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Abstract. The paper presents three versions of software codes for the simulation of granular material dynamics 
based on the discrete element method. The codes DEMMAT_F90 and DEMMAT_PAS are used for the imple-
mentation of a purely procedural approach by the programming languages FORTRAN 90 and OBJECT PASCAL, 
while the code DEMMAT_CPP represents a purely object-oriented programming approach based on applying C++. 

 
 

1. Indroduction Two programming concepts based on procedural 
and object-oriented programming (OOP) approaches 
may be implemented now through different program-
ming languages. By using a procedural approach, the 
problem is decomposed into several composite algo-
rithms which are implemented as their subroutines or 
functions, while all the data related to particles is kept 
in separate arrays. To extend functionality, new sub-
routines or functions are required in a code, which can 
make it large and complicated. At the same time, any 
changes of the code require some additional time in 
order to avoid coding errors. For these reasons, the 
procedural approach, according to Peters [2], is not 
sufficiently flexible for the creation of software for 
modelling particles as an integral object. The dis-
cussion of a procedural DEM code written in VISUAL 
BASIC and based on the previous FORTRAN code 
[3] is presented by Asmar et al. [4]. 

The discrete element method (DEM), initiated by 
Cundall and Strack [0], is one of the most powerful 
tools for simulation of granular material as an assemb-
ly of particles. The DEM is based on the Lagrangian 
approach, used to track the position, velocity, orienta-
tion and other parameters of particles during the 
simulation.  

The application of DEM is usually associated with 
computational capabilities which are currently limited 
by a huge number of particles, small time step and 
finding the contacts between the particles. However, 
the capacities of computers are growing dramatically, 
making DEM accessible for use on personal compu-
ters. As a result, personal computers have become 
more popular in solving granular material problems by 
DEM.  

The efficiency of DEM implementation in soft-
ware depends on numerical methods, programming 
concepts and languages as well as on the compilers 
used. The choice of the programming concept and the 
programming language has the crucial influence on 
the efficiency of software.  

Instead of using a set of functions showing a glo-
bal state, object orientation uses a set of interacting 
individual objects with their information hiding, en-
capsulation, inheritance and polymorphism. All data 
related to particles can be kept inside the object, and 
all operations with these data are described by 
methods defined within the classes of the objects. A 
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comprehensive study concerning the object-oriented 
approach to DEM programming is given by Peters and 
Džiugys [0], where programming modules are written 
in C++ and implemented in the TOSCA software 
package. According to the authors, OOP facilitates 
code maintenance and introduction of changes in a 
program as well as improving its transparency and 
extensibility. 

 

However, the codes based on the procedural ap-
proach have one indubitable advantage in comparison 
with the object-oriented programs. They use less CPU 
time. The review of the performance of both 
approaches shows that early attempts to apply the 
OOP technique were disappointing. Forslund [0], 
using particle-in-cell methods in plasma physics 
simulation, found that the procedural FORTRAN code 
version ran about twice as fast as the comparable 
similar OOP C++ version. In [0], the typical bench-
marks showed C++ lagging behind FORTRAN 90's 
performance by 20% to a factor of ten. Haney [0] and 
Robison [0] also commented on some aspects of appli-
cations of C++ language in considering computational 
speed. Figure 1. Particles i and j: geometry of contact 

The goal of the present investigation is to compare 
the computational performances of procedural and 
object-oriented approaches to discrete element method 
software. For this purpose, three versions of 
DEMMAT code have been created. Programming 
languages C++, FORTRAN 90 and OBJECT PASCAL 
were used. 

