
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2008, Vol.37, No.3

ENHANCED IMPROVEMENT OF INDIVIDUALS
IN GENETIC ALGORITHMS

Alfonsas Misevičius, Dalius Rubliauskas
Kaunas University of Technology, Department of Multimedia Engineering

Studentų St. 50, LT−51368 Kaunas, Lithuania

Abstract. In this paper, a new modification of the genetic algorithms (GAs) based on an enhanced improvement of
individuals is discussed. The basic philosophy of the proposed approach is to accelerate the convergence speed of the
genetic search by maintaining compact populations of the outstanding quality individuals – “super-individuals”. The
super-individuals are obtained by means of powerful iterated local search techniques. The increase in time for the
improvement of individuals is compensated by decreasing the size of populations. We tested our approach on a well-
known combinatorial optimization problem, the quadratic assignment problem (QAP). The results of the experiments
show that using the enhanced improvement in GAs makes it possible to achieve very encouraging performance.

Keywords: combinatorial optimization, heuristics, genetic algorithms, quadratic assignment problem.

Introduction

Genetic algorithms (GAs) have been proven to be
a powerful tool in various areas of computer science,
including machine learning, search, and optimization.
Although the principles of GAs were developed more
than thirty years ago [13], the investigations of these
algorithms still are an active area of research [12, 23,
25].

In this paper, we are concentrating on enhancing
the efficiency of GAs in the context of combinatorial
optimization problems1 [3]. A combinatorial optimiza-
tion problem can be mathematically described by a
pair (S, f), where S = {s1, s2, ..., si, ...} is a finite set of
feasible solutions (a search space) and f: S → R is a
real-valued objective (cost) function. We suppose that
f seeks a global minimum. We also assume that
solutions are represented by permutations of integer
numbers from 1 to n, i.e. S = {s | s = (s(1), s(2), ...,
s(n)), s(i) ∈ {1, ..., n}, i = 1, ..., n, s(i) ≠ s(j), i, j = 1,
..., n, i ≠ j}. Neighbouring solutions of the current
solution can be determined using a neighbourhood
function Θ: S → 2S which assigns for each s ∈ S its
neighbourhood Θ(s) ⊆ S. The solution s• is said to be
locally optimal with respect to the neighbourhood Θ if
f(s•) ≤ f(s′) for each s′ ∈ Θ(s•). There may be lots of
the locally optimal solutions over the search space.
The goal is to find a solution s ∈ S such that

1 As a typical example of the combinatorial optimization

problem, a well-known problem, the quadratic assignment
problem (QAP) [14] is considered.

s ∈ S = ; the solution s
⎭
⎬
⎫

⎩
⎨
⎧ =

∈

∇∇)(minarg| sfss
Ss

 is

called a globally optimal solution. Of course, a global-
ly optimal solution is also a locally optimal solution
with respect to any neighbourhood.

Many combinatorial optimization problems belong
to the NP-hard class and finding globally optimal
solutions for such problems within reasonable time
limits may not be possible [1,16]. Therefore, heuristic
methods like genetic algorithms are widely applied to
obtain high-quality (near-optimal) solutions in mode-
rate computation times.

The rest of this paper is structured as follows. In
Section 1, the preliminaries and general aspects of
enhanced-improvement-based genetic algorithms
(EIGAs) are briefly discussed. Some variants of the
enhanced improvement approach are concerned in
Section 2. Section 3 describes the particular imple-
mentation of our approach for the quadratic assign-
ment problem, as well as the results of the com-
putational experiments. The paper is completed with
concluding remarks.

1. Enhanced-improvement-based genetic
algorithms: general aspects

Genetic algorithms are based on imitation of the
natural process of evolution. Over generations, less
fitted organisms fail to have offspring and tend to
disappear, while more fitted individuals tend to pre-
dominate. Similarly, in the genetic algorithms, the goal

179

A. Misevičius, D. Rubliauskas

is to arrive at high quality solutions by iteratively apply-
ing the standard evolution operations: selection, cross-
over (reproduction of offspring), mutation, and
replacement (culling)2.

