximation method 
meets the repeatability condition under all SNRk (k= 1 
.. 5), i.e., the average difference values mkd  (9) equal 
zero(Fig.11(b)). 

The difference between the APW reference value 
and the APW foot estimate is shown in Figure 12. 

 
Figure 12. Difference between the standard foot point of 

APW and the foot estimate obtained when analyzing APW 
with certain SNRk 

The analysis of the APW sequence reveals that 
the greater is the signal-noise ratio, the higher are the 
foot estimate values of the APW. The maximum 
difference is 1ms. 

6.4. Bottom straight-line and Forefront 
Tangent Intersection Method 

The method, in which the APW foot point is 
identified as the intersection point of the bottom 
straight-line of the APW sequence and the straight-line 
drawn through the forefront of the APW, results in the 
following error dispersion intervals ( )RCk  
with different SNRk  (Fig.13). 

×± 96.1

According to Figure 13(a), under the maximal 
signal-noise ratio SNR=18.19, the error dispersion 
limits do not exceed +12ms, with 95% confidence 

interval. The probability of errors exceeding the 
+12ms boundary equals p<0.05. 

 
Figure 13. Error dispersion at different noise levels in the 

signal (a), the average of errors at different noise levels  
in the signal (b) 

The method meets the repeatability condition 
under all SNRk (k = 1 .. 5), i.e., the average difference 
values mkd  (9) equal zero (Fig.13(b)). 

The greater is the signal-noise ratio, the higher are 
the foot estimate values of the APW. The maximum 
difference is 1ms, as shown in Figure 14. 

 
Figure 14. Difference between the standard foot point  
of APW and the foot estimate obtained when analyzing 

APW with certain SNRk 

7. Conclusions 

The level of noise in the signal getting higher, one 
also obtains greater estimate values of the APW foot 
point. This could be explained by the fact that the 
forefront of the APW is the most quickly varying part 
of the signal, thus, it is least affected by noise. 

The biggest error dispersion is obtained using the 
second derivate maximum method. Depending on 
what the noise level in the signal is, the error disper-
sion varies from +0ms to +14ms; whereas the diffe-
rence between the reference value (i.e. the standard 
foot point of the APW) and its estimate does not 
exceed 1ms. 

The biggest difference between the reference value 
of the APW foot point (signal without noise) and its 
estimate (signal with a particular noise) is estimated 
using the tangent intersection method. Here the 
difference between the standard foot point of the APW 
and its estimate reaches 5ms, and the error dispersion 
limits vary from +0ms to +11ms. 
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The bottom straight-line and forefront tangent 
intersection method reaches a +12ms error dispersion 
limit; whereas the error dispersion limits of the APW 
polynomial approximation method do not exceed 
+6ms. In both methods, the calculated difference bet-
ween the reference value of the APW foot point and 
its estimate is less than or equals 1ms. In the bottom 
straight-line and forefront tangent intersection method, 
the error dispersion varies from +0ms to +12ms with 
respect to the noise level in the signal. However, when 
the APW cubic polynomial fit method is applied, the 
error dispersion varies from +0ms to +6ms. 

Thus, when the analyzed signal contains noise, the 
APW cubic polynomial fit method is the most precise, 
as it results in the least error dispersion and the best 
agreement between the foot estimate values and the 
reference value of the APW. 

As the results obtained in the experiment show, 
methods which are based on point-to-point (from the 
ECG R peak point to the APW foot point, or between 
the foot points of two PWs) estimation of PTT time 
are highly affected by noise and, thus, they do not 
permit reliable results. In order to obtain reliable 
results, it is necessary to apply methods according to 
which PTT time is calculated as a delay between two 
APW segments, least affected by noise and exposing 
the least value dispersion.  
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