The composition of the media is time-dependent 
because individual particles change their position due 
to free rigid body motion or because of contacting 
with the neighbouring particles or walls. Thus, 
Newton’s second law is applied to each particle i to 
update its translational and rotational displacements 
according to:    
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The granular material is considered as a space fil-

led with discrete spherical particles referred to as 
discrete elements with a geometric representation of 
their surfaces and a description of physical state. The 
motion of the particles is calculated from the applied 
forces and moments according to the Newton’s second 
law. The boundary conditions are determined by walls, 
which are treated as particles with infinite radius and 
mass. The external action is induced with kinematics 
boundary conditions. 

where xi,  are vectors of the position of the centre of 
gravity and orientation of the particle, m

iθ
i is the mass 

of the particle i (i = 1, N), Ii is the inertia moment of 
the particle,             

g is vector of gravity acceleration,  is the vec-
tor pointed from particle centre to contact point C

cijd

ij, Fij 
is the vector presenting the sum of contact forces and 
torques. 

Two spherical particles in contact, i and j, are 
defined by the positions xi and xj of their centres of 
gravity Oi and Oj and by translation and rotation 
velocities vi and vj, wi and wj, respectively (Figure 1).  

The numerical solutions of differential equations 
(1)–(2) for each particle i at the time t t∆+   (where 

t∆  is the time step) are performed by using the 5th-
order Gear predictor-corrector [0] scheme. Therefore, 
the positions , velocities , accelerations a  and 

higher order derivatives b  (where n = 3, 4, 5) of the 
particles denoted hereafter by superscript p may be 
predicted by the following expressions: 
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The details for explicit evaluation of the parame-
ters relating to the depth of the overlap hij, the normal 
unit vectors nij and nji pointed in the direction of the 
contact surface through the centre of the overlap area 
towards the particles i and j, tangential direction unit 
vector tij, the relations between normal tangential 
relative velocities , , etc. may be found in [0, 
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When the prediction is made, the accelerations 
denoted hereafter by sup c e calculated ac-
cording to the forces F  obtained by evaluat-
ing new positions and velocities of particles: 
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Then, the changes between the accelerations of the 
correction and prediction states are calculated: 

( ) ( ) ( )tttttt p
i

c
ii ∆∆∆∆ +−+=+ aaa ,  (10) 

Finally, the positions, velocities and higher-order 
time derivatives are corrected taking into considera-
tion the changes of accelerations obtained: 
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The values of the constants ci depend on the 
desired accuracy, and for the second order differential 
equation are c0 = 3/16, c1 = 251/360, c2 = 1.0, 
c3 = 11/18, c4 = 1/6 and c5 = 1/60 [0], respectively. 

The validation tests presented in [0] illustrate the 
performance of the above scheme producing low arti-
ficial damping. 

The contact forces Fij found between two particles 
i and j act at the contact point Cij (Figure 1) and can be 
expressed in terms of the normal and the tangential 
components Fn,ij and Ft,ij according to [0, 0, 0].  

2.2. Contact Searching and Referencing Technique 

In order to evaluate forces Fi as a sum of forces 
acting on the particles and including all forces due to 
viso-elastic contacts between the particles and their 

neighbours, the fast contact searching approach proce-
dure should be applied. Thus, in a system containing N 
particles, the general contact detection problem is of 
the size O(N2), when the neighbouring particles search 
algorithm is applied sequentially. In order to reduce 
the number of all particle pair combinations, one of 
the simplest zoning algorithms [0] for finding the 
neighbours was used for the contact detection. It is de-
scribed below.  

Three-dimensional domain of the granular media 
is divided into cubic cells (Figure 2) of the size equal 
to the diameter of the largest particle. The neighbour-
searching algorithm comprises referencing of 
individual particles to the cells and constructing of the 
neighbour list of particles.  

 
Figure 2. The fragment of schematic diagram of  

3D domain divided into cubic cells 

All particles, whose centres of gravity are within 
the cells (Figure 2), are referenced by using the 
ceiling of the components of vector xi, the size of 
the cell and the geometric data of the domain of 
granular media. Thus, the referenced particles indices, 
cells indices and the number of particles per cell are 
stored in the memory. When referencing is made, the 
neighbour list of particles is constructed by assemb-
ling particles indices from the neighbouring cells 
which are around the reference cell. In a 3D case, the 
reference cell includes 27 neighbouring cells (Figure 
2). The neighbouring cells also include the boundary 
zones, i.e. zones which are beside the walls. The 
boundary neighbour list of particles was constructed 
in the manner described above. 