In most cases, the landscapes (the trajectories of
the values of the objective function) of hard combina-
torial optimization problems (like the QAP) are extre-
mely rugged with a huge number of local optima,
which is in sharp contrast to the landscapes of simple
unimodal problems (see Figure 1). In addition, good
local optima are typically found in areas (clusters)
distributed in a totally non-uniform way. All these cir-

cumstances cause severe difficulties for the local
search-based heuristics, including the genetic algo-
rithms. Indeed, the performance of the traditional GAs
depends purely on the standard genetic operations,
which are of the explorative nature, rather than im-
proving (exploitative) operators. In order to achieve
more efficiency, the additional improving algorithms
(heuristics) are usually incorporated; at the same time,
more attention is paid to the exploitative character of
the genetic process [7, 22]. The resulting GAs are
known as hybrid genetic (memetic) algorithms [20].

solutions

ob
je

ct
iv

e
fu

nc
tio

n

(c)
solutions

ob
je

ct
iv

e
fu

nc
tio

n

(a)
solutions

ob
je

ct
iv

e
fu

nc
tio

n

(b)
Figure 1. Illustrative examples of landscapes

((a) — simple unimodal problem, (b) — relatively easy problem with wide basin of attraction ("big valley"),
(c) — hard optimization problem with isolated regions of local optima)

Although the hybrid genetic algorithms enable to
get quite satisfactory solutions (see, for example,
[8,10,17]), the quality of the obtained solutions may
still be insufficient, especially when comparing to
other refined intelligent optimization techniques like
tabu search or simulated annealing. The main reason is
the loss of the genetic variability of individuals fol-
lowed by stagnation of the evolution process, as a
result of a straightforward rapid improvement of off-
spring. Of course, there is always also a danger of
falling into local optima without easy ways of es-
caping from them.2

One of the alternatives to overcome these barriers
is the development of new conceptual modifications
of the hybrid GAs oriented to the exploitative ability
of the genetic search. We propose a strategy called an
"enhanced-improvement-based genetic algorithm"
(EIGA). The central philosophy of this approach is to
increase the effectiveness of the genetic search by
concentrating, in particular, on the improvement of
individuals during the evolution process. In contrast to
the straightforward standard (hybrid) GAs that are
based on evolution of primitive biological systems, the
enhanced-improvement-based genetic algorithm rather
imitates more complex, cultural environment, where
the lifetime transformations and adaptations are very

2 In genetic algorithms, the solutions are equivalent to
individuals of a biological system and the cost of a solution
(the value of the objective function) is equivalent to the fit-
ness of an individual. For a more thorough description of the
principles and applications of genetic algorithms, the reader
is addressed to [2, 4, 6, 11, 12, 17, 21, 23-25, 29].

likely much more significant than the transmission of
the parents' genetic information.

The most important features of EIGA are as
follows.

A. EIGA operates with highly compact populations
that consist solely of the superior quality individuals
(super-individuals). This policy is completely different
from that of classical GAs, which maintain quite
large-sized populations with average or below-average
individuals.

B. The super-individuals of EIGA can be obtained
by means of powerful local-search based heuristics
like tabu search, simulated annealing, iterated local
search, etc. These heuristics might be quite time-con-
suming. However, the compensation could be
achieved by utilizing very small-sized (miniature) po-
pulations — the size of populations is sacrificed for the
increased computation time for the improvement of
individuals.

C. The enhanced improvement of individuals
needs an adequate diversification strategy to keep a
balance between exploitative and explorative capabi-
lities. The gentle mutations of the ordinary GAs would
be clearly insufficient. Instead, more deep restructu-
ring of the genotype of a population is desirable to
prevent falling back into the previous (visited) local
optima and drive the search to yet unexplored regions.

EIGA is a universal optimization methodology.
There exists a great variety in the choice of how to
design and implement the particular features (compo-
nents) of the algorithm. Some possible variants of
EIGA are briefly concerned in the next section.

180

Enhanced Improvement of Individuals in Genetic Algorithms

Population replacement/diversification

Crossover

Enhanced improvement of offspring

END

EIGA

Stopping condition met?

Improvement of parents

Creation of a super-population

Selection

NO

YES

Figure 2. Generalized structure (flowchart) of the enhanced-improvement-based genetic algorithm

The generalized structure of EIGA is shown in
Figure 2.

2. Variants of the enhanced-improvement-
based genetic algorithm

2.1. Compounded approach

It is of extreme importance that EIGA starts with
as good a population as possible. The compounded
approach (CA) especially addresses this aspect. In the
original version of CA [9], one starts with several
populations (sub-populations), where the individuals
of every population are independently optimized by
the improving algorithm. After this, a pre-defined
number of the best individuals are selected from these
populations to form the single (compounded) initial
population – similarly to migration of the best species
to an elite population.

We may also use only one initial population in-
stead of many sub-populations. We, however, have to
use a "pre-improvement" (i.e. spend much more time
by optimizing the members of the starting population).
In this case, the number of generations of a genetic
algorithm should be correspondingly decreased.

