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AN EXTENSION OF HYBRID GENETIC ALGORITHM FOR  
THE QUADRATIC ASSIGNMENT PROBLEM♣ 
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Kaunas University of Technology, Department of Practical Informatics,  

Studentų st. 50−400a/416a, LT−51368 Kaunas, Lithuania 

Abstract. Genetic algorithms (GAs) are modern population based heuristic approaches. Recently, GAs have be-
come very popular by solving various optimization problems. In this paper, we discuss an extension of a hybrid genetic 
algorithm for the well-known combinatorial optimization problem, the quadratic assignment problem. This extension is 
based on a promising genetic-tabu search policy. An enhanced tabu search is used in the role of the local improvement 
of solutions, whereas a robust mutation (reconstruction) strategy is "responsible" for maintaining a high degree of the 
diversity within the population and for avoiding a premature convergence of GA. We tested our algorithm on a set of 
the QAP instances. The results obtained show the outstanding performance of the proposed algorithm. 
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Indroduction 

The quadratic assignment problem (QAP) can be 
formulated as follows. Let two matrices A = (aij)n×n 
and B = (bkl)n×n and the set Π of the permutations of 
the integers from 1 to n be given. The goal is to find a 
permutation π = (π(1), π(2), ..., π(n)) ∈ Π that mini-
mizes 

.)(
1 1

)()(∑∑
= =

=
n

i

n

j
jiijbaz πππ  (1) 

                                                           
♣   This work is supported by Lithuanian State Science and Studies Foundation through grant number T-04078. 

One of the interpretations of the QAP is that of 
Koopmans and Beckmann [14]. In this case, one deals 
with locating n facilities on n locations with some 
physical products flowing between the facilities, and 
with distances between the locations. The element aij 
is the flow from the facility i to facility j, and the 
element bkl is the distance between the locations k and 
l. The permutation π = (π(1), π(2), ..., π(n)) represents 
an assignment of facilities to locations (here, π(i) 
(π(i) ∈ {1, 2, ..., n}) denotes the location facility i is 
assigned to). Solving the QAP means searching for an 
assignment that minimizes the "transportation cost" 
between facilities, z. 

It has been proved that the QAP is NP-hard [23], 
therefore heuristic approaches [18] are used for 
solving medium- and large-scale QAPs in reasonable 
times, among them, ant algorithms [8], greedy 

randomized adaptive search procedures [15], iterated 
local search [24], scatter search [4], simulated 
annealing [2], tabu search [20,25]. Starting from 1994, 
several authors applied the genetic algorithms to the 
QAP, first of all [1,6,7,16,17,19,28]. 

The QAP is a representative (instance) of combi-
natorial optimization (CO). CO may be described in 
the following way. Let S be the set of (feasible) 
solutions (the solution space); furthermore, let f: S→ℜ 
be the objective function (we presume that f seeks a 
global minimum). Solving an instance of CO problem 
(S, f) means searching for a solution sopt ∈ S such that 
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The solution sopt is called a globally optimal solu-
tion (global optimum), and the set Sopt ⊆ S denotes the 
set of global optima. In addition, a neighbourhood 
function Θ: S→2S may be defined. It attaches for each 
s∈S a set Θ(s)⊆S − a set of neighbouring solutions of 
s. Each solution s′∈Θ(s) can be reached from s by an 
operation called a move, and s is said to move to s′ 
when such an operation is performed. The 2-exchange 
neighbourhood function, Θ2, is widely used in the 
environments of permutation-based solutions, like the 
QAP. For the solution s, Θ2 gives the set 

}2),(  , | {)(2 =′∈′′= ssSsss ρΘ , where ),( ss ′ρ  is the 
"distance" between solutions s and s′. The natural way 
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1.2. Hybrid genetic algorithms of defining the "distance" between solutions-permuta-
tions is counting the items that are assigned to diffe-
rent positions of the solutions, i.e. 