Finally, the procedure of contact detection con-
taining sequential checking of contacts of the type 
particle-particles and particle-walls is performed by 
using particle indices obtained from the neighbour list 
of particles and the boundary neighbour list of par-
ticles.  

2.3. Algorithm Order 

The application of DEM to the code DEMMAT 
consists of the following steps and items: 

Pre-processor 
 1. Set-up of initial conditions of the particles and the 

walls 
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Processor 
 1. Assigning time t = t + ∆t 
 2. Predicting the dynamical state: predicting posi-

tions, velocities, accelerations and higher-order 
time derivatives according to (3)–(8) 

 3. Searching for and referencing to the contacts 
particle–particle: 
Loop for each particle i 
• For i = 1, N - 1 
Loop for each particle j 
• For j = j, Np  

 4. Contact initialization from the neighbour list of 
particles by indices j and summation of forces and 
moments for particles i and j.  

 5. Searching for and referencing to the contacts 
particle–wall: 
Loop for each wall i 
• For i = 1, Nwalls 
Loop for each particle j 
• For j = 1, N 

 6. Initialization of contact from the boundary 
neighbour list of particles by indices j, summation 
of forces for walls i and summation of forces and 
moments for particles j. 

 7. Global summation of forces and moments obtained 
in steps 4 and 6. 

 8. Application of the Newton’s second law and deter-
mination of translational and angular accelerations 
for particles according to equation (9). 

 9. Correction of the dynamical state: the dynamical 
state from step 2 is corrected according to (11)  

10. If current time is within the entire time period (t ≤  
tend) – go to step 1, otherwise, go to the next step. 

Post-processor 
 1. Visualization.  

Note: Np is the number of neighbours for particle i, 
Nwalls is the number of walls. 

The only processor stage of this algorithm will be 
considered below. 

3. Program Implementation 

First, the software DEMMAT_CPP written within 
the OOP approach was developed. The application of 
this approach to simulate the motion of granular media 
was disappointing with respect of CPU time of simu-
lations. Obviously, it is not worth worrying too much 
about getting a faster software code when the problem 
can be numerically solved in minutes, but when you 
have to wait for weeks for the results, then it is better 
to spend some time and find a way to make a faster 
software code.  Therefore, other codes such as DEM-
MAT_F90 (FORTRAN 90) and DEMMAT_PAS 
(OBJECT PASCAL) relying on the purely procedural 
approach have been written in order to examine the 

potential losses of computational efficiency, which are 
avoided by programming according to the object-
oriented approach. The code DEMMAT_PAS was 
used additionally to determine the differences in the 
efficiency between the procedural approaches. 

3.1. The Procedural Concept for the Codes 
DEMMAT_F90 and DEMMAT_PAS   

The procedural concept and the algorithm de-
scribed above have been implemented in the original 
program called DEMMAT_F90 which was written 
using FORTRAN 90 and compiled on the Microsoft 
Visual Fortran 6.1 compiler. The code comprises 
subroutines, functions and module imple-
mentations and uses intrinsic and supporting 
functions from IMSL library for vector algebra. Some 
peculiarities of programming are described below. 

