
7

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.1

USING DESIGN PATTERNS FOR DESIGN AND PROGRAMMING
OF COMPLEX AUTOMATION CONTROL ALGORITHMS

Darius Ezerskis, Rimvydas Simutis
Institute of Automation and Control Systems, Kaunas University of Technology

Studentų St. 48, LT – 51368 Kaunas, Lithuania

Abstract. In contemporary automation systems the complexity of control algorithms is increasing significantly,
accordingly the structuring and reusability of control algorithms is becoming more important. This article suggests a
decomposition of controlled process into elementary control sets. For development of the elementary control sets an
approach using design patterns is proposed and some typical design patterns are presented; their advantages and
difficulties of practical application are discussed as well. The proposed design patterns are used for developing real
industrial control systems. The paper in addition discusses the benefit of using the proposed design patterns for
development of the control systems with additional safety requirements.

1. Indroduction

A significant part of process control problems are
of universal nature and do not depend on control hard-
ware or industry branch. For instance, control algo-
rithms solutions for transport, circuits of technological
protection, communication among PLC’s are general
for all industry branches and all programming
systems. It is useful to make such design tasks
possibly general. A typical example of such generali-
zation for the control tasks is well known function
block (FB) libraries. Such libraries are implemented in
nearly all process control programming systems.
Moreover, there are standards such as EN 61131-3 [1]
for function block libraries. The use of function blocks
improves the quality and safety of the control algo-
rithms considerably. However, it is recommended to
implement in function blocks only for those functions
that can be characterized very specifically and can be
applied repeatedly without modifications.

In case a control algorithm is complex and needs
to be modified for each application, function blocks
are unsuitable solution. For example, it is difficult to
design a universal function block for closed loop
controller, because for this controller many extra
blocks such as signal filtering and linearization, set-
point processing and etc. are needed. It would be very
difficult to implement such functionality into one uni-
versal FB because each installation of closed loop
controller can differ in its control algorithms and its
signal, set-point or manipulated value preprocessing.
However, the structure of controller algorithms, in
fact, is the same and can be made according to one
pattern. Therefore some automation equipment

suppliers offer templates for closed loop control
algorithms [9] [11].

In this paper we propose a method how to find and
design the typical patterns in a technological process.
In addition we present design patterns for develop-
ment of control algorithms for typical control tasks.
Referred algorithms for automation control of the
technological process were actually built according to
proposed design patterns. Additionally, the paper dis-
cusses practical benefits of the patterns, their influence
on safety of the programs, and the difficulties that can
emerge in the course of implementation.

2. Design patterns

The design patterns, first introduced by Christoph
Alexander [5], are used in informatics for algorithm
design and analysis. There were attempts to apply
design patterns for design of the control algorithms
[3], [7]. However, it was attempted to use only design
patterns already existing in computer science. Using
these methods in practice is quite complicated for the
reason that automation engineers don’t have sufficient
theoretical informatics backgrounds to use such design
patterns. Moreover, the automation control has speci-
fic requirements for control algorithms such as effect-
tive usage of resources, on-line change of program,
on-line adding and removing of technological or
control equipment, etc [7]. For the above-mentioned
reasons this article introduces special design patterns
for control algorithms.

Design patterns can be used for structural design
of programs (structural patterns) as well as for

D. Ezerskis, R. Simutis

8

algorithm design (behavior patterns) [5]. Using the
design patterns has several advantages:
Supplements methods of object modeling by enabling
to use experience of designing and programming from
old to new projects.
Enables the use of specified (generalized) behavior
models for controlled objects as well as models for
communication with other objects.
Enables the use of the proven algorithmic solutions in
new projects, similar in their problematic. This
increases the safety of the programs.

In the following sections we introduce a procedure
for determining typical patterns in technological pro-
cess and we suggest some patterns for common design
problems in automation control.

