
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2008, Vol.37, No.3

IMAGE ANALYSIS PROBLEMS IN AOI SYSTEMS

Egidijus Paliulis
Department of Information Technologies, Faculty of Technology, Šiauliai University

Vilniaus St. 141, LT – 76353 Šiauliai, Lithuania

Raimondas Zemblys, Gintautas Daunys
Department of Electronics, Faculty of Technology, Šiauliai University

Vilniaus St. 141, LT – 76353 Šiauliai, Lithuania

Abstract. Historically the electronics manufacturing market has relied on a combination of human visual
inspection and electrical test methods to ensure product quality. With the advent of the personal computer, the use of
"machine vision" in industrial applications gradually became more common. The process where optical sensors (i.e.,
cameras) are used to make specific pass/fail decisions is usually described as Automated Optical Inspection (AOI).

There are discussed problems of designing AOI system in this paper. The main goal is to select most efficient
image analysis algorithm and to study other parameters that have impact on designing a reliable AOI system.

Keywords: Automated optical inspection, AOI, image analysis, image recognition, computer vision.

1. Introduction

Automated Optical Inspection (AOI) systems were
introduced to the electronics manufacturing industry
during the 1980s, with the hope that they would be a
more consistent replacement for human inspectors
who had limited overall inspection effectiveness. Ear-
ly adopters of these systems were usually disappointed
with the speed, effectiveness, ease of use and cost of
ownership of these systems and their acceptance was
very limited. [1]

There were several reasons that AOI systems be-
came more and more popular:
• Predominance of SMT (Surface Mount Techno-

logy);
• Increasing Circuit Complexity and Density;
• Improvements in Key Technology Components of

AOI systems;
• Integration of key technologies into stable sys-

tems.

There are several potential areas where AOI sys-
tems can be used on a typical SMT production line:
 1. Post-Print-Paste Inspection. Standard camera-

based AOI systems can usually inspect for the
presence or absence of paste on pads and prob-
lems with print offsets.

 2. Post-Placement Inspection. In this phase typically
defects from the component placement process
such as component presence/absence, skew, tomb

stoning, polarity and in some cases text marking
on the component body are inspected.

 3. Post-Reflow Inspection inspects for many of the
same component level defects as post-placement
inspection as well as visible solder-level defects.

2. Situation overview

Typical AOI system consists of 4 key elements that
are lighting source, camera system/optics, image
processor (computer) and programming methodology
(Figure 1).

Figure 1. Operations of typical AOI system

AOI system gets an image of object that is illumi-
nated by some light source, transfers image to com-
puter where it is analyzed. The software is the main
key for making reliable pass/fail decision. The prob-
lem is to select an image analysis and recognition

220

Image Analysis Problems in AOI Systems

algorithm that meets requirements of AOI system –
processing speed, reliability, cost, etc.

The lighting source can be a monochrome LED or
white light or a grouping of these lights in a structure.
Structured lighting, sometimes with color, is also used
in some systems.

CCD array and line scan cameras predominate in
AOI systems. Some systems rely on multiple cameras,
or move camera along object’s surface to capture se-
parate segments of object (Figure 2).

Figure 2. Camera moving along PCB surface

Here are a lot of techniques used in image recogni-
tion systems. Some of them are [2]:
• Shape-based Matching;
• 1D Metrology – Measuring;
• 2D Metrology – Subpixel Edge Detection;
• 3D Metrology – Stereo Vision;
• Blob Analysis;
• Morphology;
• 3D Camera Calibration;
• Bar Code & Data Code Reading;
• OCR & OCV (multilayer perceptron neural net-

work).
These techniques may rely on traditional image

analysis methods or use more complex ways for
making decisions.

3. The aim and tasks of the work

The aim of this work is to analyze traditional
image analysis methods and select most efficient for
use in AOI systems.

There are some methods used in image processing
[3]: edge detection, blob detection, corner detection,
ridge detection, feature detection.

