
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.1

DEMMAT CODE FOR NUMERICAL SIMULATION
OF MULTI-PARTICLE SYSTEMS DYNAMICS

Robertas Balevičius, Rimantas Kačianauskas
Laboratory of Numerical Modelling, Vilnius Gediminas Technical University

Sauletekio al. 11, Vilnius, Lithuania

Algis Džiugys
Laboratory of Combustion Processes, Lithuanian Energy Institute

Breslaujos g. 3,Kaunas, Lithuania

Algis Maknickas
Computer centre, Vilnius Gediminas Technical University

Sauletekio al. 11, Vilnius, Lithuania

Kęstutis Vislavičius
Dept. of Strength of Materials, Vilnius Gediminas Technical University

Sauletekio al. 11, Vilnius, Lithuania

Abstract. The paper presents three versions of software codes for the simulation of granular material dynamics
based on the discrete element method. The codes DEMMAT_F90 and DEMMAT_PAS are used for the imple-
mentation of a purely procedural approach by the programming languages FORTRAN 90 and OBJECT PASCAL,
while the code DEMMAT_CPP represents a purely object-oriented programming approach based on applying C++.

1. Indroduction Two programming concepts based on procedural
and object-oriented programming (OOP) approaches
may be implemented now through different program-
ming languages. By using a procedural approach, the
problem is decomposed into several composite algo-
rithms which are implemented as their subroutines or
functions, while all the data related to particles is kept
in separate arrays. To extend functionality, new sub-
routines or functions are required in a code, which can
make it large and complicated. At the same time, any
changes of the code require some additional time in
order to avoid coding errors. For these reasons, the
procedural approach, according to Peters [2], is not
sufficiently flexible for the creation of software for
modelling particles as an integral object. The dis-
cussion of a procedural DEM code written in VISUAL
BASIC and based on the previous FORTRAN code
[3] is presented by Asmar et al. [4].

The discrete element method (DEM), initiated by
Cundall and Strack [0], is one of the most powerful
tools for simulation of granular material as an assemb-
ly of particles. The DEM is based on the Lagrangian
approach, used to track the position, velocity, orienta-
tion and other parameters of particles during the
simulation.

The application of DEM is usually associated with
computational capabilities which are currently limited
by a huge number of particles, small time step and
finding the contacts between the particles. However,
the capacities of computers are growing dramatically,
making DEM accessible for use on personal compu-
ters. As a result, personal computers have become
more popular in solving granular material problems by
DEM.

The efficiency of DEM implementation in soft-
ware depends on numerical methods, programming
concepts and languages as well as on the compilers
used. The choice of the programming concept and the
programming language has the crucial influence on
the efficiency of software.

Instead of using a set of functions showing a glo-
bal state, object orientation uses a set of interacting
individual objects with their information hiding, en-
capsulation, inheritance and polymorphism. All data
related to particles can be kept inside the object, and
all operations with these data are described by
methods defined within the classes of the objects. A

71

R. Balevičius, R. Kačianauskas, A. Džiugys, A. Maknickas, K. Vislavičius

comprehensive study concerning the object-oriented
approach to DEM programming is given by Peters and
Džiugys [0], where programming modules are written
in C++ and implemented in the TOSCA software
package. According to the authors, OOP facilitates
code maintenance and introduction of changes in a
program as well as improving its transparency and
extensibility.

However, the codes based on the procedural ap-
proach have one indubitable advantage in comparison
with the object-oriented programs. They use less CPU
time. The review of the performance of both
approaches shows that early attempts to apply the
OOP technique were disappointing. Forslund [0],
using particle-in-cell methods in plasma physics
simulation, found that the procedural FORTRAN code
version ran about twice as fast as the comparable
similar OOP C++ version. In [0], the typical bench-
marks showed C++ lagging behind FORTRAN 90's
performance by 20% to a factor of ten. Haney [0] and
Robison [0] also commented on some aspects of appli-
cations of C++ language in considering computational
speed. Figure 1. Particles i and j: geometry of contact

The goal of the present investigation is to compare
the computational performances of procedural and
object-oriented approaches to discrete element method
software. For this purpose, three versions of
DEMMAT code have been created. Programming
languages C++, FORTRAN 90 and OBJECT PASCAL
were used.