)}()(|{),( isisiss ′≠=′ρ . (3) 

Usually, the results obtained by the "pure" genetic 
algorithms are of rather poor quality. This fact was a 
motivation to embed additional heuristic components 
into the standard GAs. The examples of such compo-
nents may be: a) including the construction heuristics 
for generation the initial populations; b) designing the 
special heuristic crossover (recombination) operators 
tailored to the specific characteristics of the problem; 
c) incorporating the local search heuristics to be 
applied to the solutions built by the crossover ope-
rator. Other enhancements are possible, for example, 
using a so-called restart mechanism in the cases of a 
loss of the diversity. These additional components 
(features), plus the standard genetic algorithm are 
what one calls a hybrid genetic (memetic) algorithm 
(HGA) [21]. 

We will use the compact notation mij (i, j = 1, 2, 
..., n) for the move from s to s′∈Θ2(s), which ex-
changes ith and jth elements in the solution s to get s′. 
(In this case, the expression  means that 

 is obtained from s by applying m
ijmss ⊕=′

s′ ij.) 
The remaining part of this paper is organized as 

follows. In Section 1, the principles of standard and 
hybrid genetic algorithms are outlined. The new pro-
posed extension of the hybrid genetic algorithm for 
the quadratic assignment problem is discussed in Sec-
tion 2. In Section 3, we present computational results 
obtained by examining some instances of the QAP. 
Finally, Section 4 completes the paper with conclu-
ding remarks. 

Very roughly, the typical steps of HGA are as 
follows. The first step is to create an improved initial 
population by means of the known constructive and/or 
local search algorithms. The result of this step is a po-
pulation which represents a collection of locally op-
timal solutions. After the creation of the optimized 
initial population, the standard procedures take place. 
Like in the standard GAs, the selected individuals 
undergo the crossover for creating new individuals. 
The important feature of HGA is that one operates 
with the optimized solutions as the inputs to the cross-
over operator. Although the crossover operator is high-
ly "responsible" for the efficiency of genetic algo-
rithms, many researchers came to the conclusion that 
it is insufficient to achieve competitive performance. 
The reason is that the offspring produced by the cross-
over is in general not locally optimal. The way out is 
just incorporating a post-crossover (local improve-
ment) procedure to be applied to each offspring to 
obtain again locally optimal solutions. 

1. Genetic algorithms 
1.1. Standard genetic algorithms 

The original concepts of genetic algorithms 
(GAs), which are based on the biological process of 
natural selection, were developed by Holland [13] in 
1975. Genetic algorithm operates with a group P 
(called a population) of solutions s1, s2, ..., sPS (called 
individuals) from S. Each individual (si) is associated 
with some fitness corresponding to the objective func-
tion value (f(si)). In the case of minimization problem, 
the less the objective function value, the more fitting 
the individual, and the larger is the probability that the 
individual will survive in evolution process. During 
many generations, best fitting individuals tend to do-
minate, while less fitting ones tend to die off. 

The mutation is then performed on the locally opti-
mized offspring. Regarding the mutations, the fol-
lowing should be said. The solution perturbed by the 
mutation operator is again transformed into an opti-
mized solution to keep the local optimality of the po-
pulation; so, the mutations are highly desirable to be 
strong enough to minimize the possibility of a possible 
falling back into previous local optima. 

The general framework for the standard genetic 
algorithm can be described in the following way. A 
fraction of P is chosen to be parents by use of the 
selection function (it can formally be defined as a 
mapping φ: 2S→S×S). New individuals (i.e. offspring) 
are created by combining the information contained in 
the parents (this recombination operator is known as a 
crossover, ψ: S×S→S). Afterward, some members of 
the population undergo random perturbations (called 
mutations, ζ: S→S) to prevent a premature loss of the 
individuals’ diversity within the population. Finally, a 
replacement (culling) scheme, ϕ: 2S→2S, is applied to 
determine which individuals survive to form the next 
generation. This process is to be repeated until some 
termination criterion is met. 

The population replacement scheme within HGA 
is also specific. It must guarantee a sufficient degree 
of the diversity of the population, which is very 
important by avoiding a premature convergence of 
GA. 

To conclude, the hybridization of GA is an essen-
tial improvement over the standard GA. This is mainly 
due to the fact that, in HGA, the population solely of 
local optima is maintained. So, we can view the hyb-
rid genetic search as the search over an optimized, 
high quality solution space — this appears to be much 
more effective process than when searching in a 
random (or slightly improved) solution space. 