3. Determination of design patterns
3.1. The decomposition of a system

During design of the process control algorithms it
is required to decompose the whole controlled object
into smaller components. Commonly this can be done
using top-down decomposition of the process into
smaller technological objects [10]. The decomposition
leads to elementary control segments ECS, as shown
in Figure 1.

Process

• •

Control unit

ECS 1

ECS n

Actors Sensors

• • • • •

ECS 2

Figure 1. Decomposition of process

This kind of decomposition leads to smaller sub-
sets of controlled object that are better to understand
and highlights the interfaces among objects. Such
elementary control segments (ECS) can be:
Transporting way (for example system of Screw
conveyors, elevators etc.),
• Reactor,
• Boiler protection system etc.

Further decomposition of ECS leads to the following
elementary controlled units (ECU):
• Heater,
• Motor,
• Screw conveyer,

• Solenoid valve etc.
Accordingly the two substantial structural ele-

ments of control system are:
1. Elementary control unit (ECU),
2. Elementary control segment (ECS).

Though the amount of ECS is not so high, the
amount of elementary controlled units can be very
high.

Continuously applying object-modeling techniques
for each controlled unit and segment a control object
will be built. This control object represents status of
the real controlled object and according to control
algorithm and input signals will generate output
signals to the real object [4].

3.2. The control of ECU

It is useful to implement the control of elementary
units by using function blocks FB (like EN 61131-3).
For example, it is quite simple to create a function
block for motor control, as shown in Figure 2. The
inputs and outputs of this FB are easy to understand
and document themselves. The internal functionality
of FB can be described with some sentences or logical
equations. Each programmer knows well FB’s for PI
or PID control or function block library EN 61131-3.

If a recurrent control algorithm can be implemen-
ted repeatedly in various projects without modifyca-
tions it should be programmed as a FB.

Figure 2. FB for motor control

If a control algorithm can be implemented only
with several parametric inputs, which modify algo-
rithm, it should be implemented as a set of FB’s or a
design pattern.

3.3. The control of ECS

The modeling and programming of elementary
control segment is much more complex task than
designing an elementary control unit.
The ECS for the same technological function can:
• Vary for the similar processes. For example a wa-

ter transfer in one line can be done with one pump
and in another line – with two pumps of lower

Using Design Patterns for Design and Programming of Complex Automation Control Algorithms

9

capacity. Thus the amount of controlled units dif-
fers, as functionality and protection rules stay the
same.

• The functionality of control algorithm can vary in
the start-up stage of the technological equipment.

• Technological properties of ECS can require
different control algorithms, measuring methods
and etc.

Due to the higher level of complexity a realization
of the control algorithms for the ECS as a FB is
unsuitable. It is recommended to use design patterns
for design of these algorithms. The design pattern can
be applied to:
• Program structure,
• Material and products transporting tasks,
• Selection of transporting ways,
• Starting sequences of technological units,
• Design of protection circuits,
• Communication between subsystems and opera-

tor,
• Methods of user interface.

There are no special and specific rules for use of
design patterns. The authors, who write about the pat-
terns, suggest to use design patterns when design
problem is recurrent in several objects, however the
actual implementation of algorithms may vary from
one implementation to another [5], [8].

The below-set examples show the design patterns
for control algorithms. It will be shown how imple-
mentation flexibility and safety can be achieved for
such algorithms.

4. Typical examples of ECS in process
automation systems

4.1. The transporting way

The problem:
All transporting systems have the following typical

properties and requirements:
 1. The transport way may consist of an equipment

set such as:
a) pumps, valves, filters for gas and liquid

transport,
b) elevators, conveyers for solid materials,
c) air compressors, airlock valves and diverters

for powder materials.
 2. This equipment starts operation according to the

given starting sequence to avoid product jams. It
is usually operated from begin to the end of
transport way in liquid transportation and vice
versa in solid and bulk materials transportation.