We selected to analyze sobel, canny (edge detec-
tors), laplace (blob detector), eigen decomposition,
corner detect and the Harris corner detection algo-
rithms.

Also other parameters such as image segmentation
size, pass/fail threshold (correlation coefficient),
impact of illumination and image acquisition settings
will be analyzed.

4. Method

With reference to AOI system there was designed
an electronic board testing prototype. It consists of
object holder, high resolution CANON photo camera
placed in front of it, and a personal computer with
image analysis and camera control software. Software
remotely triggers camera to take image of object, then
the image is transferred to host computer and analyzed
(Figure 3).

Figure 3. Scheme of the system

There was designed the fallowing algorithm to
evaluate assembling quality of printed circuit boards
(Figure 4):
 1. Get image of “golden” PCB (object without any

defects).
 2. Divide “golden” image (template) into separate

segments.
 3. Process template image using selected image pro-

cessing method.
 4. Get image of PCB to test.
 5. Divide image of object into separate segments.
 6. Process image using same image processing

method as template image was processed.
 7. Calculate correlation between template segments

and corresponding segments of object image.
 8. Evaluate assembling quality.

Segments that satisfy selected pass/fail threshold
(correlation coefficient) are marked green in output.
“Wrong” segments are marked red, so the system
operator knows the place of defect if it is present.

221

E. Paliulis, R. Zemblys, G. Daunys

Figure 4. Image analysis scheme

As mentioned above, there were selected 6 image
processing algorithms. They were realized using
OpenCV [4] library and wxDev-C++ programming
environment [5,6].

Sobel operator [7] calculates the gradient of the
image intensity at each point, giving the direction of
the largest possible increase from light to dark and the
rate of change in that direction. The operator uses two
3×3 kernels which are convolved with the original
image to calculate approximations of the derivatives -
one for horizontal changes, and one for vertical. If we
define A as the source image, and Gx and Gy are two
images which at each point contain the horizontal and
vertical derivative approximations of A image. The
estimation Gx and Gy are as follow:

AG x ∗
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+
−+
−+

=
101
202
101

 and

, (1)
AG y ∗

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−

+++
=

121
000
121

where “*”denotes the 2-dimensional convolution ope-
ration.

At each point in the image, the resulting gradient
approximations can be combined to give the gradient
magnitude, using:

22
yx GGG += . (2)

Canny edge detection operator [8] uses a multi-
stage algorithm to detect a wide range of edges in
images. It contains a number of adjustable parameters
(size of Gaussian filter, thresholds), which can affect
the computation time and effectiveness of the algo-
rithm. The stages are:
• Noise reduction. In this stage image is convolved

with a Gaussian filter to get an image which is not
affected by a single noisy pixel to any significant
degree.

• Finding the intensity gradient of the image. Can-
ny algorithm uses four filters to detect horizontal,
vertical and diagonal edges in the blurred image.
The edge detection operator (Roberts, Prewitt,
Sobel for example) returns a value for the first
derivative in the horizontal direction (Gy) and the
vertical direction (Gx).

• Non-maximum suppression. A search is carried
out to determine if the gradient magnitude as-
sumes a local maximum in the gradient direction.
This is worked out by passing a 3x3 grid over the
intensity map and a set of edge points, in the form
of a binary image, is obtained.

• Tracing edges through the image and hysteresis
thresholding. It requires two thresholds – high
and low. Applying a high threshold marks out the
edges that can be fairly genuine. Starting from
these, using the directional information derived
earlier, edges can be traced through the image.
While tracing an edge, the lower threshold is ap-
plied that allows tracing faint sections of edges as
long as a starting point is found.

One of the first and also most common blob detec-
tors is based on the Laplacian of the Gaussian (LoG)
[9]. Blob detection refers to visual modules that are
aimed at detecting points and/or regions in the image
that are either brighter or darker than the surrounding.