The composition of the media is time-dependent
because individual particles change their position due
to free rigid body motion or because of contacting
with the neighbouring particles or walls. Thus,
Newton’s second law is applied to each particle i to
update its translational and rotational displacements
according to:

gFx
i

N

ij,j
ij

i
i m

dt
dm += ∑

≠=1
2

2

, (1) 2. DEM Technique
2.1. Governing Relations for Dynamics of

Granular Material ∑
≠=

×=
N

ij,j
ijcij

i
i dt

dI
1

2

2θ Fd , (2)
The granular material is considered as a space fil-

led with discrete spherical particles referred to as
discrete elements with a geometric representation of
their surfaces and a description of physical state. The
motion of the particles is calculated from the applied
forces and moments according to the Newton’s second
law. The boundary conditions are determined by walls,
which are treated as particles with infinite radius and
mass. The external action is induced with kinematics
boundary conditions.

where xi, are vectors of the position of the centre of
gravity and orientation of the particle, m

iθ
i is the mass

of the particle i (i = 1, N), Ii is the inertia moment of
the particle,

g is vector of gravity acceleration, is the vec-
tor pointed from particle centre to contact point C

cijd

ij, Fij
is the vector presenting the sum of contact forces and
torques.

Two spherical particles in contact, i and j, are
defined by the positions xi and xj of their centres of
gravity Oi and Oj and by translation and rotation
velocities vi and vj, wi and wj, respectively (Figure 1).

The numerical solutions of differential equations
(1)–(2) for each particle i at the time t t∆+ (where

t∆ is the time step) are performed by using the 5th-
order Gear predictor-corrector [0] scheme. Therefore,
the positions , velocities , accelerations a and

higher order derivatives b (where n = 3, 4, 5) of the
particles denoted hereafter by superscript p may be
predicted by the following expressions:

p
ix p

iv p
i

p
ni

The details for explicit evaluation of the parame-
ters relating to the depth of the overlap hij, the normal
unit vectors nij and nji pointed in the direction of the
contact surface through the centre of the overlap area
towards the particles i and j, tangential direction unit
vector tij, the relations between normal tangential
relative velocities , , etc. may be found in [0,
0].

ij,nv ij,tv () () () ()
() () ()ttt

ttttttt

iii

iii
p
i

543

2

2
1

bbb

avxx

++

+∆+∆+=∆+
, (3)

72

DEMMAT Code for Numerical Simulation of Multi-Particle Systems Dynamics

() () ()

() () ()()ttt
t

ttttt

iii

ii
p
i

543 5431 bbb

avv

++
∆

+∆+=∆+
, (4)

() ()

() () ()(ttt
t

ttt

iii

i
p
i

5432 10632 bbb

aa

++
∆

+=∆+

)

)
)

erscript ar
)

, (5)

() () () ()ttttt iii
p
i 5433 104 bbbb ++=+ ∆ , (6)

() () (tttt ii
p
i 544 5bbb +=+ ∆ , (7)

() (ttt i
p
i 55 bb =+ ∆ . (8)

When the prediction is made, the accelerations
denoted hereafter by sup c e calculated ac-
cording to the forces F obtained by evaluat-
ing new positions and velocities of particles:

(p
i

p
ii ,vx

() ()
i

p
i

p
iic

i m
,

tt
vxF

a =+ ∆ . (9)

Then, the changes between the accelerations of the
correction and prediction states are calculated:

() () ()tttttt p
i

c
ii ∆∆∆∆ +−+=+ aaa , (10)

Finally, the positions, velocities and higher-order
time derivatives are corrected taking into considera-
tion the changes of accelerations obtained:

()
()
()
()
()
()

()
()
()
()
()
()