2.2. Quick improvement vs. time-expensive
improvement

The enhanced genetic search is, in fact, based on
the combination of the exploitative process (intensi-
fication) and explorative operations (diversification).
Intensification (improving algorithm) aims at focusing
the search within promising localized regions of the
search space, while diversification (crossover, muta-
tion) biases the search towards regions that are "far"
from the current focus.

There may be different needs for the balance bet-
ween intensification and diversification for different
problems. This fact must be necessarily taken into
consideration when designing EIGA for the particular
problem (or even for the particular instance of the
same problem).

If the degree of intensification, i.e. the number of
improving iterations is small (this is the case of a quick
(fast) improvement), then the convergence speed may
possibly be slow. If it is large (this is the case of a
time-expensive improvement), then the overall com-
putational time increases. Fortunately, in the last case,
the increased time for the over-intensified search can
be effectively compensated by using more compacted
populations. In addition, the number of generations
may be accordingly decreased to keep the overall run
time fixed.

2.3. Reinforced improvement

2.3.1. Improvement of parents

The underlying idea of this strategy is to apply the
improving algorithm to the selected parents. The im-
provement is followed by the crossover procedure (of
course, the improving algorithm is applied to the
produced offspring, too). With the pre-crossover im-
provement, we are a bit closer to the nature — indeed,
in the real life, only the best (young and healthy)
members of a population are usually "licensed" to
produce their offspring. The parent improvement just
takes this point into account. Some variations of this
approach are available; for example, it is possible that
only one of the parents — the worse parent — under-
goes the reinforced improvement. In this case, it is
guessed that there probably is more potential to con-
siderably improve the below-average individual than
the above-average individual which is already of good

181

A. Misevičius, D. Rubliauskas

quality. In addition, doing so prevents the significant
increase in run time of a genetic process.

2.3.2. Reinforced improvement of offspring

The other strategies are related to the enhanced im-
provement of offspring. For example, the following
rule may be proposed. After producing and improving
the offspring, it is tested if the new offspring is better
than its parents. If this is not the case, the offspring is
additionally improved by allotting a substantially in-
creased number of improving iterations. (Otherwise,
the algorithm continues in an ordinary way.) This
seems to be a quite "altruistic" policy. It also means
that some select individuals are given more chances
than the rest of the "masses".

3. Computational experiments with the
quadratic assignment problem

3.1. The quadratic assignment problem

In order to evaluate the efficiency of the proposed
algorithm, the computational experiments have been
carried out on the well-known combinatorial optimi-
zation problem, the quadratic assignment problem

(QAP) [5,14]. This problem is formulated as follows.
Given two matrices A = (aij)n×n and B = (bkl)n×n and the
set Π of permutations of the integers from 1 to n, find
a permutation π = (π(1), π(2), ..., π(n)) ∈ Π that
minimizes

∑∑
= =

=
n

i

n

j
jiijbaz

1 1
)()()(πππ .

The QAP is a classical combinatorial optimization
problem, where solutions are represented by permuta-
tions and the objective function is described according
to the above formula. The QAP is used in many appli-
cations (including computer-aided design, factory/
office layout design, network design). It is thus a very
good testing domain for different optimization me-
thods.

3.2. Enhanced-improvement-based genetic
algorithm and its variations for the QAP

The high-level description of the enhanced-im-
provement-based genetic algorithm for the QAP in a
programming language-like form is presented in
Figure 3.

procedure EnhancedImprovementBasedGeneticAlgorithm;
// input: n − problem size, A,B − flow and distance matrices, PS − population size, Ngen − # of generations,
// Noffspr − # of offspring per generation, Q − # of improving iterations, W − tabu search depth, ρ − mutation rate
// output: π∗ − best solution found (resulting solution)
begin
 create the high-quality initial population P ⊂ Π (| P | = PS) in two steps:
 (1) generate members of P in a random way;
 (2) optimize each member of P by using the iterated tabu search algorithm IteratedTabuSearch;
 ; // π)(ππ