 3. In trip case of any unit, the whole equipment in a
transportation sequence must be stopped in a
specific safe manner. For example, in the
conveyer transport all units that are before fouled-

up units stop immediately and all units behind
must operate for a while to clean themselves.

 4. Transport units must have so called “cleaning” or
“testing” mode to bypass all interlocks of
equipment – in this case it is the manual mode.

The solution:
All the equipments in the transport way are to be

implemented as objects. These objects must have the
following properties:
 1. An unambiguous trouble signal.
 2. An input - External disable (Ext_DIS). The high

level of this input disables the operation of the
equipment.

 3. An operation mode AUTO/MAN. In AUTO mode
the signals are interlocked and the AUTO_ST are
active. In MAN mode only manual start is
possible. AUTO_ST and Ext_DIS are ignored.

 4. The “cleaning” time for automatic stop must be
specified for each object.

The idea of algorithm for a transport system is
schematically detailed in Figure 3. At first the com-
mand from master algorithm starts obj_1. The start of
the successive objects is possible only in the case if
the preceding object already operates. This is realized
by Ext_Dis input of the object. This manner of object
interlocking guaranties that in trip case of the device
all objects behind this object will stop automatically.
The TOFF block enables the cleaning stop sequence of
the system. If the system is not in AUTO mode all
objects won’t be interlocked.

 Obj_1
...
AUTO_ST

RUN
Ext_DIS

AUTO
...

Obj_2
...
AUTO_ST

RUN
Ext_DIS

AUTO
...

....

Obj_n
...
AUTO_ST

RUN
Ext_DIS

AUTO
...

....

&

&

ALG_start

Obj_2.AUTO

Obj_n.AUTO

Obj_n-1.RUN

····

T#5s

T#4s

TOFF

TOFF

Figure 3. The algorithm of transport way

There is also another method to implement inter
location. It can be done by adding new objects that
already have additional logical functions, for example
Ext_DIS_AUTO, which functions only in AUTO mo-
de. This method could be implemented in traditional

D. Ezerskis, R. Simutis

10

way using object programming procedures. However,
in this case it is not advisable for several reasons:
 1. The efficiency of control algorithm will decrease,

because in the place of AND operation subroutine
CALL function would be used.

 2. These starting interlocks and “cleaning” times are
specific only for transportation algorithms. If new
function blocks would be created for each
specific application, the library would become
huge and not practicable.

 3. Finally, the interlocks and stop delays are
properties of the technological process and not of the
technological unit.

The Implementation area:
PLC and Process station algorithms; independent

of the programming language; desirable that there
would be possibilities to structure the program and to
create FB .

The consequences:
Advantages
• Easy to understand and simple. It is suitable to

solve nearby all transportation tasks.
• All necessary functions for normal and abnormal

operation are formulated.
• No limitation for implementation area. Each type

of objects – motor, pump, valve or elevator – can
be controlled.

• Simple inserting and removing of objects in trans-
portation sequence.

• All interlocks among objects can be easily moni-
tored and modified.

• Typical structure of program is easy to detect in a
program code. This helps significantly to under-
stand and maintain the program.

Disadvantages and possible implementation problems
• For the reason that it is not an object or FB

algorithm it must be programmed individually in
each specific case.

• Errors during the programming may emerge,
however they would not be of structural nature –
and can be easily found and corrected [6].

4.2. The way map

The problem:
Usually the transportation of materials in industry

is implemented as a transportation network. This
means there is more than one source and destination
of transportation way. Examples are shown in Figure
4.

Specifically, for this task the authors saw the ut-
most variety of algorithmic solutions, all of which
could realize the same functionality.

