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Abstract. The aim of the work is to create and to refine methods of algorithmic filter synthesis allowing designing 
quasi-optimal filters in cases when statistical characteristics of effective signal and interference – non-stationary 
stochastic processes – are unknown and application of classic synthesis methods, e.g. Kalman-Busy method, is 
impossible. Paper presents the basics of algorithmic quasi-optimal filter synthesis, the essence of which is the for-
mulation of the filter synthesis task in the form of searching optimization and its solution with application of simplex 
search methods. Examples of algorithmic quasi-optimal filter synthesis are presented. Parameters of quasi-optimal 
filter transfer function found by algorithmic method correspond to theoretical parameters calculated on the basis of sta-
tistical characteristics of input signals. 

 
 

1. Indroduction 

Non-stationary stochastic processes with zero 
means are applied into filter input: g(t) – effective 
signal and η(t) – “white noise” disturbance. 
The entrance signal is the sum: 

( ) ( ) ( )t g t tϕ η= + . 

The purpose of the system is to restore useful 
signal g(t), or a certain function from this signal. 

The function g(t) sometimes can be expressed by 
the first order differential equation with variable 
coefficient A(t) that depends on statistical 
characteristics of the signal [3]: 

( ) ( ) ( ) ( )dg t A t g t V t
dt

= + , (1) 

where V(t) is non-stationary “white noise” stochastic 
process with zero mean. 

Correlation functions of non-stationary stochastic 
signals V(t) and η(t) can be expressed as follows: 

),()(),( τδτ −= ttLtRV , (2) 
),()(),( τδτη −= ttNtR ,  (3) 

where L(t) and N(t) are continuous differentiable 
functions. The signals V(t) and η(t) are non-correlated, 
i.e. RVη(t,τ) = 0. 

In case of filtration task, given value of exit signal 
is effective signal, i.e. y0(t) = g(t).  
The error of the system is: 

0( ) ( ) ( )y t y t y t∆ = − . (4) 

Kalman and Busy have determined [3] that optimal 
system which guarantees reproduction of effective 

signal and minimal mean square error 2y∆  is defined 
by the following differential equation 

( ) ( ) ( ) ( )dy Q t y t C t t
dt

ϕ= + ,  (5) 

where Q(t) and C(t) are time functions wich can be 
found from the condition of mean square error 
minimum: 

[ ]{ } min)( 2 →∆ tyM .  (6) 

If effective signal can be presented by the form (1), 
methodics for detection of functions C(t) and 

( ) ( ) ( )Q t A t C t= +  [3] require statistical characteris-
tics of stochastic signals V(t) and η(t) given by (2) and 
(3). 

When statistical characteristics (2) and (3) are un-
known, the problems of filter synthesis stated in works 
[3] and [4] can be solved with application of algorith-
mic stochastic systems synthesis methods [1]. 

The aim of this work is to create and enhance algo-
rithmic methods for solution of the filter synthesis 
problems enabling to design quasi-optimal filters in 
cases when statistical characteristics of signals g(t) 
and η(t) are unknown and it is impossible to apply the 
classical  synthesis methods (see [3] and [4]). 

2.  Fundamentals of algorithmic quasi-optimal 
filter synthesis 

The system must reproduce as much precisely as 
possible the effective signal g(t) or certain function 

)()()(0 tgtHty =   (7) 

of the effective signal g(t). 
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In this case the system’s quality index mean square 
error 
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can be evaluated during searching optimization by 
discrete analogues of this index (moving average of 
∆y2 etc.). For example, signal’s y(t) deviation from 
determined value y0(t) can be evaluated after perfor-
ming N measurements of the exit signal: 
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where wi is tuning factor. 
We will insert filter with excessive transmission 

function into system’s contour: 
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where n > m. 
We will input vector x = (xi, …, xk), components of 

which will be equal to coefficients of filter transmis-
sion function (x1 = a1, x2 = a2, …, xk-1 = am+p+1, xk = 
am+p+2). In general case, when effective signal g(t) and 
interference η(t) are non-stationary processes, as time 
passes, depending on signals’ characteristics changes, 
the parameters and structure of the filter are changing, 
and the vector x is a function of time . ( )t=x x

The output signal y(t) of the system and various 
indices of filter quality 2y∆ ,  etc. depend upon 
vector x. 

