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Abstract. In this paper two mathematical models of multistage inventory control processes with continuous and 
discrete density functions of demands are investigated. These processes are modelled by recursion equations of the 
dynamic programming. For inventory control problem with the continuous density function there was created a new 
continuous optimal control problem, which is equivalent to the given one. Applying the maximum principle solves this 
new problem. The optimal policy ordering policy is defined. Also, we have found the optimal policy for ordering of 
products in the multistage inventory control problem with the discrete density function of demands. In this case such 
number of moments of time was found that the demands are satisfied without extra products. 
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1. Indroduction Let x be the initial quantity of products stores in a 
warehouse. We also assume, that the products are 
ordering at the discrete moments of time t = 0, 1, 2, 
…, the orders fulfill at the same moments of time with 
the probability p, and they are fulfill  one moment 
later with probability q p−= 1 . 

The inventory control theory is one of the newest 
operation research branches. The formulation of the 
inventory control problem depends on the concrete 
situation. However, there exist many common factors 
whose give an opportunity to create a sufficiently 
common model for the inventory control. In 1951 
economists. Arrow (laureate of the Nobel prize in 
1972), Harris and Marshak formulated the creation 
principles of the mathematical model for the inventory 
control problem. Latterly, many mathematicians and 
economists in close cooperation with other scientists 
work on solving the inventory control problems. A lot 
of publications on the general inventory control theory 
have been published [3, 4, 5]. Though, in many cases, 
only the inventory control processes with linear or 
convex product order functions are examined. In this 
paper, the inventory control models, generalizing the 
classical ones, are analyzed. In the developing these 
models, some restrictions, so peculiar for classical 
models, have been discarded. For instance, linearity 
and convexity conditions for the products order 
function. The models are constructed under general 
conditions for the warehouse order receiving. 

Suppose given functions:  – density function 
of demands; c  – the order’s price function  (z – 
quantity of products’ ordered); h  – function of 
products stored in warehouse (price of storing z pro-
ducts);  – penalty function (penalty for shortage 
of z products); 
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α  )10( <α<  – discount coefficient. 

Let’s denote  minimal expected value of ex-
penses of the optimal inventory problem in infinite 
time, as x – the initial number of inventory. Our 
multistage inventory process is described by dynamic 
programming equations as follows: 
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1. The stochastic inventory control problem 
with continuous demands 
We study infinite inventory control problem. We 

solve it using approximation method for discrete 
processes to control optimally the continuous proces-
ses [5, 6]. This allows us to solve the inventory control 
problem with general conditions for warehouse order 
receiving. 

We are analyzed the solution to the equation (1). It 
has the following form 

77 



N. Janušauskaitė 

( ) { }( ) ( )( ) ( )




+⋅+−== ∫∑

∞∞

= 00
1 1 tttt

t
tt xupLuxczuxJxf

( ) ( ) inf
1

0

→




ϕ+ ∏

−

=

t

i
iit dssxqL  (2) 

( ) .10,ln =α= z         z
ds
dz  

We are going to write the quality’s criteria for the 
continuous problem of the problem (4)-(5) in the 
following way 

Suppose 
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here  – random variables with density ϕ  ts ( ).ts Since  by using the definition of the con-
tinuous analogue [5], we get the following relations: 
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In this case, the criterion of quantity for the initial 
process is expressed as for all ,....1,0,1 =≥ t    ut  
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The equation of motion are: 

,1,
,,

01
01
=α⋅=
=µ−⋅=

+
+

z              zz
xx      xux

tt
ttt  (5)           

( ) ( )( ) ( ) ( ) ( )( )( )

( ) ( )( ) ( )( ) ,min

1,

21

0

u
dssyLqsysuLp

susycszsusyJ

→+⋅+

+−= ∫
∞

 (10) 

the control u  at  1≥t ...1,0=t ( ) ( ) ( ) ( )

( ) ( ) .10,ln

,0,1ln

=α=

=







−
µ

−=

z            szds
dz

xy      susysuds
dy

 (11) Let’s find a trajectory for the continuous problem 
of the optimal control problem (4)-(5). We are going 
to study the case, when the differential equation for 
the trajectory of the continuous control process 
according to the first recursion relation of the system 
(5) has the following 
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We will find the optimal control by using the 
maximum principle for (10) – (11) problems. For the 
discussing problem the Hamilton’s function has the 
following form 

) ( ) ( )( ) ( ) ( ) ( )( )( )
( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ),,,
1

ln
1(,,

0

21

0

uysuy
su

sy

sussyLqsysuLp
susycszsusysH

βψαψµ

ψ
ψψ

++=







−

−⋅

⋅+++⋅+

+−=

 (12) Since the solution of this equation satisfies the 
following condition in interval [ )1, +t t , 
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here .00 ≤ψ  

by using the definition of the optimal continuous 
problem [5], we get the following relations: 

Theorem 1.  Let the following three conditions be 
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Then the optimal control  of the problem 
(10)-(11) satisfies the maximum condition 
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It’s not difficult to check, that the differential equa-
tion according to the second recursion relation of the 
system (5) has the following 
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( ) ( ) ( )( ) .0,0,, 000 ≥∀=ψ ssusysH       (14) Theorem is proved.  
The solution the equation (10) – (11) describing 

the optimal control (10-11) is formulated in the fol-
lowing theorem. 