The algorithms for transport way selection must
meet the following requirements:
 1. The ways shall be easy to modify,

 2. The check of selected way and actual way shall
be possible.

 3. The amount of way combinations has to be un-
limited.

Air

Gas

PI

PI

Burner Nr1 Burner Nr2a)

b)

Figure 4. Examples of transport ways

The solution:
The command variables of all transportation units

are collected in a structure transport_set (see Table 1):

Table 1. Structure transport_set (according to Figure 1b)

Member Type Comment

PDV1_A BOOL PDV1 position A
PDV2_A BOOL PDV2 position A
PDV3_A BOOL PDV3 position A
PDV5_A BOOL PDV4 position A
PDV6_A BOOL PDV5 position A
PDV7_A BOOL PDV6 position A

The Map is array, whose length is the number of
specified transport ways. Array elements, which are of
the type transport_set, represent the map of transport
ways. Each array element has to be initialized in the
method to represent one of the desired transport ways.

Map ARRAY [1..n] OF transport_set =
 {0,0,x,x,x,x, (* 54 *)
 0,1,0,x,x,x, (* 55 *)
 1,x,x,1,x,x, (* 56 *)
 1,x,x,1,0,x, (* 57 *)
 } (* others *)
x – any value.

To each transportation object the corresponding
members from the command structure transport_cmd,
as shown in Figure 5, shall be assigned. For selection

Using Design Patterns for Design and Programming of Complex Automation Control Algorithms

11

the desired transport way it is enough to assign an
adequate element of the array Map.

PDV_1
...
PosA_cmd
PosB_cmd

PosA
PosB

ValCMD.PDV1_A

PDV_7
...
PosA_cmd
PosB_cmd

PosA
PosB

ValCMD.PDV7_A

ValCMD transport_set;
IF WHEAT_change_bin THEN
 IF (Bin_Nr_weat >53 AND Bin_Nr_weat <58) THEN
 Val_cmd:=Map[Bin_Nr_weat -53];
 WHEAT_bad_sel:=FALSE;
 ELSE WHEAT_bad_sel:=TRUE; (*bad selection*)
 END_IF;
END_IF;

.

(* Control of valves *)

(* Selection of destination bin *)

Figure 5. Selection of transport way

If the actual states of transportation objects are col-
lected into a structure of the same type transport_set
(for example with the name ValPOS), comparison of
structures ValCMD and ValPOS enables monitoring if
the right way of transportation will correspond to the
one that was chosen.

The Implementation area:
Algorithms with necessary configuration of ob-

jects’ status according to specific requirements, for
example transportation systems. A typical implemen-
tation example is transport way selection in control
algorithms for milling products silo storage.

The consequences:
Advantages:
• The algorithm is very simple. It is enough to fill

an array with values.
• It is possible to add new way or modify an exist-

ing way at runtime.

Disadvantages:
• In some programming systems it is complicated

to add new objects to the structure at runtime.
• In the testing phase all way combinations must be

tested.

4.3. The Starting Sequence

The problem:
Operation of a technological process usually starts

in several steps. Each technological step has explicit
start conditions.

For example, to start a cleaning section for grain
cleaning, first it is necessary to give a sound signal,
then an air compressor and filters must start. Subsequ-
ently all cleaning equipment – unit after unit – can
start.

VentSandERR

START

Initial

Ventilation

Igniters

GasTransp

Burner1

Burner2

InProgress

Avary

UzdERR

KuroSklERR

Deg1ERR

Deg2ERR

ApsERR

VentSand

Uzdeg

KuroSkl

Deg1

Deg2

ACK

Figure 6. The Algorithm for boiler startup

It is advisable to represent such starting sequence
in the control algorithms well. Step-condition prog-
ramming languages, for example Sequential Function
Chart according to EN 61133-3 can be used. SFC step
can represent a technological step and generate control
signals for operations at this step, and SFC transitions
represent conditions of transition from one technolo-
gical step to another. It makes start-up of the system
easier. The deficiency of this solution is that all tran-
sitions for abnormal situations in a process must be
predicted and programmed as transitions to “alarm”
step. Otherwise the algorithm can “lock” in some step
and does not return to the initial state. In general case,
there can be much more transitions for abnormal con-
ditions than for normal process operations. This
significantly reduces readability and usability of the
algorithm – especially at start-up, because all transi-
tions of the algorithm must be tested.