NS

After selection of the objective function – index of 
quality J(x), we can formulate the problem of search-
ing optimization. 

It is necessary to find a vector x, upon which 
filter’s transmission function’s W(p) structure and pa-
rameters are dependant, and which guarantees the 
minimum of the objective function 

[ ]( ) ( )J J y=x x  (11) 
that under the restriction 
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Figure 1. Flowchart of quasi-optimal filter  

algorithmic synthesis 

The problem (11), (12) is solved with application 
of simplex search methods [2]. A schematic drawing 
of the solution is presented in Figure 1. Sources of 

stochastic signals (SSS), shown in Figure 1, can be 
real or composed for modeling purposes using special 
computer programs. 

3. Examples of quasi-optimal filter 
algorithmic synthesis 

The problem for filter algorithmic synthesis is for-
mulated as one with the objective function (11) and 
constraint (12). The problem was solved with applica-
tion of algorithmic filter synthesis method, using soft-
ware package Matlab and Simulink according to sche-
matic drawing of Figure 1, into which sources of non-
stationary stochastic signals g(t) and η(t) were plugged 
in. During solution of the problem the statistical cha-
racteristics of those signals were not used. The result 
of problem solution is the quasi-optimal filter transfer 
function 

1)(
)()(
+

=
ptT
tkpW , (13) 

the parameters of which k(t) and T(t) are changing 
with time. Function (13) was obtained from function 
(10) during the process of optimization. 

Filter’s time constant dependency upon time is 
depicted in Figure 2 (first curve), amplification coeffi-
cient’s dependency upon time – in Figure 3 (first cur-
ve). Changes of filter’s parameters are influenced by 
changes of statistical characteristics of input signals. 

 
Figure 2. Quasi-optimal filter’s time constant’s 

experimental (first curve) and theoretical (second curve) 
dependencies upon time 

During formation of sources of stochastic non-
stationary signals g(t) and η(t), spectral densities of 
signals were used: 

22
)(2),(
ωα
αω

+
=

tDtSg , (14) 

ttS 005,0),( =ωη , (15) 
where D(t) – dispersion of the effective signal, 

( ) 450 1,25D t t= − , α – parameter of the effective sig-
nal correlation function, 2α = . 
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Figure 5. Time-series diagram of filter’s input signal 

Figure 3. Quasi-optimal filter’s amplification coefficient’s 
experimental (first curve) and theoretical (second curve) 

dependencies upon time 

 

Characteristics given by 14 and 15 enabled us, 
using the methodology of optimal filter synthesis [4], 
to calculate theoretical values of filter transmission 
function, which are shown in Figures 2 and 3 as the 
second curves, and to compare with results of algo-
rithmic filter synthesis. 

At the same time optimal parameters of the filter 
were calculated, when input signals are stationary 
stochastic processes, spectral densities of which are 

2

400( )
4gS ω

ω
=

+
,  (16) 

( ) 1, 4Sη ω = . (17) 
Figure 6. Time-series diagram of quasi-optimal filter’s  

input signal 

In this case, parameters of optimal filter are close 
to parameters of quasi-optimal filter (13) and the 
transfer function of the quasi-optimal filter is 

4. Conclusions 

Parameters of quasi-optimal filter delivered by the 
algorithmic method correspond to theoretical parame-
ters calculated according to statistical characteristics 
of input signals. 

0,874( )
0,0635 1
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p
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+
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This working regime of quasi-optimal filter is pre-
sented in Figures 4, 5 and 6, where time-series diag-
rams of the effective signal, filter input signal and 
output signal are shown. 

Algorithmic method was designed which gives a 
possibility to perform filter synthesis in cases when 
statistical characteristics of input signals are unknown 
and application of classic synthesis methods is impos-
sible. 
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Figure 4. Time-series diagram of system’s effective signal 
 