There exists a great variety in the choice of the 
particular selection, crossover, mutation, and other 
related procedures. The detailed material on this topic, 
as well as the foundations and applications of GAs can 
be found in [5, 12, 22]. 
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2. An extension of hybrid genetic algorithm 
for the QAP 

In this section, we describe an extended hybrid 
genetic algorithm (EHGA) for the quadratic assign-
ment problem. The algorithm starts with the creation 
of an initial population P. This is done in two steps: 
firstly, PS=|P| permutations are generated in a pure 
random way; secondly, all the individuals of the popu-
lation just produced are improved by a local search. 
Eventually, the population members are sorted accor-
ding to the increasing values of the objective function. 
A tabu search (TS) [9,10,11] based algorithm, namely 
a so-called enhanced tabu search (ETS) procedure is 
used in the role of the local improvement technique 
(for the details of ETS, see below). So, the input for 
the further genetic operators is a population that 
consists of PS locally optimal solutions. 

The algorithm then proceeds in the following way. 
Two solutions are selected to be parents of a new 
individual (child). For the parents selection, we apply 
a rank based selection rule [28]. The position, u, of the 
parent within the sorted population is determined by to 
the formula u = vσ, where v is a uniform random 
number from the interval [1, σ1PS ], where PS is the 
population size, and σ is a real number in the interval 
[1, 2] (it is referred to as a selection factor). It is 
obvious that the better the individual, the larger 
probability of selecting it for the crossover. 

For the parents merging, we use a variant of the 
crossover operator proposed in [28] (it is entitled as a 
uniform like crossover (ULX)). ULX works as 

follows. First, all items assigned to the same position 
in both parents are copied to this position in the child 
(i.e. ci=ai=bi, where ci, ai, bi are the values in the i-th 
position of the permutations-parents and the 
permutation-child, respectively). Second, the unassig-
ned positions of a permutation are scanned from left to 
right: for the unassigned position, an item is chosen 
randomly, uniformly from those in the parents if they 
are not yet included in the child (i.e. 

, where r is a random number with-

in the interval [0,1]). Third, remaining items are 
assigned at random (this step is needed to preserve the 
feasibility of the resulting permutation). The ULX 
operator implies a high degree of randomness. Even 
the same pair of parents may produce lots of quite 
different children, especially, when the "distance" (see 
formula (3)) between parents is large. So, we can 
extend the functioning of the crossover by making it 
create "m-plets" (m>1, typically m=O(n)) instead of a 
single child. Some kind of tournament among m 
pretenders takes place to determine the best candidate 
for survival. The "winner", usually the child which has 
the smallest objective function value is the only output 
of the crossover (see Figure 1). We call this type of 
proceeding an elitist crossover (EX). The search could 
often be improved even more if the crossover is 
applied more than once at the same generation. In our 
implementation, the number of EXs per one gene-
ration is controlled by the parameter N
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cross (as a rule, 
the value of Ncross depends on the population size). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Example of producing a child in the "triplet" crossover 

As mentioned in Section 1.2, genetic algorithms 
succeed in search if only they dispose of a robust local 
search based procedure. Ideally, such a procedure 
should be both fast and produce good quality solu-
tions. Practically, these features hardly "intersect". A 
quite good candidate to meet the conflicting require-

ments is the tabu search, the method which has been 
proven to be extremely effective [11]. This is especial-
ly true for the quadratic assignment problem. So, we 
have chosen this approach as a perfect compromise 
between the opposites mentioned. Namely, we use the 
enhanced tabu search algorithm [20], a quite 
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promising approach for the QAP. ETS plays the 
central role in our hybrid genetic algorithm. The idea 
behind ETS is that the classical TS (it serves as an 
intensification mechanism) is combined with the 
appropriate perturbations of solutions (as a robust 
diversification mechanism). The intensification itself 
is based on the robust tabu search procedure due to 
Taillard [25]. Very roughly, this algorithm can be 
outlined in the following way. Initialize the tabu list T, 
and start from the current permutation π. Then, 
continue the following process until a predetermined 
number of steps, τ, have been performed: 

a) find a neighbour π ′′  of the current solution π in 
such a way that )(minarg

)(2

ππ
ππ

′=′′
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tabu) or where π

 ij(( m

} )))∗ ()ˆ (( < ππ ff ∗ is the best so far 
solution; 

b) update the tabu list T by including the move 
muv, where muv is the move from the solution π to the 
solution π ′′ ; 

c) replace the current permutation π by the neigh-
bour π ′′ , and use as a starting solution for the next 
step. 