An additional problem is to detect the primary
condition, which led the algorithm to the alarm state.
If the technological process stops, it is essential to
detect the original reason of the stop, because during
the process shutdown more process parameters can be
in abnormal state. Detection of primary stop condition
is necessary in the boiler, turbine and power
distribution control algorithms.

D. Ezerskis, R. Simutis

12

The solution:
All technological protections shall be aggregated

into one set and expressed as a value. In each starting
step of technological unit there must be defined which
protections are necessary for this step and correspon-
ding value must be calculated. In this case the tran-
sition condition to protection state is:

Actual_protection_value < calculated_value

The real application of such algorithm is presented
in Figure 6. The primary reason for abnormal situation
in a controlled unit is Actual_protection_value at the
entry point to “alarm” step.

The real implementation example:
The start-up of a boiler is performed in a following

sequence:
 1. Ventilation of boiler and leakproof test of gas

pipeline (STEP: “Ventilation”)
 2. Burning-up the igniters (STEP: “Igniters”)
 3. Gas supply to burners (Opening of gas protection

line) (STEP: “GasTransp”)
 4. Sequential burning-up of burners (STEP:

“Burner1” and “Burner2”)
 5. Boiler runs (STEP: “InProgress”)

Emergency_STOP_open

Vakuum_vent_Ok
Air_vent_Ok

Water_level_Ok
Power_Ok
Vacuum_Ok

Air_supply_Ok
Exciters_flame

Gas_prot_valve_Open
Gas_pressure_Ok
Burner_Nr1_flame
Burner_Nr2_flame

BIT_TO_WORD
AW_WORD

Protection values
1. Ventilation of boiler and leakproof test for gas pipeline
VenSandERR := (AL_WORD AND 007Fhex) < 007Fhex
2. Burning-up of ignitors
UzdERR := (AL_WORD AND 00FFhex) < 00FFhex
3 Gas supply to burners
KuroSklERR := (AL_WORD AND 03FFhex) < 03FFhex
4. Burning-up of a first burner
Deg1ERR := (AL_WORD AND 07FFhex) < 07FFhex
5. Burning-up of a second burner
Deg2ERR := (AL_WORD AND 0FFFhex) < 0FFFhex
6. Burning is in progress
ApsERR := (AL_WORD AND 0FFFhex) < 0FFFhex

Figure 7. Calculation of protection values

In each step value AL_WORD is evaluated and
compared with the value required to this step, as
shown in Figure 7. If the corresponding protection
input becomes FALSE, the AL_WORD will be less
than the calculated value and the algorithm will switch
to step “Avary”. At the entry to this step actual value
AL_WORD must be stored to save the primary reason
(image of protections) of boiler stop.

The implementation area:
SFC programs, which realize starting sequences.

It is useful for other step/transition algorithms

The consequences:
Advantages
• Flexibility. The algorithm can be used even for

boiler, mill or reactor control as well.
• Tiny and clear SFC network.
• Transition to the “alarm” state is always possible.
• Process state at each moment is easy to identify.
• Reliable identification of the primary stop reason.

Disadvantages:
• Calculation of protection value reduces

readability of algorithm
• As calculation of a protection value is in a

different routine, the start-up of the algorithm
may be more complicated.

Implementation examples:
 1. Boiler start-up algorithms. ABB ProContic and

Modicon PLC families
 2. Milling stations – start-up of all technological

sequences. Modicon family.

4.4. The dynamic check

The problem:
Distributed control systems require health check of

each system component. It is necessary to detect the
controller stop or communication break. Usually it is
not enough to read data from the controller, because
communication coprocessor can work even if the main
controller program is stopped.