All subroutines of the code DEMMAT_F90 have 
been written as external procedures. The inter-
face blocks were used to define the procedures argu-
ment details. The vectors presenting the main dynami-
cal parameters of particles, such as their positions, 
velocities, accelerations and high-order derivatives for 
translational and rotational motions according to 
equations (3-11) as well as the vectors of the particle 
forces Fi and torques calculated by expressions (1-2) 
are described as two-dimensional real(8) precision 
type arrays with allocatable attributes having the 
local entities. Rows of these arrays present the indices 
of the particles, while the columns present the 
Cartesian components of vectors. The dynamical para-
meters are accessible by a number of different prog-
ram subroutines by specifying intent attributes 
only. For example, prediction and correction of the 
dynamical states of particles were calculated by 
calling the subroutines named gear_predictor 
and gear_corrector. The list of actual argu-
ments of these subroutines is the same because the 
list of dummy arguments is declared by using 
intent(inout) attributes. 

 The procedural approach usually shows prefe-
rence to the initial declaration of invariable bounds of 
arrays. The memory and length of arrays that are re-
lated to the contact detection algorithm always fluc-
tuate during the iteration process and can be precisely 
determined only at runtime. This problem is often 
solved by using the linked list method based on the 
implementation of pointers and target variables. The 
present analysis has shown that this flexible alterna-
tive to arrays allocation in DEM simulations gives the 
increase of CPU time because of the dynamical 
extension or reduction of the capacity of memories for 
arrays must be swapped almost in every iteration.  
Therefore, the specification of arrays bounds approxi-
mately prescribed as initial invariable values with the 
additional control of their overestimation was imple-
mented in the DEMMAT_F90 code.  
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The code DEMMAT_PAS corresponds to the code 
DEMMAT_F90 in all aspects: it has the same para-
meters, arrays, procedures (subroutines, functions) and 
the same type of variables is used in it. The main 
difference between the investigated codes is as fol-
lows: in DEMMAT_F90 the dynamical parameters of 
particles are accessible to a number of different prog-
ram units by specifying intent attributes only, while 
in DEMMAT_PAS these parameters are declared as 
global. The code DEMMAT_PAS was compiled on 
the Borland Delphi  6 compiler. 

3.2. The Object-Oriented Concept for the Code 
DEMMAT_CPP  

The original program DEMMAT_CPP based on 
the purely object-oriented programming concept has 
been written using C++ and compiled by Microsoft 
Visual C++ 2003 compiler. The code implements the 
numerical algorithm described above and used in the 
program DEMMAT_F90. 

All spherical particles were defined as separate 
objects of the same C++ class of spheri-
cal_particle, while walls were also defined as 
particles referring, however, to the objects of C++ 
class of plane. We used a pure approach of the 
OOP methodology implying that all parameters of 
each particle, such as position, velocity, etc. were kept 
inside the object of the particle. This approach is an 
extreme case of OOP methodology, which has a 
certain advantage for code writing and revising, but is 
more expensive in terms of CPU time, whereas 
referencing to any parameter of any particle is doubled 
by one reference to the particle object and another 
reference to its own parameter inside the particle ob-
ject. 

A list of neighbours of any particle was defined as 
a list of pointers to objects of the neighbour 
class, which are kept inside the index of a neigh-
bouring particle. The search for the neighbours of a 
particle, contact detection and other parts of the algo-
rithm were similar to those used to code the program 
DEMMAT_F90. 

4. The Computational Experiment 

The efficiency of the presented concept for nume-
rical simulation of the dynamics of granular materials 
by DEM is investigated taking into consideration the 
results of the numerical test described below. 

The test simulates free compacting of granular 
material in a cubic box, which is assumed to be the 
computation domain. The side of the box is 2.0 m 
long. An assembly of a particular number of particles 
presents granular material.  The values of the particle 
radii Ri varying between 0.003 m and 0.005 m are 
defined randomly with uniform distribution. Initially, 
the particles were distributed in the space over the 
bottom as an orthogonal and uniform grid. Initially the 

particles are placed into the centres of the cells to 
ensure that they are not in contact at the beginning of 
testing (Figure 3). The initial velocities are also defined 
randomly with uniform distribution, while their 
magnitudes range from 0 to 1 m/s. The compacting of 
particles in a box is driven by particles moving under 
the force of gravity defined by gravity vector g 
(gx = gy =0, gz = 10 m/s2). The time integration of 
equation (1-2) was carried on by the constant time 
step ∆t = 10-5 s. The data on the granular material are 
given in Table 1.  