In EHGA, we usually apply the short runs of the 
tabu search (we call this strategy a limited tabu search 
(LTS)). Firstly, LTS allows saving the computation 
time; on the other hand, LTS in combination with 
other genetic operators is quite enough to seek for 
high quality solutions. 

Regarding the diversification mechanism, we use 
the permutation mutations which can be seen as 
sequences (strings) of random moves , 

. The larger the length of the sequence (i.e. 

the mutation level) µ, the stronger the mutation, and 
vice versa. In turn, the stronger the mutation, the more 
the probability that the "distance" ρ between the 
current solution and the mutated one is also large. One 
can add more robustness to the diversification process  

4321
, rrrr mm

µµ 212
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−

by performing "concentric" mutations. In this case, the 
mutation level µ varies as follows: at the beginning, µ 
is equal to some minimum value µmin; further, µ is 
increased gradually, step by step, until some limit is 
reached (this means that the new produced solutions 
are more and more "far" from an imaginary "center-
solution"); once the maximum level µmax has been 
reached (or a better local optimum has been found), 
the current value of µ is immediately dropped to µmin, 
and so on. 

Note that, as the solutions already undergo pertur-
bations in the ETS procedure, there is no need in any 
mutations within GA itself (except the special case 
discussed below). 

As to the way in which the candidates for the sub-
sequent mutation are chosen, a so-called exploration 
strategy is applied. The idea of exploration is that 
every new locally optimal solution (obtained by the 
intensification procedure), no matter its quality, is ac-
cepted for the reconstruction. The advantage of this 
strategy is allowing to search in many possibly promi-
sing regions of the solution space. 

Some remarks on the way the combination of in-
tensification and diversification is done should be 
mentioned. We rely upon so-called (Q,τ,1)-scheme. In 
this scheme, the total number of the iterations of ETS 
(i.e. global iterations) is equal to Q. At each global 
iteration, τ steps (local iterations) of TS, and one call 
to the mutation procedure are performed. The value of 
aspect ratio Q/τ is of high importance. It may be 
viewed as a measure for the mutation frequency. 
(Suppose, Qτ=const; in this case, the larger the value 
of Q/τ, the larger the mutation frequency, and vice 
versa.) The optimal value of Q/τ can only be revealed 
empirically. Some results of the experiments on the 
autonomous runs of ETS show that this value depends 
on the nature of the problem being solved. For random 
data (n=40), we found that the optimal value is 
somewhere between 0.05 and 5; for real world data, 
the situation is different: the higher the mutation 
frequency, the better the results (see Figure 2). 
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Figure 2. Solution quality (objective function value) versus the mutation frequency:  
a) random problem, b) real world problem  
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The culling (replacement) of the population takes 
place every time before going to the next generation. 
After adding new solutions and sorting the population, 
the solutions with the greatest objective function value 
are removed away from the population to keep the 
population size constant. After that, EHGA proceeds 
with the new population as described above. An extra 
dealing with the population (i.e. a so-called restart 
mechanism) is applied under some circumstances. 
That is, if the situation of a loss of the diversity of the 
population is identified, then a specific process (a 
"cold restart") is invoked. (A measure of entropy of 
the population [7] seems to be an applicable restart 
criterion; for more details, see [19].) In fact, there are 
two phases at the restart: a) the deep reconstruction 
(mutation) of all the members of the population; b) the 

local improvement of the reconstructed solutions by 
the limited enhanced tabu search. For the reconstruc-
tion, we tried the procedure very similar to that used 
in the ETS algorithm. The main difference lies in the 
increased mutation level; more precisely, the reconst-
ruction is done in such a way that n=)~,( ππρ , where 
ππ ~,  are the solutions before and after reconstruction; 

n is the problem size. After restart, EHGA goes on in 
an ordinary way. The overall process is continued in 
an iterative way until a given number of generations 
(Ngen) has been performed. 