π
z

P∈
=∗ argmin: ∗ denotes the best so far solution

 for i := 1 to Ngen do begin
 P• := ∅;
 sort the members of P according to the ascending order of the values of the objective function;
 for j := 1 to Noffspr do begin // creation of the offspring
 select parents π′, π′′ ∈ P;
 apply the iterated tabu search algorithm IteratedTabuSearch to argmax{z(π′), z(π′′)};
 apply crossover to π′ and π′′, get the offspring π′′′;
 improve the offspring π′′′ by using IteratedTabuSearch, get the improved solution π•;
 if z(π•) ≥ z(argmax{z(π′), z(π′′)}) then apply reinforced improvement to π• by using IteratedTabuSearch;
 P• := P• ∪ {π•}; if z(π•) < z(π∗) then π∗ := π• // saving the best so far solution
 endfor;
 remove Noffspr worst individuals from P ∪ PP

•, get the updated population P such that | P | = PS;
 if diversity lost then begin // population diversification
 (1) mutate the members of P by using the mutation procedure ControlledChainedMutation;
 (2) improve each mutated solution by using the improving procedure IteratedTabuSearch;
 if < z(π))((π

π
zz

P∈
argmin ∗) then π∗ :=)(π

π
z

P∈
argmin

 endif
 endfor
end.

Figure 3. High-level pseudo-code of the enhanced-improvement-based genetic algorithm for the QAP

EIGA is initiated by creation of a fixed-size start-
ing population P = {π1, π2, ..., π| P |} ⊂ Π (| P | = PS,
where PS denotes the population size). Further, the
selection, crossover, improvement, and replacement

are applied iteratively until a stopping condition is
satisfied.

For the construction of the initial population, we
use the iterated tabu search (ITS) algorithm which has

182

Enhanced Improvement of Individuals in Genetic Algorithms

been found to be greatly effective, in particular, for the
quadratic assignment problem [19]. The pseudo-code
of the ITS algorithm is given in Appendix, Figure A1.
The ITS algorithm is, in turn, based on an improved
robust tabu search (IRoTS) procedure and a special
mutation procedure called a controlled chained muta-
tion (CCM). IRoTS is similar to the robust tabu search
algorithm due to Taillard [26], but has also several
significant differences, among them, randomized tabu
criterion, "intra-intensification" and "inter-intensifica-
tion" mechanisms. The mutation procedure within the
ITS algorithm is based on random pairwise inter-
changes of the elements (genes) of a solution (chro-
mosome of an individual). The pseudo-codes of the
IRoTS and CCM procedures are shown in Appendix,
Figures A2, A3.

The functioning of the ITS algorithm is organized
according to a so-called (Q, W, 1, ρ)-scheme. In this
scheme, the number of improving iterations is equal to
Q, whereas W is the tabu search depth (i.e. the number
of iterations of the IRoTS procedure). Q may also be
thought of as a measure of the search breadth (exten-
sity), while W can be viewed as the search intensity. A
single execution of the mutation procedure takes place
every W iterations, and the mutation strength (disrup-
tiveness) is defined by the parameter ρ.

The degree of intensification (exploitation) can be
flexibly controlled, in particular, by the parameter Q.
The decreased values of Q mean that the search is less
intensified, whereas increasing the value of Q implies
the enhanced improvement of the individuals.

In the compounded approach, we radically in-
crease the number of improving iterations at the ini-
tialization phase, Qinit, to achieve higher quality initial
population. In particular, Qinit = 7Q, where Q is the
usual number of improving iterations used for the
post-crossover improvement.

For the parents selection, a rank based selection
rule [28] is applied. The offspring is produced by a
cohesive crossover proposed by Drezner [8]. Note
that, in our implementation of EIGA, we produce
Noffspr children at each generation.

The improvement is performed by the use of the
iterated tabu search algorithm, as mentioned above. By
using time-expensive improvement, we increase the
number of improving iterations by a factor of 2 (i.e.
Qtime_expens = 2Q). The parents are improved by using
the standard number of improving iterations (Q),
while, for the reinforced offspring improvement, we
use a factor of 5 (i.e. Qreinforc = 5Q) (this is due to the
fact that the reinforced offspring improvement is, in
general, more rare than the parent improvement).

During the replacement phase, the current popu-
lation is updated by the new one. We apply an elitism
strategy, that is, the individuals chosen for the next
generation are the best PS members of PPS ∪ ,

where P
offsprNP

PS is the population at the beginning of the
current generation and denotes the set of newly

created individuals (PS is the population size and
N

offsprNP

offspr denotes the number of offspring per generation).
In addition, if the diversity3 of individuals of the
obtained population is lost, then two auxiliary steps of
the population diversification take place. In the first
step, the members of the population are mutated in a
quite aggressive manner (this is done using the CCM
procedure with the maximally available mutation rate
(ρ = n)). In the second step, the mutated solutions are
transformed again into the optimized (elite) solutions.
To get even more effect, we substantially increase the
number of improving iterations during this step,
Qdiversif; in particular, Qdiversif = 5Q, where Q is the
default number of iterations.