 
Figure 3. Initial positions and velocity vectors  

of 1000 particles 

Table 1. Major data on the particles 
Quantity Symbol Value 
Particle radii, m R 0.003 – 

0.005 
Material density, kg/m3 ρ 1000 
Poisson’s ratio  ν 0.30 
Elastic modulus, Pa E 0.3·106 

Shear modulus, Pa G 0.11·106 
Normal damping coefficient, 
1/s 

γn 60.0 

Shear damping coefficient, 1/s γt 60.0 
Friction coefficient µ 0.6 

 
It is important to know that the efficiency of con-

tact searching in order to reduce the CPU time de-
pends on the establishing of the ideal cell size of 3D 
domain. In general, the ideal cell size is determined by 
a balance between two conflicting requirements: a) the 
cells should be small in order to reduce contact check 
depending on the number of their particles; b) the cells 
should be reasonably coarse, otherwise, the number of 
particles associated with their transitioning between 
cells becomes too large. It has been found that, in 
order to achieve the lowest computing time, the ideal 
ratio between the radii of the largest particles and the 
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cell size is equal to two. Figure 4 shows the CPU time 
spent by using various numbers of particles with 
different cell sizes when 10000 cycles are completed. 

As shown in Figure 4 if a 3D domain is divided 
into 2Rmax cells, the CPU time linearly relates with the 
number of particles, while if this domain is divided 
into 4Rmax cells, the CPU time increases non-linearly 
depending on the number of particles. When the 
sequential contact detection algorithm is used (no cells 
are applied), the CPU time grows dramatically as in 
the problem O(N2). The graphs presented in Figure 4 
also prove that for the number of particles not 
exceeding 200, the sequential contact searching and 
zoning algorithms yield approximately the same CPU 
time. However, if the 3D domain contains 1000 
particles, the contact searching and referencing 
algorithms gain in CPU time by about 12 times in 
comparison with the domain not divided by cells. 
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Figure 4. The relationship between the number of particles 

and CPU time for cells of various sizes 

The limit of the CPU time ratio versus the number 
of particles obtained by using the sequential contact 
searching and zoning algorithms, taking into account 
4Rmax cell size, may be written as   

7110410105
32913100010
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N

. The above solution 

shows that cell size is an important factor while 
. When  using 4Rmax cells the contact 

searching and referencing algorithm gains in CPU 
time by about 20 times in comparison with the domain 
not divided by cells. When  and 2R∞→ max cells 
are used the CPU time can be saved by more than 200 
times.  

In the present test 2Rmax cells are used. 
The test consists of two stages. The first stage ends 

when the granular material state gained in free 
compacting in a cubic box (Figure 5) is at rest. This 
state is assumed to be the initial state for the second 
test characterized by the compression of the granular 
material caused by a wall moving.  

At this stage, the main part of the codes such as 
neighbour searching and referencing works properly 
on the ultimate output because all of the particles are 

in contact with each other, the latter depending only 
on the changing numbers of particle neighbours and 
the number of particles contacting with the walls 
during the compressive motion of the right wall 
(Figure 6). In this case, the right wall, which is at 
constant position at x = 0 m as shown in Figure 3, starts 
to move in x-direction with constant velocity 
vx = -0.5 m/s (Figure 6). As a result, the granular 
material is compressed. The duration of the 
compression simulation is limited by the time interval 
of three seconds. 

 
Figure 5. The initial state and forces (N) of particles being 

compressed by a moving wall 

The analysis of the results obtained at the second 
test stage shows that the CPU time per time step used 
by the predictor and corrector of time integration is 
stable throughout the simulation, whereas the opera-
tion of the predictor and corrector depends on the total 
number of particles, being independent of the number 
of particle neighbours. 