The generalized templates (frameworks) of the 
extended hybrid genetic algorithm, as well as the 
enhanced tabu search algorithm are presented in 
Figures 3 and 4. 

 
procedure ExtendedHybridGeneticAlgorithm; 
  // input: A,B − the flow and distance matrices, n − the problem size; output: π∗ − the best permutation found // 
  // parameters: PS − the population size, Ngen − # of generations, σ − the selection factor, // 
  //         Ncross − # of crossovers per generation, Q − # of iterations of ETS, // 
  //         τ − # of intensification iterations, α1,α2 − the mutation factors // 
  µmin := max(2,α1n); µmax := max(2,α2n); 
  create the locally optimized population P⊂Π in two steps: 
   (i) generate initials solutions of P randomly, 
  (ii) improve each member of P by using the (limited) enhanced tabu search; 
  ; // π)(ππ

π
z

P∈

∗ = argmin: ∗ is the best so far solution // 

  for i :=1 to Ngen do begin // main cycle of the extended hybrid genetic algorithm // 
    sort the members of P in the ascending order of their fitness; 
    for j :=1 to Ncross do begin // in this cycle, Ncross children will be produced // 
      select parents P∈′′′ ππ , ; 
      apply elitist crossover EX to π ′  and π ′′ , get the offspring π& ; 
      π• := EnhancedTabuSearch(π& ); // every offspring is improved by applying Q iterations of ETS // 
      add the improved permutation π•  to the population P; 
      if z(π•) < z(π∗) then π∗ := π• // save the best so far solution (as a possible result of EHGA) // 
    end; // for j ... // 
    cull the population P by removing Ncross worst individuals; 
    if the diversity of P is below the predefined threshold then 
       make the "restart" in two phases: 
        (i) reconstruct (mutate) all the members of P, except the best one, 
       (ii) improve each reconstructed solution by using  
            the limited enhanced tabu search  
            (save the new best encountered solution if any) 
  end; // for i ... // 
end. 

 

Figure 3. Template of the extended hybrid genetic algorithm 
 



A. Misevičius 

function EnhancedTabuSearch(π); 
  // input: π − the current permutation; output: π∗ − the best permutation found // 
  // parameters: Q, τ, µmin, µmax // 
  apply τ iterations of (standard) robust tabu search to π,  
  get the improved permutation π•; 
  π := π•; π∗ := π•; µ := µmin − 1; 
  for q :=1 to Q do begin // main cycle of the enhanced tabu search // 
    accept candidate π for the subsequent mutation (perturbation); 
    if µ < µmax then µ := µ + 1 else µ := µmin; // update the mutation level // 
    apply mutation to π with the mutation level µ,  
    get the new permutation π~; 
    apply τ iterations of (standard) robust tabu search to π~,  
    get the new improved permutation π•; 
    if z(π•) < z(π∗) then begin // new locally optimal solution is found // 
      π∗ := π•; // save the best so far solution (as a possible result of ETS) // 
      reset the mutation level µ 
    end 
  end; // for // 
  return π∗ 
end. 

 

Figure 4. Template of the enhanced tabu search 

3. Computational results 
In order to evaluate the performance of the pro-

posed algorithm, the computational experiments have 
been carried out on the QAP instances taken from the 
well-known publicly available library of the QAP 
instances QAPLIB [3]. The classes of the instances we 
examined are as follows: 

(a) random instances (these instances are randomly 
generated according to a uniform distribution; in 
QAPLIB, they are denoted by tai20a, tai25a, tai30a, 
tai35a, tai40a, tai50a, tai60a, tai80a, tai100a); 

(b) real-life like instances (instances of this type 
are generated in such a way that the entries of the data 
matrices resemble a distribution from real world 
problems; these instances are denoted by tai20b, 
tai25b, tai30b, tai35b, tai40b, tai50b, tai60b, tai80b, 
tai100b, tai150b). 