The Laplace operator [10] is a second order diffe-
rential operator in the n-dimensional Euclidean space,
defined as the divergence of the gradient. Thus if f is a
twice-differentiable real-valued function, then the
Laplacian of f is defined by:

fff ∇⋅∇=∇=Δ 2 . (3)

Equivalently, the Laplacian of f is the sum of all
the unmixed second partial derivatives in the Carte-
sian coordinates xi:

∑
= ∂

∂
=Δ

n

i ix
ff

1
2

2 . (4)

In the mathematical discipline of linear algebra,
eigen decomposition [11] is the factorization of a mat-
rix into a canonical form, whereby the matrix is

222

Image Analysis Problems in AOI Systems

represented in terms of its eigenvalues and eigenvec-
tors. We use calculated eigenvalues [11] to determine
if there are differences between images. The calcula-
tion is performed using OpenCV function cvCorner-
EigenMinVal.

Corner detection [12] or the more general termino-
logy interest point detection is an approach used
within computer vision systems to extract certain
kinds of features and infer the contents of an image.
The most simplified approach used in this work is
applying OpenCV function cvPreCornerDetect for
image [12]. It calculates function:

xyyxxx
2

yy
2

x DD2D - DDDD y+ , (5)

where D? denotes one of the first image derivatives
and D?? denotes a second image derivative. The
corners can be found as local maximums of the func-
tion.

Another approach used is Harris corner detection
algorithm. Image is given by I; consider taking an
image patch over the area (u,v) and shifting it by (x,y).
The weighted sum of square difference between these
two patches, denoted S, is given by:

∑∑ −−−=
u v

yvxuIvuIvuwyx 2)),(),()(,(),(S . (6)

The Harris matrix A is found by approximating S
with a second order Taylor series expansion.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∇+≈

y
xyxyxyx ASSS),(

2
1),()0,0(),(, (7)

where and S∇ A denote the gradient vector and the
Hessian matrix (second derivatives) of S.

A corner (or in general an interest point) is charac-
terized by a large variation of S in all directions of the
vector (x, y). By analyzing the eigenvalues of A, this
characterization can be expressed in the following
way: A should have two “large” eigenvalues for an
interest point. Based on the magnitudes of the eigen-
values, the following inferences can be made based on
this argument:

If 01 ≈λ and 02 ≈λ , then there are no features of
interest at this pixel (x,y).

If 01 ≈λ and 2λ is some large positive values, then
an edge is found.

If 1λ and 2λ are both large, distinct positive
values, then a corner is found.

Harris and Stephens note that exact computation of
the eigenvalues is computationally expensive, since it
requires the computation of a square root, and instead
suggest the following function Mc, where κ is a
tunable sensitivity parameter:

())()det(22
2121 AtracekAkM c ⋅−=+−= λλλλ . (8)

The value of κ has to be determined empirically,
and in the literature values in the range 0.04 - 0.15
have been reported as feasible.

To compare corresponding segments of processed
images normalized correlation [11] is used. It is
expressed like this:

∑∑ ∑∑

∑∑

−−−−

−−−−
=

x y x y
vu

x y
vu

tvyuxtfyxf

tvyuxtfyxf
vu

22
,

,

]),([]),([

]),(][),([
),(γ

. (9)

Here f (x,y) and t(x,y) – distribution of intensity of
an image, u, v – offset of pixels, f , t – average of
intensity of an image.

The experiments were implemented in this way:
• The object (PCB – printed circuit board) is placed

in holders.
• Camera remotely takes 2 images. At first we si-

mulating a reference image of an object and the
second – image of an object without defects.

• The object is removed from holders, some parts
(resistors, capacitors, etc.) are removed from the
board, and the object is placed in holders again.

• Camera remotely takes image of the changed
object. It will simulate PCB with defects.

• Software analyses images, using different algo-
rithms and settings (correlation coefficient, seg-
ment size, settings of algorithm).

Also different image shooting conditions were
tested (illumination, camera settings).

5. Results

Considering that tested image processing algo-
rithms use gray scale images, hypothesis that camera
should be set to take gray scale images instead of
taking color images, and then converting to gray scale,
was tested.