()tt

tc
tc

tc
c

tc
tc

tt
tt

tt
tt
tt
tt

tt

tt
tt

tt
tt
tt

i

p
i

p
i

p
i

p
i

p
i

p
i

c
i

c
i

c
i

c
i

c
i

c
i

∆+∆



























∆
∆

∆

∆
∆

+

+



























∆+
∆+

∆+
∆+
∆+
∆+

=



























∆+

∆+
∆+

∆+
∆+
∆+

a

b
b

b
a
v
x

b

b
b
a
v
x

2
5

2
4

2
3

2

1

2
0

5

4

3

5

4

3

5.0
5.0

5.0

5.0
5.0

. (11)

The values of the constants ci depend on the
desired accuracy, and for the second order differential
equation are c0 = 3/16, c1 = 251/360, c2 = 1.0,
c3 = 11/18, c4 = 1/6 and c5 = 1/60 [0], respectively.

The validation tests presented in [0] illustrate the
performance of the above scheme producing low arti-
ficial damping.

The contact forces Fij found between two particles
i and j act at the contact point Cij (Figure 1) and can be
expressed in terms of the normal and the tangential
components Fn,ij and Ft,ij according to [0, 0, 0].

2.2. Contact Searching and Referencing Technique

In order to evaluate forces Fi as a sum of forces
acting on the particles and including all forces due to
viso-elastic contacts between the particles and their

neighbours, the fast contact searching approach proce-
dure should be applied. Thus, in a system containing N
particles, the general contact detection problem is of
the size O(N2), when the neighbouring particles search
algorithm is applied sequentially. In order to reduce
the number of all particle pair combinations, one of
the simplest zoning algorithms [0] for finding the
neighbours was used for the contact detection. It is de-
scribed below.

Three-dimensional domain of the granular media
is divided into cubic cells (Figure 2) of the size equal
to the diameter of the largest particle. The neighbour-
searching algorithm comprises referencing of
individual particles to the cells and constructing of the
neighbour list of particles.

Figure 2. The fragment of schematic diagram of

3D domain divided into cubic cells

All particles, whose centres of gravity are within
the cells (Figure 2), are referenced by using the
ceiling of the components of vector xi, the size of
the cell and the geometric data of the domain of
granular media. Thus, the referenced particles indices,
cells indices and the number of particles per cell are
stored in the memory. When referencing is made, the
neighbour list of particles is constructed by assemb-
ling particles indices from the neighbouring cells
which are around the reference cell. In a 3D case, the
reference cell includes 27 neighbouring cells (Figure
2). The neighbouring cells also include the boundary
zones, i.e. zones which are beside the walls. The
boundary neighbour list of particles was constructed
in the manner described above.

Finally, the procedure of contact detection con-
taining sequential checking of contacts of the type
particle-particles and particle-walls is performed by
using particle indices obtained from the neighbour list
of particles and the boundary neighbour list of par-
ticles.

2.3. Algorithm Order

The application of DEM to the code DEMMAT
consists of the following steps and items:

Pre-processor
 1. Set-up of initial conditions of the particles and the

walls

73

R. Balevičius, R. Kačianauskas, A. Džiugys, A. Maknickas, K. Vislavičius

Processor
 1. Assigning time t = t + ∆t
 2. Predicting the dynamical state: predicting posi-

tions, velocities, accelerations and higher-order
time derivatives according to (3)–(8)

 3. Searching for and referencing to the contacts
particle–particle:
Loop for each particle i
• For i = 1, N - 1
Loop for each particle j
• For j = j, Np

 4. Contact initialization from the neighbour list of
particles by indices j and summation of forces and
moments for particles i and j.

 5. Searching for and referencing to the contacts
particle–wall:
Loop for each wall i
• For i = 1, Nwalls
Loop for each particle j
• For j = 1, N

 6. Initialization of contact from the boundary
neighbour list of particles by indices j, summation
of forces for walls i and summation of forces and
moments for particles j.

 7. Global summation of forces and moments obtained
in steps 4 and 6.

 8. Application of the Newton’s second law and deter-
mination of translational and angular accelerations
for particles according to equation (9).

 9. Correction of the dynamical state: the dynamical
state from step 2 is corrected according to (11)

10. If current time is within the entire time period (t ≤
tend) – go to step 1, otherwise, go to the next step.

Post-processor
 1. Visualization.