We compared our algorithm with other five dif-
ferent heuristic algorithms. The following algorithms 
were used: 1) robust tabu search (RTS) algorithm [25]; 
2) fast ant system (FANT) [26]; 3) genetic hybrid 
(GH) algorithm [7]; 4) genetic algorithm due to Lim, 
Yuan and Omatu (GA-LYO) [16]; 5) improved hybrid 
genetic algorithm (IHGA) [19]. Note that RTS is 
among the best heuristic algorithms for the random 
instances, whereas IHGA belongs to the most  

powerful algorithms for the real-life like problems. 
The performance measures are as follows: a) the 
average deviation from the best known solution − δ  
( %][ )(100 zzz ((−=δ , where z  is the average objec-
tive function value over 10 restarts (single applica-
tions of the algorithm to a given instance), and z(  is 
the best known value (BKV) of the objective func-
tion); b) the number of solutions that are within 1% 
optimality (over 10 restarts) − C1%; c) the number of 
the best known values (solutions) found − Cbkv. 

The values of the control parameters of the 
algorithms were chosen in such a way that all the 
algorithms use approximately the same computation 
(CPU) time. The main parameter values of EHGA are 
collected in Table 1. 

Note that the quite different values of the para-
meter τ were chosen for the problem types (a) and (b). 
This is due to the fact that, for the random instances, 
more attention should be given (i.e. more time should 
be allotted) to the intensification; whereas, for the 
real-life like instances, the intensification is relatively 
less important than the diversification (see also [20]). 
Consequently, for the random instances, the parameter 
τ gets larger values than for the real-life like instances.  

The results of the experiments are presented in 
Tables 2 and 3. 

Table 1. Values of the parameters for the algorithm EHGA 

Problem  
type PS Ngen σ Ncross Q τ α1 α2 

(a) n  n4
1  1.3 PS4

1  5 2
1 n2 depends on problema depends on problemb 

(b) n  depends on problemc 1.7 PS2
1  5 n depends on problema depends on problemb 

a varies from 0.2 to 0.3; b varies from 0.3 to 0.4; c varies from n4
1  to . n2

1
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Table 2. Comparison of the algorithms on randomly generated instances.  
 The best results obtained are printed in bold face. CPU times per restart are given in seconds. 
 900 MHz PENTIUM computer was used in the experiments 

Instance n BKV 
δ , C1%/Cbkv 

 RTS FANT GH GA-LYO IHGA EHGA 
CPU time

tai20a 20 703482 a 0.07 10/ 6 0.90 1/ 0 0.41 10/ 2 1.30 3/ 0 0.06 10/ 8  0 1.3 

tai25a 25 1167256 a 0.14 10/ 6 1.34 5/ 1 0.39 10/ 2 1.54 1/ 0 0.08 10/ 7  0 4.4 

tai30a 30 1818146 a 0.08 10/ 5 1.11 4/ 1 0.37 10/ 4 1.56 1/ 0 0.02 10/ 8  0 10.0 

tai35a 35 2422002 a 0.19 9/ 3 1.28 3/ 0 0.64 10/ 0 1.60 0/ 0 0.05 10/ 7  0 36 

tai40a 40 3139370 a 0.46 8/ 0 1.55 2/ 0 0.62 9/ 0 1.95 0/ 0 0.21 10/ 1 0.20 10/ 1 85 

tai50a 50 4941410 a 0.79 5/ 0 1.76 1/ 0 0.87 4/ 0 2.01 0/ 0 0.44 9/ 1 0.43 10/ 1 290 

tai60a 60 7205962 b 0.84 2/ 0 1.71 0/ 0 1.01 2/ 0 1.93 0/ 0 0.55 8/ 0 0.56 8/ 0 720 

tai80a 80 13546960 b 0.62 7/ 0 1.34 5/ 0 0.60 6/ 0 1.30 1/ 0 0.32 10/ 0 0.27 10/ 0 3300 

tai100a 100 21123042 b 0.59 8/ 0 1.19 6/ 0 0.51 8/ 0 1.16 2/ 0 0.26 10/ 0 0.23 10/ 0 12000 

a comes from [3]; b comes from [20]. 