The overall process is continued until a pre-de-
fined number of generations, Ngen, have been perfor-
med.

The following short notations will be used for
different variants of EIGA: EIGACA — compounded
approach, EIGATEI – time expensive improvement of
offspring, EIGARI1 – reinforced improvement (parents
only), EIGARI2 – reinforced improvement (offspring
only), EIGARI3 – reinforced parent-offspring improve-
ment, EIGA – combined variant (EIGA۞ ۞

 ≡ EIGACA + EIGATEI + EIGARI2).

3.3. Results of computational experiments

We have examined our genetic algorithm on the
benchmark problems taken from the quadratic assign-
ment problem library – QAPLIB [5]. The following
types of the QAP instances were tested:

a) uniform random instances (these instances are
randomly generated according to a uniform distribu-
tion; in QAPLIB, they are denoted by tai20a, tai25a,
tai30a, tai35a, tai40a, tai50a, tai60a, tai80a, and
tai100a);

b) real-life like instances (they are designed to
resemble real world problems (the distribution of the
data is not uniform); these instances are denoted by
tai20b, tai25b, tai30b, tai35b, tai40b, tai50b, tai60b,
tai80b, tai100b, and tai150b).

As a performance criterion for the algorithms, we
use the average relative deviation (δ) of the solutions
from the best known (pseudo-optimal) solution
(BKS). It is defined by the formula:

%][) (100 ◊◊−= zzzδ , where z is the average
objective function value over 10 runs of the algorithm
and ◊z denotes the best known value (BKV) of the
objective function. (BKVs are from QAPLIB [5].)

3 The diversity is measured by using the entropy of a

population. The entropy of the population P is calculated
according to the following formulas:

nneP
n

i

n

j
ij 2

1 1
log)(∑∑

= =
=Entropy ,

⎪⎩

⎪
⎨
⎧

−

=
=

otherwise,log

0,0

| |2| | PP

ij
ij ijije κκ

κ
,

where κij is the number of times that the gene i occupies the
locus j in the current population P (see also [18]).

183

A. Misevičius, D. Rubliauskas

The experiments were performed on a 1.8 GHz
computer. The values of the main control parameters
for different modifications of EIGA used in the
experiments are collected in Table 1. The results of the

comparison of different variants of EIGA (EIGACA,
EIGATEI, EIGARI1, EIGARI2, EIGARI3, EIGA ۞) are
presented in Tables 2, 3.

Table 1. Main control parameters of EIGA

Parameter Value
Random instances Real-life like instances Remarks

Population size, PS 2⋅⎣ n ⎦ ⎣ n ⎦ n is the size of the problem
Number of generations, Ngen n‡ 10n
Number of offspring per generation, Noffspr 1 PS/2
Number of improving iterations, Q 5‡‡ 5
Search depth, W n2 n
Mutation rate, ρ ⎣0.4n⎦ ⎣0.4n⎦

‡ in reinforced improvement and combined variants, the number of generations is correspondingly decreased;
‡‡ i) in EIGACA and combined variant, the number of improving iterations at the initialization phase, Qinit, is equal to 7Q;
 ii) in EIGATEI and combined variants, Qtime_expens = 2Q;
 iii) in reinforced offspring improvement mode and combined variant, Qreinforc = 5Q;
 iv) the number of improving iterations in the population diversification phase, Qdiversif, is equal to 5Q.

Table 2. Results of the comparison of different variants of EIGA for the random QAP instances

Instance N BKV δ
 EIGACA EIGATEI EIGARI1 EIGARI2 EIGARI3 EIGA ۞

Average
CPU time
per run

(sec.)
tai20a 20 703482 0.000 0.000 0.030 0.000 0.000 0.000 1.1
tai25a 25 1167256 0.007 0.041 0.041 0.000 0.000 0.000 2.6
tai30a 30 1818146 0.010 0.009 0.000 0.000 0.000 0.000 7.2
tai35a 35 2422002 0.000 0.021 0.000 0.000 0.000 0.000 16.5
tai40a 40 3139370 0.194 0.245 0.222 0.263 0.213 0.138 41
tai50a 50 4938796 0.399 0.402 0.407 0.382 0.428 0.363 140
tai60a 60 7205962 0.498 0.524 0.412 0.336 0.394 0.343 350
tai80a 80 13515450 0.446 0.476 0.383 0.410 0.372 0.371 1500
tai100a 100 21054656 0.375 0.442 0.372 0.315 0.330 0.316 5000