Note: Np is the number of neighbours for particle i,
Nwalls is the number of walls.

The only processor stage of this algorithm will be
considered below.

3. Program Implementation

First, the software DEMMAT_CPP written within
the OOP approach was developed. The application of
this approach to simulate the motion of granular media
was disappointing with respect of CPU time of simu-
lations. Obviously, it is not worth worrying too much
about getting a faster software code when the problem
can be numerically solved in minutes, but when you
have to wait for weeks for the results, then it is better
to spend some time and find a way to make a faster
software code. Therefore, other codes such as DEM-
MAT_F90 (FORTRAN 90) and DEMMAT_PAS
(OBJECT PASCAL) relying on the purely procedural
approach have been written in order to examine the

potential losses of computational efficiency, which are
avoided by programming according to the object-
oriented approach. The code DEMMAT_PAS was
used additionally to determine the differences in the
efficiency between the procedural approaches.

3.1. The Procedural Concept for the Codes
DEMMAT_F90 and DEMMAT_PAS

The procedural concept and the algorithm de-
scribed above have been implemented in the original
program called DEMMAT_F90 which was written
using FORTRAN 90 and compiled on the Microsoft
Visual Fortran 6.1 compiler. The code comprises
subroutines, functions and module imple-
mentations and uses intrinsic and supporting
functions from IMSL library for vector algebra. Some
peculiarities of programming are described below.

All subroutines of the code DEMMAT_F90 have
been written as external procedures. The inter-
face blocks were used to define the procedures argu-
ment details. The vectors presenting the main dynami-
cal parameters of particles, such as their positions,
velocities, accelerations and high-order derivatives for
translational and rotational motions according to
equations (3-11) as well as the vectors of the particle
forces Fi and torques calculated by expressions (1-2)
are described as two-dimensional real(8) precision
type arrays with allocatable attributes having the
local entities. Rows of these arrays present the indices
of the particles, while the columns present the
Cartesian components of vectors. The dynamical para-
meters are accessible by a number of different prog-
ram subroutines by specifying intent attributes
only. For example, prediction and correction of the
dynamical states of particles were calculated by
calling the subroutines named gear_predictor
and gear_corrector. The list of actual argu-
ments of these subroutines is the same because the
list of dummy arguments is declared by using
intent(inout) attributes.

 The procedural approach usually shows prefe-
rence to the initial declaration of invariable bounds of
arrays. The memory and length of arrays that are re-
lated to the contact detection algorithm always fluc-
tuate during the iteration process and can be precisely
determined only at runtime. This problem is often
solved by using the linked list method based on the
implementation of pointers and target variables. The
present analysis has shown that this flexible alterna-
tive to arrays allocation in DEM simulations gives the
increase of CPU time because of the dynamical
extension or reduction of the capacity of memories for
arrays must be swapped almost in every iteration.
Therefore, the specification of arrays bounds approxi-
mately prescribed as initial invariable values with the
additional control of their overestimation was imple-
mented in the DEMMAT_F90 code.

74

DEMMAT Code for Numerical Simulation of Multi-Particle Systems Dynamics

The code DEMMAT_PAS corresponds to the code
DEMMAT_F90 in all aspects: it has the same para-
meters, arrays, procedures (subroutines, functions) and
the same type of variables is used in it. The main
difference between the investigated codes is as fol-
lows: in DEMMAT_F90 the dynamical parameters of
particles are accessible to a number of different prog-
ram units by specifying intent attributes only, while
in DEMMAT_PAS these parameters are declared as
global. The code DEMMAT_PAS was compiled on
the Borland Delphi 6 compiler.

3.2. The Object-Oriented Concept for the Code
DEMMAT_CPP

The original program DEMMAT_CPP based on
the purely object-oriented programming concept has
been written using C++ and compiled by Microsoft
Visual C++ 2003 compiler. The code implements the
numerical algorithm described above and used in the
program DEMMAT_F90.