Figure 5. Defect found in gray scale and colour images

In Figure 5, the X axis represents different algo-
rithm settings, while Y axis shows the number of
defects found in percents that are calculated this way:

100*
*

)_(
segysegx

errdefdefrez −
= , (10)

223

E. Paliulis, R. Zemblys, G. Daunys

where def represents the number of segments iden-
tified as faulty, def_error – the number of segments
that represent real defects, segx and segy – the number
of segments in horizontal and vertical directions,
respectively. Other settings used in this experiment are
as follows:

correlation coefficient – 0.9;
segment size – 50x50 px;
processing algorithm – Harris corner detector.
As seen in Figure 5, we got better results analyzing

an image that originally was non-gray scale. This is
because selected camera (CANON EOS 400D) still
produces image with 3 color channels though it is set
to take gray scale image. There is still necessary to
convert image to 1 color channel image using soft-
ware.

As image processing was implemented using
openCV library, used algorithms had some adjustable
settings. We selected a range of these settings and
tested a capability to recognize real defects not ma-
king false alarms. To test immunity from noises of
algorithms, there was not used additional illumination,
and sensitivity of camera was set to ISO800. This pro-
duces some noise in images.

Table 1.Test results

Defects
found

Real
de-

fects
Settings

Faulty
defects

%
1 2 0 1|0|7|0|0|9|0.040|50 x 50|0.90| 0,19
2 1 0 1|0|7|0|0|11|0.080|50 x

50|0.90|
0,09

3 1 0 1|0|7|0|0|15|0.120|50 x
50|0.90|

0,09

4 0 0 1|0|7|0|0|9|0.040|75 x 75|0.90| 0,00
5 0 0 1|0|7|0|0|11|0.080|75 x

75|0.90|
0,00

6 0 0 1|0|7|0|0|15|0.120|75 x
75|0.90|

0,00

7 0 0 1|0|7|0|0|9|0.040|100 x
100|0.90|

0,00

8 0 0 1|0|7|0|0|11|0.080|100 x
100|0.90|

0,00

9 0 0 1|0|7|0|0|15|0.120|100 x
100|0.90|

0,00

10 1 0 1|0|7|0|0|9|0.040|50 x 50|0.80| 0,09
11 1 0 1|0|7|0|0|11|0.080|50 x

50|0.80|
0,09

12 1 0 1|0|7|0|0|15|0.120|50 x
50|0.80|

0,09

13 0 0 1|0|7|0|0|9|0.040|75 x 75|0.80| 0,00
14 0 0 1|0|7|0|0|11|0.080|75 x

75|0.80|
0,00

15 0 0 1|0|7|0|0|15|0.120|75 x
75|0.80|

0,00

16 0 0 1|0|7|0|0|9|0.040|100 x
100|0.80|

0,00

17 0 0 1|0|7|0|0|11|0.080|100 x
100|0.80|

0,00

18 0 0 1|0|7|0|0|15|0.120|100 x
100|0.80|

0,00

In Table 1 we see results when printed circuit
board is without real defects. As it is seen, using some
filter (Harris corner detector in this case) settings still
produce errors.

Table 2 represents results that were obtained ana-
lyzing image of an object with real defects. As we see,
there are some settings that recognize all real defects
without making false alarms.