Table 3. Comparison of the algorithms on real-life like instances. 
 The best results obtained are printed in bold face. CPU times per restart are given in seconds. 
 900 MHz PENTIUM computer was used in the experiments 

Instance n BKV 
δ , C1%/Cbkv 

 RTS FANT GH GA-LYO IHGA EHGA 
CPU time

tai20b 20 122455319 a  0  0.09 10/ 8  0.05 10/ 9  0.10 10/ 7  0  0 0.1 

tai25b 25 344355646 a  0.06 10/ 8  0.01 10/ 9  0  0.01 19/ 8  0  0 0.6 

tai30b 30 637117113 a  0.40 9/ 3  0.04 10/ 7  0.01 10/ 9  0.50 9/ 1  0  0 1.2 

tai35b 35 283315445 a  0.25 10/ 5  0.20 10/ 1  0.13 10/ 4  0.27 10/ 0  0.00 10/ 9  0 2.5 

tai40b 40 637250948 a  0.20 9/ 6  0.01 10/ 9  0  0.60 8/ 0 0  0 5.0 

tai50b 50 458821517 a  0.24 10/ 0  0.22 9/ 0  0.03 10/ 7  0.95 5/ 0  0.02 10/ 8  0 18 

tai60b 60 608215054 a  0.30 10/ 0  0.18 9/ 3  0.02 10/ 6  0.80 4/ 0  0.01 10/ 9  0 29 

tai80b 80 818415043 a  0.29 9/ 0  0.33 6/ 0  0.35 8/ 2  0.95 6/ 0  0.03 10/ 7  0 138 

tai100b 100 1185996137 a  0.19 7/ 0  0.11 7/ 0  0.06 9/ 3  0.70 5/ 0  0.01 10/ 3  0 430 

tai150b 150 498896643 b  0.39 9/ 0  0.54 7/ 0  0.40 8/ 0  0.55 6/ 0  0.11 10/ 2  0.10 10/ 2 2300 

a comes from [3]; b comes from [27]. 

It can be seen that the quality of solutions depends 
on the type of problems being solved. For the random 
instances, the results are inferior to those for the real-
life like instances; this indicates that these instances 
are much more hard to solve and still remain the great 
challenge for the researchers. Regarding the real-life 
like instances, they are relatively easy for many 
heuristics, among them, the hybrid genetic algorithms. 
Our extended hybrid genetic algorithm was able to 
find the best known (pseudo-optimal) solutions for all 
these instances (except the largest one) surprisingly 
quickly. For example, the average time needed to find 
the pseudo-optimal solution for the instance tai100b is 
equal to 400 seconds on 900 MHz computer. The 
results obtained show very promising efficiency of the 
proposed extension of HGA. In many cases, EHGA 
appears to be considerably superior to other efficient 
algorithms for both random and real-life like 
instances. 

The results of EHGA may be improved even more 
by an accurate tuning of the control parameters. Of 
course, we can obtain higher quality solutions by 
increasing the total number of generations (Ngen), but 
at the cost of longer computation time. After an 
additional long-lasting experimentation, EHGA was 
successful in discovering new record-breaking 
solutions for two large random instances, namely, 
tai80a and tai100a. The new values of the objective 
function, which are better than those reported in [20], 
are equal to 13535624 and 21102912, respectively. 

4. Concluding remarks 

In this paper, an extended hybrid genetic algorithm 
(EHGA) for the quadratic assignment problem is 
presented. The results obtained by EHGA demonstrate 
the excellent performance of the proposed algorithm 
with respect to the performance measures used. The 
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main features of this algorithm are as follows: a) it 
incorporates an efficient tabu search algorithm as a 
local improvement procedure; b) the large population 
of solutions is not necessary: its compactness is fully 
compensated by the outstanding performance of TS; c) 
mutation operator is not needed in the GA itself, 
because the solutions undergo transformations in the 
TS procedure; d) a special restart mechanism 
implemented helps to overcome the loss of diversity 
within the population and the premature convergence 
of GA. 

The idea of hybridization should further be exploi-
ted. The following directions for the possible improve-
ment of EHGA may be proposed: 1) using the reactive 
tabu search instead of the straightforward (robust) tabu 
search (as a possibly more efficient local improvement 
procedure); 2) implementing other, more elaborated 
mutation (perturbation) operators within extended TS; 
3) designing innovative crossover operators, for exam-
ple, so-called multiple parent crossovers; 4) trying 
other restart strategies; 5) maintaining a mixture 
("pout-pourri") of different local improvement proce-
dures (like the descent local search, simulated annea-
ling, tabu search, etc.) to allow flexible tuning (or, 
even self-tuning) of the genetic algorithm to the speci-
fic problem. Putting these directions into efficient 
implementations could be a subject of the future re-
search. 
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