All spherical particles were defined as separate
objects of the same C++ class of spheri-
cal_particle, while walls were also defined as
particles referring, however, to the objects of C++
class of plane. We used a pure approach of the
OOP methodology implying that all parameters of
each particle, such as position, velocity, etc. were kept
inside the object of the particle. This approach is an
extreme case of OOP methodology, which has a
certain advantage for code writing and revising, but is
more expensive in terms of CPU time, whereas
referencing to any parameter of any particle is doubled
by one reference to the particle object and another
reference to its own parameter inside the particle ob-
ject.

A list of neighbours of any particle was defined as
a list of pointers to objects of the neighbour
class, which are kept inside the index of a neigh-
bouring particle. The search for the neighbours of a
particle, contact detection and other parts of the algo-
rithm were similar to those used to code the program
DEMMAT_F90.

4. The Computational Experiment

The efficiency of the presented concept for nume-
rical simulation of the dynamics of granular materials
by DEM is investigated taking into consideration the
results of the numerical test described below.

The test simulates free compacting of granular
material in a cubic box, which is assumed to be the
computation domain. The side of the box is 2.0 m
long. An assembly of a particular number of particles
presents granular material. The values of the particle
radii Ri varying between 0.003 m and 0.005 m are
defined randomly with uniform distribution. Initially,
the particles were distributed in the space over the
bottom as an orthogonal and uniform grid. Initially the

particles are placed into the centres of the cells to
ensure that they are not in contact at the beginning of
testing (Figure 3). The initial velocities are also defined
randomly with uniform distribution, while their
magnitudes range from 0 to 1 m/s. The compacting of
particles in a box is driven by particles moving under
the force of gravity defined by gravity vector g
(gx = gy =0, gz = 10 m/s2). The time integration of
equation (1-2) was carried on by the constant time
step ∆t = 10-5 s. The data on the granular material are
given in Table 1.

Figure 3. Initial positions and velocity vectors

of 1000 particles

Table 1. Major data on the particles
Quantity Symbol Value
Particle radii, m R 0.003 –

0.005
Material density, kg/m3 ρ 1000
Poisson’s ratio ν 0.30
Elastic modulus, Pa E 0.3·106

Shear modulus, Pa G 0.11·106
Normal damping coefficient,
1/s

γn 60.0

Shear damping coefficient, 1/s γt 60.0
Friction coefficient µ 0.6

It is important to know that the efficiency of con-

tact searching in order to reduce the CPU time de-
pends on the establishing of the ideal cell size of 3D
domain. In general, the ideal cell size is determined by
a balance between two conflicting requirements: a) the
cells should be small in order to reduce contact check
depending on the number of their particles; b) the cells
should be reasonably coarse, otherwise, the number of
particles associated with their transitioning between
cells becomes too large. It has been found that, in
order to achieve the lowest computing time, the ideal
ratio between the radii of the largest particles and the

75

R. Balevičius, R. Kačianauskas, A. Džiugys, A. Maknickas, K. Vislavičius

cell size is equal to two. Figure 4 shows the CPU time
spent by using various numbers of particles with
different cell sizes when 10000 cycles are completed.

As shown in Figure 4 if a 3D domain is divided
into 2Rmax cells, the CPU time linearly relates with the
number of particles, while if this domain is divided
into 4Rmax cells, the CPU time increases non-linearly
depending on the number of particles. When the
sequential contact detection algorithm is used (no cells
are applied), the CPU time grows dramatically as in
the problem O(N2). The graphs presented in Figure 4
also prove that for the number of particles not
exceeding 200, the sequential contact searching and
zoning algorithms yield approximately the same CPU
time. However, if the 3D domain contains 1000
particles, the contact searching and referencing
algorithms gain in CPU time by about 12 times in
comparison with the domain not divided by cells.

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000
Number of particles, N

C
PU

 ti
m

e,
 s

cell size = 2R
no cells
cell size = 4R

Figure 4. The relationship between the number of particles

and CPU time for cells of various sizes

The limit of the CPU time ratio versus the number
of particles obtained by using the sequential contact
searching and zoning algorithms, taking into account
4Rmax cell size, may be written as

7110410105
32913100010

25

2

.N.N
.N.N.

lim
N ++⋅

+−
−

∞→

∞→N

N

. The above solution

shows that cell size is an important factor while
. When using 4Rmax cells the contact

searching and referencing algorithm gains in CPU
time by about 20 times in comparison with the domain
not divided by cells. When and 2R∞→ max cells
are used the CPU time can be saved by more than 200
times.