Table 3. Results of the comparison of different variants of EIGA for the real-life like QAP instances

Instance N BKV δ
 EIGACA EIGATEI EIGARI1 EIGARI2 EIGARI3 EIGA ۞

Average
CPU time
per run

(sec.)
tai20b 20 122455319 0.000 0.000 0.000 0.000 0.000 0.000 0.04
tai25b 25 344355646 0.000 0.000 0.000 0.000 0.000 0.000 0.27
tai30b 30 637117113 0.000 0.001 0.000 0.000 0.000 0.000 0.58
tai35b 35 283315445 0.000 0.003 0.000 0.007 0.005 0.000 1.1
tai40b 40 637250948 0.000 0.000 0.002 0.000 0.003 0.000 2.3
tai50b 50 458821517 0.000 0.009 0.010 0.007 0.011 0.001 8.3
tai60b 60 608215054 0.018 0.019 0.011 0.013 0.009 0.003 11.8
tai80b 80 818415043 0.009 0.025 0.034 0.022 0.023 0.006 63
tai100b 100 1185996137 0.048 0.099 0.083 0.067 0.072 0.045 180
tai150b 150 498896643 0.097 0.143 0.140 0.119 0.125 0.055 900

Overall, from Tables 2, 3, it could be viewed that
all our algorithm variants are very effective and fast.
We observed only slightly different behaviour of our
algorithm variants for the uniform random and real-
life like QAP instances. For example, it seems that, for
the random instances, the reinforced improvement
strategy yields quite promising results. Meanwhile, the
compounded approach demonstrates very encouraging
performance for the real-life like instances. Obviously,
the combined enhanced variant is superior to the re-
maining variants; however, it consumes some more
computational resources. It should be noted that the
reinforced-offspring-improvement approach (EIGARI2)
slightly outperforms both the parent-improvement and
combined parent-offspring-improvement strategies

(EIGARI1, EIGARI3). This means that the straight-
forward naive increasing of the improving iterations
does not necessarily leads to the better performance.

We have also performed the comparisons of our
enhanced genetic algorithm with other heuristic
algorithms. The algorithms used in the comparison are
as follows: robust tabu search (RoTS) [26], fast ant
system (FANT) [27], simple genetic algorithm (SGA)
[28], hybrid genetic-local search algorithm (HGLSA)
[15], improved hybrid genetic algorithm (IHGA) [17],
and enhanced-improvement-based genetic algorithm
(combined version – EIGA ۞). (SGA is a canonical
genetic algorithm without local improvement. The
next two GAs use local improvement procedures
(descent local search – in HGLSA, tabu search – in

184

Enhanced Improvement of Individuals in Genetic Algorithms

IHGA); however, the remaining structure of these
algorithms (especially HGLSA) is quite different from
that of EIGA.) The results of the comparison are

shown in Table 4. They confirm the excellent
efficiency of our approach when comparing with other
methods.

Table 4. Results of the comparison of EIGA with other algorithms

Instance n BKV δ
 RoTS FANT SGA HGLSA IHGA EIGA ۞

Average
CPU time
per run

(sec.)
tai20a 20 703482 0.071 1.011 7.034 0.197 0.000 0.000 1.1
tai20b 20 122455319 0.000 0.141 9.381 0.015 0.000 0.000 0.04
tai25a 25 1167256 0.153 1.543 7.008 0.500 0.007 0.000 2.6
tai25b 25 344355646 0.044 0.008 10.566 0.077 0.000 0.000 0.27
tai30a 30 1818146 0.068 1.100 6.998 0.905 0.000 0.000 7.2
tai30b 30 637117113 0.488 0.043 13.982 0.456 0.000 0.000 0.58
tai35a 35 2422002 0.222 1.321 6.943 1.245 0.005 0.000 16.5
tai35b 35 283315445 0.288 0.233 14.006 0.279 0.002 0.000 1.1
tai40a 40 3139370 0.484 1.545 6.921 1.463 0.219 0.138 41
tai40b 40 637250948 0.208 0.000 12.002 0.195 0.001 0.000 2.3
tai50a 50 4938796 0.789 1.882 7.407 1.583 0.428 0.363 140
tai50b 50 458821517 0.253 0.230 11.065 0.369 0.008 0.001 8.3
tai60a 60 7205962 0.801 1.824 8.417 1.736 0.598 0.343 350
tai60b 60 608215054 0.294 0.179 10.592 0.418 0.009 0.003 11.8
tai80a 80 13515450 0.756 1.436 9.383 1.156 0.422 0.371 1500
tai80b 80 818415043 0.290 0.325 14.734 0.448 0.019 0.006 63
tai100a 100 21054656 0.694 1.376 10.987 1.320 0.389 0.316 5000
tai100b 100 1185996137 0.197 0.099 15.086 0.208 0.040 0.045 180
tai150b 150 498896643 0.399 0.554 17.378 0.423 0.056 0.055 900