here function  is defined by formula 

(12),  is the solution of the differential equation 
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Theorem 2.  Let the following two conditions be 
satisfied: 
1) Functional ( ) ( )( )su,syJJ =  defined by the 

formula (10) is bounded; 
and .  00 ≠ψ

2) Functions ( ) ( ) ( )yL  yL  y 21 ,,c  are continuous and 
have continuous derivatives. Proof. We are going to study the process with 

fixed end of trajectory: 
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Proof. To analyze the optimal control of the prob-
lem (10)-(11) we use the maximum principle [3]. 
From Theorem 1 it follows, that the Hamilton’s func-
tion with optimal control is equal to zero, it means 

The maximum of the Hamilton’s function, defined 
by formula (12), is reached at: 
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Since this equation is valid for all T, we have: 
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Let’s find the number of time moments, during 
which the demands are satisfied, but the products are 
not ordered. We denote the number of these moments 
by ( )10 sN and minimal expenses when the initial 
inventory is −< 11 rs  by ( )1sf . Let’s discuss the case 
when .01 =s  We obtain, that the function ( )0f  
satisfies the equation of dynamic programming 
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 From the equations (23) and (24) it follows, that 
the optimal control u  satisfies the equation (19). If 

, then from the condition (17) we get the 
proof of the theorem. 
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2. The inventory control problem with 
discrete demands.  

Let an initial inventory i of the i-th product be 
equal to si  ( )nisi ,1  ,0 =≥  and at each moment of 
time t (t=0, 1,...) the lot of products   
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( )nxxxx ,..,, 21=
( ),xϕ  

here 

( ) ( )(
( )( ) ( ))

( ) ( )( )
( ) ( )

( )) ( )
( )( ) ( )( )( )

( ) ( )( )
( ) ( ).

11
11

11
11min

...1

min

0
1

12
1011

11011100
1

111

12
11

110

0
11

11

111001

10

10

10

NsNrd

rsNscNrN

Nrdsc

NNNrd

sNrcsf

sN
sN

sN

N

N

N

NN
N

ϕλ
λλ

λλλλ

ααϕλα

λλ
λλλλα

ϕλλλλ

α

+
+

+

+

+−

≥

+
−−

−−−
+

++−=++

+




−−
−−−

+−=

=+++−++

+−+=

 Let’s study the multistage case, with the condition 
( ).,10 ni  == ( )0,...,00si  Then ==s

+1N

 and  ( ) ( )        ,
1

0 ∑
=

++=
n

i
iii xccx αϕ  

( ) ( )( )∑
=

≥
++++=

1
00

1min
i

iiiN
crNcf α0  where 0    ,0 >> iic α , c is general management ex-

penses, 
0

iii xc α+
( )    ,0=0

 is expenses of the order  of i-th 
product. Let 

ix
( ).0,...,0=0ϕ  Furthermore, the 

following data is given: ( ) −=   n,1i ri  demands for the 

i-th product; ( ) −  = ni di ,1
−λ
1<

stock-price for the i-th pro-
duct;  discount coefficient for one period of time 
( 0 ). λ<

( ) ( )( )∑
=

+++++
n

i

NN
ii fNrd

1

1... 0λλλλ  

From the last relation we find 

( )
( )( )

( ) ( )
( ) ( )

( ) ( ).min

11
11

1

1
min

00

12
1

1
1

0

0

NFNF

Nrd

rNcc
f

N

N

Nn

i
ii

N

n

i
iii

N

==

=









−−
−−−

+

+










−

+++
=

≥

+
=

+
=

≥

∑

∑

λλ
λλλλ

λ

α
0

 

In the single case the order function  is  ( )xϕ
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here  c  .101 cc +=′
If  then it is obvious that the optimal policy 

is not to order the products till the inventory is larger 
than  If s  then the optimal policy has the 
following structure: to order such quantity of product 
that it would be possible to satisfy the demands at 
certain time moments and also that all inventory after 
these time moments would be used up.  
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.1r ,11 r< Let’s study the case, when ( )mi  rs ii ,1=<  and 
( )1;,...,1 nm   nmi  rs ii ≤ .≤+=≥  

Suppose, m .n=  We are going to find the number 
of time moments, during which the demands are 
satisfied, but the products are not ordered. Denote this 
number by ( ),0 sN ′  here .( ,...,1 nsss )=′  We have 
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Suppose, .1  Consider an inventory control 
problem, where the initial inventory (of products) is 
specified by  Let us denote the time 
period, the demand conditions are satisfied and no 
new product orders are needed, by 
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associated with the very first depletion is found. Let us 
denote indices of products, whose inventory is too 
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to the following expression: 
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 It some products, whose indices fall into the set 
, are depleted during the time period 

, we come to the earlier discussed situation, 
with the initial inventory  If 
products, whose indices fall into the set { }+  
are not depleted during the time period ( ) 10 +′sN , 
then the only optimal policy is to make a new order 
with the following product amounts: 

( )( ) ( ).,1,10 mi      srsN ii =−+′  

If the demand is satisfied in the time period 
, we pass to the earlier case, with the earlier 

discussed inventory control policy. 
( ) 10 +′sN

3. Conclusions 

The inventory control theory is one of the newest 
branches of the operation research. In this paper, the 
two multistage inventory control models are analysed. 
These processes are modelled by the dynamic prog-
ramming equations. There is a new continuous opti-
mal control process for the inventory control problem 
with the continuous density function of demands, 
equivalent to the investigated one, created. In addition, 
for the new continuous optimal and multistage inven-
tory control process with the discrete density function 

of demands the optimal policy for ordering the pro-
ducts is determined. For the discrete process amount 
of time moment, during which the demands are satis-
fied without additional product restocking, are found. 
While creating these models, some restrictions of the 
classical models are discarded. The models using 
more general conditions of warehouse inventory reple-
nishment are constructed.  
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