In the present test 2Rmax cells are used.
The test consists of two stages. The first stage ends

when the granular material state gained in free
compacting in a cubic box (Figure 5) is at rest. This
state is assumed to be the initial state for the second
test characterized by the compression of the granular
material caused by a wall moving.

At this stage, the main part of the codes such as
neighbour searching and referencing works properly
on the ultimate output because all of the particles are

in contact with each other, the latter depending only
on the changing numbers of particle neighbours and
the number of particles contacting with the walls
during the compressive motion of the right wall
(Figure 6). In this case, the right wall, which is at
constant position at x = 0 m as shown in Figure 3, starts
to move in x-direction with constant velocity
vx = -0.5 m/s (Figure 6). As a result, the granular
material is compressed. The duration of the
compression simulation is limited by the time interval
of three seconds.

Figure 5. The initial state and forces (N) of particles being

compressed by a moving wall

The analysis of the results obtained at the second
test stage shows that the CPU time per time step used
by the predictor and corrector of time integration is
stable throughout the simulation, whereas the opera-
tion of the predictor and corrector depends on the total
number of particles, being independent of the number
of particle neighbours.

Figure 6. The state and particle forces (N) of granular

material compressed by a moving wall for three seconds

As mentioned above, the main result of the soft-
ware implementation efficiency is the ratio of CPU
time taken by the software execution. The graphs in
Figure 7 show the CPU time per step used by the soft-
ware DEMMAT_F90, DEMMAT_CPP and DEMMAT
_PAS. As can be seen the application of a conven-

76

DEMMAT Code for Numerical Simulation of Multi-Particle Systems Dynamics

tional purely object-oriented programming concept
(software DEMMAT_CPP) costs by about 5-5.5 times
more than the CPU time used by the procedural
concept (DEMMAT_F90, DEMMAT_PAS). A compa-
rison of the procedural approaches based on the codes
DEMMAT_F90 and DEMMAT_PAS shows that the
code DEMMAT_F90 runs by about 2 times faster than
DEMMAT_PAS.

Figure 7. CPU time comparison between

the described codes

The additional analysis of the influence of the
neighbour searching and referencing algorithms on the
CPU time, as well as the calculation of the particles
forces, prediction and correction of time integration of
the dynamical state were also performed. The results
obtained by using the code DEMMAT_F90 show that
the CPU time per step required by predicting and
correcting the dynamical state when the time is stable
throughout the simulation is equal approximately to
0.00025 s for predictor and 0.00018 s for corrector,
while for contact searching and referencing algorithm
including the calculation of particle forces the time
taken is approximately 0.016 s. The execution time for
the code DEMMAT_CPP is as follows: the predictor
and corrector have taken 0.0321 s and 0.0167 s,
respectively, while contact searching and referencing
algorithms, including the calculation of forces for each
of the particles, have taken 0.0542 s. Taking into con-
sideration all the details, DEMMAT_F90 procedures
involving the use of predictor and corrector are appro-
ximately by 130 and 90 times faster than the corres-
ponding procedures applying the code DEMMAT
_CPP. The procedures for contacts evaluation in the
code DEMMAT_F90 are by 5-4 faster than the res-
pective procedures in DEMMAT_CPP. This is the
most important result obtained in the present investi-
gation dealing with highly time-consuming DEM
simulations.

The test has been run on a personal computer of
2.4 GHz Athlon CPU with 1.0 GB RAM, operating
under OS Windows XP. All three software codes

described above yielded the same results of the dyna-
mics of granular material.

5. Conclusions

 1. Three versions of software codes for the simula-
tion of granular material dynamics based on the
discrete element method have been developed and
tested. The use of the codes DEMMAT_F90 and
DEMMAT_PAS was based on a purely procedural
approach implemented by the programming lan-
guages FORTRAN 90 and OBJECT PASCAL,
while the code DEMMAT_CPP relied on a purely
object-oriented programming approach implemen-
ted by the programming language C++. Other
conceptual parts including the neighbour searching
and referencing algorithms, the model of contact
forces and time integration method were imple-
mented in the same way in all three codes.