Table 2. Test results

Defects
found

Real
defects Settings

Faulty
defects,

%
1 43 32 1|0|7|0|0|9|0.040|50 x

50|0.90|
1,02

2 37 33 1|0|7|0|0|11|0.080|50 x
50|0.90|

0,37

3 35 33 1|0|7|0|0|15|0.120|50 x
50|0.90|

0,19

4 20 20 1|0|7|0|0|9|0.040|75 x
75|0.90|

0,00

5 19 19 1|0|7|0|0|11|0.080|75 x
75|0.90|

0,00

6 19 19 1|0|7|0|0|15|0.120|75 x
75|0.90|

0,00

7 10 10 1|0|7|0|0|9|0.040|100 x
100|0.90|

0,00

8 10 10 1|0|7|0|0|11|0.080|100 x
100|0.90|

0,00

9 10 10 1|0|7|0|0|15|0.120|100 x
100|0.90|

0,00

10 32 30 1|0|7|0|0|9|0.040|50 x
50|0.80|

0,19

11 32 30 1|0|7|0|0|11|0.080|50 x
50|0.80|

0,19

12 30 30 1|0|7|0|0|15|0.120|50 x
50|0.80|

0,00

13 19 19 1|0|7|0|0|9|0.040|75 x
75|0.80|

0,00

14 19 19 1|0|7|0|0|11|0.080|75 x
75|0.80|

0,00

15 17 17 1|0|7|0|0|15|0.120|75 x
75|0.80|

0,00

16 9 9 1|0|7|0|0|9|0.040|100 x
100|0.80|

0,00

17 9 9 1|0|7|0|0|11|0.080|100 x
100|0.80|

0,00

18 9 9 1|0|7|0|0|15|0.120|100 x
100|0.80|

0,00

Settings of algorithms are represented in this way
(note that not all settings are used in particular
algorithm):

dx | dy | aperture size | threshold 1| threshold 2 |
block size | k | segment size | correlation
coefficient. Recommended settings for different
algorithms are as follows:
Sobel:
dx = 1, dy = 0, aperture size = 7;
Using these settings false alarm level was 0 – 30 %

depending on non-algorithm settings (segment size
and correlation coefficient)

224

Image Analysis Problems in AOI Systems

Canny:
threshold 1 = 50, threshold 2 = 300, aperture size =
7;
Canny image processing algorithm showed very

high level of false alarms. Using recommended set-
tings false alarm level was about 80%.

Laplace:
aperture size = 7;
Laplace operator showed good results when testing

image of an object without real defects, but when
simulating analysis of an object with defect, false
alarm level was 25-30 % using recommended settings.
Therefore object can’t be placed in exact place when
making picture, so even small differences in image
where threaded as defects.

Eigenvalues:
aperture size ≥ 5, block size ≥ 9;
Depending on non-algorithm settings this method

did not show any or showed very small number (~2%)
of false alarms when using these settings.

Corner detector:
aperture size = 7;
Using this setting filter identified 0 – 5% segments

as faulty when analyzing object without defects, and
15 - 90% when analyzing object with defects. The
amount of false alarms depends on the segment size
and correlation coefficient.

Harris corner detector:
aperture size = 7, block size ≥ 9, 0.08 ≥ k ≥ 0.12.
This algorithm identified up to 21% segments as

faulty even there were no real defect. Though
mentioned parameters, amount of false alarms was
reduced to 0.

These settings will be used in further experiments.
There were built additional illumination modules,

one using LED illumination, and second – simple bulb
(Philips Spotone 100 W E27) illumination. We used
these modules selecting optimal segment size for AOI
system prototype.

There were used segment sizes from 10 px to
150 px with step 10 px. Correlation coefficient is set
to 0.9. Pixels are recalculated to millimeters, because
very important to select segment size in real world
measurements.

As seen in Figure 6, the optimal segment size is
50x50 px. This corresponds to ~4x4 mm. Using this
size of segment, false alarm level was ~1%. Most of
the faulty identified segments were at the edges of
image. It happens, because at the edges of image, the
segment size is smaller than selected (no possibilities
to divide image in equal segments when selecting
fixed segment size).

Not all real defects were found when segment size
was set to 130x130 px (it is represented as negative
value of faulty defects). It happens, when a small part
is missing in segment, but we still get a good
correlation value, and segment isn’t identified as
faulty.

Figure 6. Selection of size of a segment using LED

illumination

Label “noDefect” in the graph means that experi-
ment is performed using picture of an object without
defects, and on contrary, “*defect” means that picture
of an object with real defect is analyzed.

When using a bulb illumination (see Figure 7), op-
timal segment size is 80x80px (corresponds to
~8x8 mm). Also false alarms were generated at the
edges of image.