 
Figure 6. The state and particle forces (N) of granular 

material compressed by a moving wall for three seconds 

As mentioned above, the main result of the soft-
ware implementation efficiency is the ratio of CPU 
time taken by the software execution. The graphs in 
Figure 7 show the CPU time per step used by the soft-
ware DEMMAT_F90, DEMMAT_CPP and DEMMAT 
_PAS. As can be seen the application of a conven-
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tional purely object-oriented programming concept 
(software DEMMAT_CPP) costs by about 5-5.5 times 
more than the CPU time used by the procedural 
concept (DEMMAT_F90, DEMMAT_PAS). A compa-
rison of the procedural approaches based on the codes 
DEMMAT_F90 and DEMMAT_PAS shows that the 
code DEMMAT_F90 runs by about 2 times faster than 
DEMMAT_PAS.  

 
Figure 7. CPU time comparison between  

the described codes 

The additional analysis of the influence of the 
neighbour searching and referencing algorithms on the 
CPU time, as well as the calculation of the particles 
forces, prediction and correction of time integration of 
the dynamical state were also performed. The results 
obtained by using the code DEMMAT_F90 show that 
the CPU time per step required by predicting and 
correcting the dynamical state when the time is stable 
throughout the simulation is equal approximately to 
0.00025 s for predictor and 0.00018 s for corrector, 
while for contact searching and referencing algorithm 
including the calculation of particle forces the time 
taken is approximately 0.016 s. The execution time for 
the code DEMMAT_CPP is as follows: the predictor 
and corrector have taken 0.0321 s and 0.0167 s, 
respectively, while contact searching and referencing 
algorithms, including the calculation of forces for each 
of the particles, have taken 0.0542 s. Taking into con-
sideration all the details, DEMMAT_F90 procedures 
involving the use of predictor and corrector are appro-
ximately by 130 and 90 times faster than the corres-
ponding procedures applying the code DEMMAT 
_CPP. The procedures for contacts evaluation in the 
code DEMMAT_F90 are by 5-4 faster than the res-
pective procedures in DEMMAT_CPP. This is the 
most important result obtained in the present investi-
gation dealing with highly time-consuming DEM 
simulations. 

The test has been run on a personal computer of 
2.4 GHz Athlon CPU with 1.0 GB RAM, operating 
under OS Windows XP. All three software codes 

described above yielded the same results of the dyna-
mics of granular material. 

5. Conclusions 

 1. Three versions of software codes for the simula-
tion of granular material dynamics based on the 
discrete element method have been developed and 
tested. The use of the codes DEMMAT_F90 and 
DEMMAT_PAS was based on a purely procedural 
approach implemented by the programming lan-
guages FORTRAN 90 and OBJECT PASCAL, 
while the code DEMMAT_CPP relied on a purely 
object-oriented programming approach implemen-
ted by the programming language C++. Other 
conceptual parts including the neighbour searching 
and referencing algorithms, the model of contact 
forces and time integration method were imple-
mented in the same way in all three codes. 

 2. The numerical results obtained by simulating iden-
tical representative cases of the dynamic behaviour 
of granular material clearly illustrate better perfor-
mance of the procedural approach. The code deve-
loped in FORTRAN 90 by using the procedural 
approach runs by about 5-5.5 times faster than the 
code developed in C++ within the object-oriented 
approach in the manner described above. 

 3. The comparison of OBJECT PASCAL and FORT-
RAN 90 software shows that the FORTRAN 90 
code is by about 1.5-2 times faster than the 
OBJECT PASCAL code. It is believed that some 
special programming tricks could be found to 
optimize the software and to make OBJECT 
PASCAL as fast as FORTRAN. 

 4. It is determined that the CPU time largely depends 
on the ratio of the particle to the ideal cell size of 
the 3D domain. The minimum CPU time can be 
recorded if the 3D domain is divided into cells of 
2Rmax size. 
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