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 5 10 15 20 25

de
vi

at
io

n
of

 th
e

ob
je

ct
iv

e
fu

nc
tio

n,
 %

generations

average deviation

deviation for the best solution

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 5 10 15 20 25

de
vi

at
io

n
of

 th
e

ob
je

ct
iv

e
fu

nc
tio

n,
 %

generations

average deviation

deviation for the best solution

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 5 10 15 20 25

de
vi

at
io

n
of

 th
e

ob
je

ct
iv

e
fu

nc
tio

n,
 %

generations

average deviation

deviation for the best solution

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 5 10 15 20 25

de
vi

at
io

n
of

 th
e

ob
je

ct
iv

e
fu

nc
tio

n,
 %

generations

average deviation

deviation for the best solution

(c) (d)

(a) (b)

Figure 4. Graphical illustrations of the behaviour of different variants of EIGA for the QAP instance tai30a:

(a) basic variant (no pre-improvement, no enhanced improvement, no diversification), (b) compounded approach,
(c) enhanced (time-expensive) improvement, (d) enhanced improvement combined with population diversification
(Note. Average deviation for the entire population and deviation for the best member of the population are given)

In Figure 4, the behaviour of different variants of
EIGA for the QAP instance tai30a is graphically depic-
ted. From this figure, the impact of the enhanced im-
provement on the quality of solutions is clearly
visible. Note that, in compounded approach, one starts
from the better quality population, however the pro-
cess converges less rapidly (see Figure 4b). The effect
of population diversification can also be seen (see
Figure 4d). Also notice that, in Figure 4d, the increase

in the average deviation just corresponds to the
moment of population diversification. We have ob-
served a similar kind of behaviour for all other QAP
instances.

4. Concluding remarks
In this paper, a new conceptual modification of the

genetic algorithms entitled as an enhanced-improve-
ment-based genetic algorithm (EIGA) is proposed.

185

A. Misevičius, D. Rubliauskas

The key idea of EIGA is to speed up the convergence
of the evolutionary process by operating with the out-
standing quality individuals (super-individuals). The
enhanced improvement of individuals is coupled with
strong enough mutation to keep a proper balance bet-
ween exploitative and explorative capabilities of the
genetic algorithm. Miniature populations are used to
compensate the increase in time for the improvement
of individuals.

Our genetic algorithm is implemented and tested
on the hard combinatorial optimization problem, the
quadratic assignment problem. The results obtained
from the experiments with the random and real-life like
QAP instances show great potential of using the
superior-quality individuals in a genetic algorithm.

The further investigations of the enhanced-impro-
vement-based approach would be worthwhile. Among
other things, it would be worthy to analyze the impact
of using different kind of diversification strategies
within the enhanced-improvement-based GAs. It
might also be worthy to apply this type of genetic
search to other combinatorial optimization problems.

References
 [1] E.H.L. Aarts, J.K. Lenstra (eds.). Local Search in

Combinatorial Optimization, Wiley, Chichester, 1997.
 [2] J.E. Beasley, P.C. Chu. A genetic algorithm for the

set covering problem. European Journal of Opera-
tional Research, 1996, Vol.94, 392–404.

 [3] C. Blum, A. Roli. Metaheuristics in combinatorial
optimization: overview and conceptual comparison.
ACM Computing Surveys, 2003, Vol.35, 268−308.

 [4] T.N. Bui, B.R. Moon. Genetic algorithm and graph
partitioning. IEEE Transactions on Computers, 1996,
Vol.45, 841–855.

 [5] R.E. Burkard, S. Karisch, F. Rendl. QAPLIB – a
quadratic assignment problem library. Journal of Glo-
bal Optimization, 1997, Vol.10, 391−403 (http://www.
seas.upenn.edu/qaplib, cited 14 June 2008).

 [6] R. Chelouah, P. Siarry. A continuous genetic algo-
rithm designed for the global optimization of multimo-
dal functions. Journal of Heuristics, 2000, Vol.6, 191–
213.