To get a better image resolution, the object was
optically zoomed in. The optimal segment size we got
was 50x50 px that corresponded to 2x2mm. (see
Figure 8). False alarms (up to 2.5%) also were
generated at the edges of image.

Figure 7. Selection of size of a segment using bulb

illumination

There were performed some experiments with dif-
ferent settings of shutter speed and aperture value of
camera. However there was no impact on recognition
of defects.

6. Conclusions

The picture of object should be taken with all
possible information; in this case, the picture should
be non-gray scale and converted to gray scale. Special
software was development for that purpose.

225

E. Paliulis, R. Zemblys, G. Daunys

Figure 8. Selection of size of a segment using optical zoom

Most efficient algorithms for recognizing defect on
PCB were Sobel, Eigen decomposition and Harris
corner detector. As these algorithms have a number of
adjustable parameters, it is recommended to use these
parameters:

Sobel:
dx = 1, dy = 0, aperture size = 7;
Eigen values:
aperture size ≥ 5, block size ≥ 9;
Harris corner detector:
aperture size = 7, block size ≥ 9, 0.08 ≥ k ≥ 0.12;
When using these parameters, there were no, or

small number of false alarms.
If there is no good additional illumination, it isn’t

recommended to use Sobel operator for processing
image, because it is very sensitive to any changes in
images.

The size of segment should be selected depending
on illumination and size of object. Too small segment
size generates a lot of false alarm, and if segment size
is big, not all real defects can be detected. The optimal
segment size is 4x4mm – 11x11mm. If object is
optically zoomed to get better image resolution, the
segment size can be smaller.

Segment size should be selected depending on the
real size of the object. The object should be divided
into equal parts to prevent smaller segments at the
edges of object.

Acknowledgment

The research is partially supported by Lithuanian
Agency for International Science and Technology De-
velopment Programmes “Eureka” project E!3807 –
„EKO-FACTORY: Intelligent Factory Production
Identification System”.

References
 [1] Agilent Technologies. Automated Optical Inspection

for Electronics Manufacturing. Article available:
http://www.home.agilent.com/agilent/editorial.jspx?cc
=EN&lc=por&ckey=205277&nid=-
536900137.0.02&id=205277.

 [2] N. Zuech. Machine Vision Software. Posted
11/03/2005. Article available: http://www.machinevi-
siononline.org/public/articles/articlesdetails.cfm?id=2
641.

 [3] Q. Gao, L. Zhang, D. Zhang, J. Yang. Comments on
"On Image Matrix Based Feature Extraction Algo-
rithms". IEEE Transactions on Systems, Man, and
Cybernetics, Part B 37, No.5, 2007, 1373-1374.

 [4] OpenCV library. Started on 14 Feb 2006. Resource
site: http://opencvlibrary.sourceforge.net/.

 [5] Bloodshed Dev-C++. Integrated Development Envi-
ronment. Resource site: http://bloodshed.net/dev
/devcpp.html.

 [6] wxDev-C++. Extension of Dev-C++. Resource site:
http://wxdsgn.sourceforge.net/.

 [7] T.A. Abbasi, M.U. Abbasi. A Proposed FPGA Based
architecture for Sobel Edge Detection Operator. J. of
Active and Passive Electronic Devices, Vol.2, 2007,
271–277.

 [8] J. Canny. A Computational Approach to Edge Detec-
tion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol.8, Nov. 1986, 639-643.

 [9] T. Lindeberg. Edge detection and ridge detection with
automatic scale selection. International Journal of
Computer Vision, 30, 2, 1998, 117-154.

[10] Xin Wang. Laplacian Operator-Based Edge Detectors.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol.29, No.5, 2007, 886-890.

[11] T. Bose. Digital Signal and Image Processing. John
Wiley & Sons, Inc. 2004.

[12] F. Mohanna, F. Mokhtarian. Performance evaluation
of corner detectors using consistency and accuracy
measures. Computer Vision and Image Understanding,
102(1), 2006, 81-94.

Received March 2008.

226