 2. The numerical results obtained by simulating iden-
tical representative cases of the dynamic behaviour
of granular material clearly illustrate better perfor-
mance of the procedural approach. The code deve-
loped in FORTRAN 90 by using the procedural
approach runs by about 5-5.5 times faster than the
code developed in C++ within the object-oriented
approach in the manner described above.

 3. The comparison of OBJECT PASCAL and FORT-
RAN 90 software shows that the FORTRAN 90
code is by about 1.5-2 times faster than the
OBJECT PASCAL code. It is believed that some
special programming tricks could be found to
optimize the software and to make OBJECT
PASCAL as fast as FORTRAN.

 4. It is determined that the CPU time largely depends
on the ratio of the particle to the ideal cell size of
the 3D domain. The minimum CPU time can be
recorded if the 3D domain is divided into cells of
2Rmax size.

References
 [1] P.A. Cundall, O.D.L. Strack. A discrete numerical

model for granular assemblies. Geotechnique, Vol.29,
No.1, 1979, 47–65.

 [2] B. Peters. Efficient software development and use for
engineering applications with TOSCA (Tools of Ob-
ject-oriented Software for Continuum Mechanics Ap-
plications). CFD 96 proceedings, Fourth Annual
Conference of the CFD Society of Canada, Ottawa,
Ontario, Canada, June 2-4, 1996, 18-27.

 [3] P.A. Langston, U. Tuzun, D.M. Heys. Discrete ele-
ment simulation of granular flow in 2D and 3D hop-
pers: dependence of discharge rate and wall stress on
particle interactions. Chem. Engineering Science,
Vol.50, 1995, 967-981.

 [4] B.N. Asmar, P.A. Langston, A.J. Matchett, J.K.
Walters. Validation tests on a distinct element model
of vibrating cohesive particle systems. Computers and
Chemical Engineering, Vol. 26, 2002, 785-802.

77

R. Balevičius, R. Kačianauskas, A. Džiugys, A. Maknickas, K. Vislavičius

 [5] B. Peters, A. Džiugys. Numerical simulation of the
motion of granular material using object-oriented tech-
niques. Comput. Methods Appl. Engrg., Vol.191 2002,
1983-2007.

 [6] D.W. Forslund, C. Wingate, P. Ford, J. Jackson,
S.C. Pope. Experiences in Writing a Distributed Par-
ticle Simulation Code in C++. Poc. 1990 USENIX
C++ Conf., 1990, 28-40.

 [7] T.L. Veldhuizen, M.E. Jernigan. Will C++ be faster
than Fortran? Proceedings of the 1st International
Scientific Computing in Object-Oriented Parallel En-
vironments (ISCOPE'97), 1997, 40-45.

 [8] S.W. Haney. Is C++ fast enough for scientific com-
puting? Computer Physics, Vol.8, 1994, 690-694.

 [9] A.D. Robison. C++ gets faster for scientific com-
puting. Computers in Physics, Vol. 10, Sep/Oct, 1996,
458-462.

[10] R. Balevičius, A. Džiugys, R. Kačianauskas. Dis-
crete element method and its application to the ana-
lysis of penetration into granular media. Journal of
Civil Engineering and Management, Vol.10, 2004,
No.1, 3-14.

[11] R. Balevičius, A. Džiugys, R. Kačianauskas. Simula-
tion of penetration in granular media. CD ROOM
proc. of 15th International Conference on Computer
Methods in Mechanics CMM-2003/1st Central Euro-
pean Association for Computational Mechanics Con-
ference on Computational Mechanics, June 3-6, 2003,
Gliwice/Wisla, Poland.

[12] M.P. Allen, D.J. Tildesley. Computer simulation of
liquids. Oxford: Clarendon Press, 1991.

[13] G.H. Kohring. Dynamical simulations of granular
flows on multi-processor computers. Computational
methods in applied sciences ‘96, John Wiley & Sons
Ltd., 1996, 190-196.