The solution:
To use the so-called dynamic check. The control

unit generates the periodical pulses. These pulses are
read from another device and checked if they are
periodical. If they are not, an alarm will be generated.

The implementation area:
In the systems where detection of device health or

line health is necessary.

The consequences:
Advantages:
 1. Simple to implement
 2. Guaranties the detection of communication or

program fail

Disadvantages:
 1. Additional loads to the communication channel
 2. The period of pulses must be adjusted to the

communication channel reaction time.

The implementation example:
This simple pattern (see Figure 8) is used to iden-

tify communication fault with another PLC. The vari-
able BH_MX_ethernet_imp is read from another PLC
and represents periodical signal.

Using Design Patterns for Design and Programming of Complex Automation Control Algorithms

13

Figure 8. Example of a dynamical communication check

5. Composition of Design Patterns

By using the presented design patterns it is pos-
sible to build the major part of automation programs,
as shown in Figure 9.

 Design patterns used in wheat flour silo storage

Starting sequence
Solves starting of:
-aspiration
-vetilators
-airlock valves
-gives commands to
“way selection” and
“transport way”

Transport way
Transport way
control

Way selection
Solves way selection

States/Troubles

Distribution of
Commands

Figure 9. Using composition of patterns

The design patterns Transport Way, Starting Se-
quence, Way Map can be composed to implement
nearly full transportation algorithm for production
storage or air and gas supply to boiler. Moreover, the
program structure and program solutions remain near-
ly the same. Only unsubstantial technical details are
different.

If the control system comprises several control
units for one technological unit, dynamic control pat-
tern can be applied to monitor communication among
devices.

6. Implementation of design patterns

Practical application of design patterns was emp-
loyed in several real projects. The first application was
to use design patterns in boiler start-up algorithms [2].

More design patterns were used to design a control
program for the mill AB “Malsena”, Vievis, Lithuania.
This technological system consists of:
• 7 big technological subsystems such as wheat

cleaning, rye cleaning, wheat and rye milling,
storages for both types of products and screening
grinding.

• 23 technological groups, those consist of several
technological units.

• More than 350 motors, 70 valves and diverters, 20
roller-mils.

• More than 1000 IO signals, 5 PLC’s, two control
rooms.

All program design and programming tasks were
done by the team of three programmers. The leader of
the team was one of the authors of the design patterns
proposed, for other programmers it was the first try to
design the process automation programs in such tech-
nique.

The usage of design patterns has significantly im-
proved communication inside the team, because most
algorithmic solutions were unified. Using the same
algorithmic solutions implied better interfaces among
program parts from different programmers, consequ-
ently this led to reducing programming errors.

For program design the design patterns from sec-
tions 4.1, 4.2, 4.3, 4.4 and additional patterns program
structure (structural pattern), object control (object-
operator interface) were used.

Using of design patterns has significantly reduced
the number of structural errors in the control software.
It was sufficient to test implementation of the new
pattern in detail in one technological branch. Follow-
ing application of this pattern in other branches
required only adaptation to new technological equip-
ment and signal check. This considerably reduced the
time of program design and implementation.

7. Advantages and disadvantages of patterns
using

The usage of design patterns in practice gives the
following advantages:
 1. Effective reception of formally discovered algo-

rithms. This advantage is particularly relevant for
inexperienced programmers.

 2. Generalization of algorithmic solutions and prog-
ram architecture. It allows company, group or
project wide unification of algorithms and prog-
ram code.

 3. Minimizing number of structural errors in the
programs. The structural errors are the errors,
identification and correction of which is labor
consuming and in some cases impossible to cor-
rect [6].

 4. Reduction of program support over the program
life cycle. Programs from the known patterns are
easier to understand for service staff.

 5. Simple documentation of a program. It is
sufficient to refer to the design pattern, which the
program part comes from, and to document
specific details of application.