 [7] D. Costa, A. Hertz, O. Dubuis. Embedding a sequen-
tial procedure within an evolutionary algorithm for
coloring problems in graphs. Journal of Heuristics,
1995, Vol.1, 105−128.

 [8] Z. Drezner. A new genetic algorithm for the quadratic
assignment problem. INFORMS Journal on
Computing, 2003, Vol.15, 320−330.

 [9] Z. Drezner. Compounded genetic algorithms for the
quadratic assignment problem. Operations Research
Letters, 2005, Vol.33, 475−480.

[10] B. Freisleben, P. Merz. A genetic local search algo-
rithm for solving symmetric and asymmetric traveling
salesman problems. In T.Bäck, H.Kitano, Z.Michale-
wicz (eds.), Proceedings of the 1996 IEEE Inter-
national Conference on Evolutionary Computation,
IEEE Press, New York, 1996, 616−621.

[11] D.E. Goldberg. Genetic Algorithms in Search, Opti-
mization and Machine Learning. Addison-Wesley,
Reading, 1989.

[12] R.L. Haupt, S.E. Haupt. Practical Genetic Algo-
rithms. Wiley-Interscience, Hoboken, NJ, 2004.

[13] J.H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, 1975.

[14] T. Koopmans, M. Beckmann. Assignment problems
and the location of economic activities. Econometrica,
1957, Vol.25, 53−76.

[15] M.H. Lim, Y. Yuan, S. Omatu. Efficient genetic
algorithms using simple genes exchange local search
policy for the quadratic assignment problem. Compu-
tational Optimization and Applications, 2000, Vol.15,
249−268.

[16] W. Michiels, E.H.L. Aarts, J. Korst. Theoretical As-
pects of Local Search. Springer, Berlin-Heidelberg,
2007.

[17] A. Misevicius. An improved hybrid genetic algorithm:
new results for the quadratic assignment problem.
Knowledge-Based Systems, 2004, Vol.17, 65−73.

[18] A. Misevičius. An entropy-based genetic algorithm. In
L.Sakalauskas, G.W.Weber, E.K.Zavadskas (eds.),
Proceedings of the 20th International Conference,
EURO Mini Conference "Continuous Optimization
and Knowledge-Based Technologies" (EurOPT '
2008), VGTU Publishing House "Technika", Vilnius,
2008, 7−12.

[19] A. Misevičius, A. Lenkevičius, D. Rubliauskas. Ite-
rated tabu search: an improvement to standard tabu
search. Information Technology and Control, 2006,
Vol.35, No.3, 187−197.

[20] P. Moscato. Memetic algorithms. In P.M.Pardalos,
M.G.C.Resende (eds.), Handbook of Applied Optimi-
zation, Oxford University Press, New York, 2002,
157−167.

[21] M. Paulinas, A. Ušinskas. A survey of genetic algo-
rithms applications for image enhancement and seg-
mentation. Information Technology and Control,
2007, Vol.36, No.3, 278−284.

[22] C.R. Reeves, C. Höhn. Integrating local search into
genetic algorithms. In V.J.Rayward-Smith, I.H.Osman,
C.R.Reeves, G.D.Smith (eds.), Modern Heuristic
Search Methods, Wiley, Chichester, 1996, 99−115.

[23] C.R. Reeves, J.E. Rowe. Genetic Algorithms: Prin-
ciples and Perspectives, Kluwer, Norwell, 2001.

[24] M.Senthil Kumar. Genetic algorithm-based propor-
tional derivative controller for the development of
active suspension system. Information Technology and
Control, 2007, Vol.36, No.1, 58−67.

[25] S.N. Sivanandam, S.N. Deepa. Introduction to Gene-
tic Algorithms. Springer,Berlin-Heidelberg-New York,
2008.

[26] E. Taillard. Robust taboo search for the QAP. Paral-
lel Computing, 1991, Vol.17, 443−455.

[27] E. Taillard. FANT: fast ant system. Tech. Report
IDSIA-46-98, Lugano, Switzerland, 1998.

[28] D.M. Tate, A.E. Smith. A genetic approach to the
quadratic assignment problem. Computers &
Operations Research, 1995, Vol.1, 73−83.

[29] T. Yamada, R. Nakano. A genetic algorithm applic-
able to large-scale job-shop problems. In R.Männer,
B.Manderick (eds.), Parallel Problem Solving from
Nature 2, North-Holland, Amsterdam, 1992, 281–290.

Received July 2008.

186