The usage of design patterns causes the following
disadvantages:
 1. Up to now there is no suitable and comfortable

notation and catalog form for design patterns.

D. Ezerskis, R. Simutis

14

Currently the most common pattern notation form
is textual description. In most cases it is an html-
format text with references to the relevant infor-
mation and examples.

 2. A good design pattern shall be of universal use
and easy to understand. In some cases these two
requirements are not easy to reconcile. A pattern
author or a team of authors shall have particular
experience and traditions in patterning.

 3. There are no automatic tools for programming
systems that would generate a program template
directly from the pattern. This kind of tools
would notably facilitate implementation of the
design patterns.

The advantages listed above were actually tested in
industrial applications. The practical utility of the pat-
terns confirms expedience of their design. The authors
believe that further analysis and developments of new
patterns for new automation control fields is advis-
able. In addition, a common and comfortable notation
form for design patterns would be further important
improvement of this method.

References
 [1] DIN Deutsches Institut für Normung e.V.: DIN IEC

1131. Teil 3 Speicherprogrammierbare Steuerungen
Teil 3. Bouth Verlag, Berlin, 1992.

 [2] D. Ezerskis, R. Simutis. Using of Design Patterns for
Development and Evaluation of Computer Based
Automation Systems. Information technology and
control, Kaunas, Technologija, 2002, No.4(25), 7 - 12.

 [3] J.H. Christensen. Design patterns for IEC 61499.
Konference papers: Distributed Automation 2000.
Magdeburg, Germany, 2000.
http://www.holobloc.com/papers/1499_despat.zip
[2003-01-29]

 [4] J. Fiedler, F.-K. Rix, H. Zöller. Objekt orientierte
Programmierung in der Automatisierung. VDI-Verlag,
Düsseldorf, 1991.

 [5] E. Gamma, R. Helm, R. Johnson, J. Vissides. Ent-
wurfsmuster. Addison-Wesley (Deutschland), Bonn,
1996.

 [6] L. Hatton. Programming technology, reliability, safe-
ty and measurement. IEE Computing and Control
Engineering, 1998(9), 1, p. 23-27.
http://www.cs.ukc.ac.uk/people/staff/lh8/pubs/pubier2
98/PTRel_IER298.pdf.gz

 [7] T. Honkanen. Design Patterns in Automation. AS-
116.140 Postgraduate Seminar on Information Tech-
nology in Automation. Helsinki University of Techno-
logy, 2002.
http://www.automationit.hut.fi/julkaisut/documents/se
minars/sem_s02/Honkanen_paper.pdf

 [8] Industrial Experience with Patterns.
http://www.cs.wustl.edu/~schmidt/patterns.html.

 [9] J. Müller. Regeln mit SIMATIC. Praxisfuch für Re-
gelungen mit SIMATIC S7 und SIMATIC PCS7.
Publicis MCD Verlag, München, 2000

[10] P. Rieger, M.S. Hoang, D. Ezerskis. Lösung automa-
tisierungstechnischer Aufgaben durch objektorientierte
Vorgehensweisen. 28. Jahrestagung des SAK,
Dresden, 1997.

[11] Schneider Electric. PL7 Junior/Pro. Applikationsspezi-
fische Funktionen der Steuerungen Premium. Rege-
lung TLX DS 57 PL7 xx ger, 2002.

http://www.holobloc.com/papers/1499_despat.zip
http://www.cs.ukc.ac.uk/people/staff/lh8/pubs/pubier298/PTRel_IER298.pdf.gz
http://www.cs.ukc.ac.uk/people/staff/lh8/pubs/pubier298/PTRel_IER298.pdf.gz
http://www.automationit.hut.fi/julkaisut/documents/seminars/sem_s02/Honkanen_paper.pdf
http://www.automationit.hut.fi/julkaisut/documents/seminars/sem_s02/Honkanen_paper.pdf
http://www.cs.wustl.edu/~schmidt/patterns.html

