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Abstract. In this paper, a new modification of the genetic algorithms (GAs) based on an enhanced improvement of 
individuals is discussed. The basic philosophy of the proposed approach is to accelerate the convergence speed of the 
genetic search by maintaining compact populations of the outstanding quality individuals – “super-individuals”. The 
super-individuals are obtained by means of powerful iterated local search techniques. The increase in time for the 
improvement of individuals is compensated by decreasing the size of populations. We tested our approach on a well-
known combinatorial optimization problem, the quadratic assignment problem (QAP). The results of the experiments 
show that using the enhanced improvement in GAs makes it possible to achieve very encouraging performance. 
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Introduction 

Genetic algorithms (GAs) have been proven to be 
a powerful tool in various areas of computer science, 
including machine learning, search, and optimization. 
Although the principles of GAs were developed more 
than thirty years ago [13], the investigations of these 
algorithms still are an active area of research [12, 23, 
25]. 

In this paper, we are concentrating on enhancing 
the efficiency of GAs in the context of combinatorial 
optimization problems1 [3]. A combinatorial optimiza-
tion problem can be mathematically described by a 
pair (S, f), where S = {s1, s2, ..., si, ...} is a finite set of 
feasible solutions (a search space) and f: S → R is a 
real-valued objective (cost) function. We suppose that 
f seeks a global minimum. We also assume that 
solutions are represented by permutations of integer 
numbers from 1 to n, i.e. S = {s | s = (s(1), s(2), ..., 
s(n)), s(i) ∈ {1, ..., n}, i = 1, ..., n, s(i) ≠ s(j), i, j = 1, 
..., n, i ≠ j}. Neighbouring solutions of the current 
solution can be determined using a neighbourhood 
function Θ: S → 2S which assigns for each s ∈ S its 
neighbourhood Θ(s) ⊆ S. The solution s• is said to be 
locally optimal with respect to the neighbourhood Θ if 
f(s•) ≤ f(s′) for each s′ ∈ Θ(s•). There may be lots of 
the locally optimal solutions over the search space. 
The goal is to find a solution s ∈ S such that 

                                                           
1 As a typical example of the combinatorial optimization 

problem, a well-known problem, the quadratic assignment 
problem (QAP) [14] is considered. 
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called a globally optimal solution. Of course, a global-
ly optimal solution is also a locally optimal solution 
with respect to any neighbourhood. 

Many combinatorial optimization problems belong 
to the NP-hard class and finding globally optimal 
solutions for such problems within reasonable time 
limits may not be possible [1,16]. Therefore, heuristic 
methods like genetic algorithms are widely applied to 
obtain high-quality (near-optimal) solutions in mode-
rate computation times. 

The rest of this paper is structured as follows. In 
Section 1, the preliminaries and general aspects of 
enhanced-improvement-based genetic algorithms 
(EIGAs) are briefly discussed. Some variants of the 
enhanced improvement approach are concerned in 
Section 2. Section 3 describes the particular imple-
mentation of our approach for the quadratic assign-
ment problem, as well as the results of the com-
putational experiments. The paper is completed with 
concluding remarks. 

1. Enhanced-improvement-based genetic 
algorithms: general aspects 

Genetic algorithms are based on imitation of the 
natural process of evolution. Over generations, less 
fitted organisms fail to have offspring and tend to 
disappear, while more fitted individuals tend to pre-
dominate. Similarly, in the genetic algorithms, the goal 
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is to arrive at high quality solutions by iteratively apply-
ing the standard evolution operations: selection, cross-
over (reproduction of offspring), mutation, and 
replacement (culling)2. 

In most cases, the landscapes (the trajectories of 
the values of the objective function) of hard combina-
torial optimization problems (like the QAP) are extre-
mely rugged with a huge number of local optima, 
which is in sharp contrast to the landscapes of simple 
unimodal problems (see Figure 1). In addition, good 
local optima are typically found in areas (clusters) 
distributed in a totally non-uniform way. All these cir-

cumstances cause severe difficulties for the local 
search-based heuristics, including the genetic algo-
rithms. Indeed, the performance of the traditional GAs 
depends purely on the standard genetic operations, 
which are of the explorative nature, rather than im-
proving (exploitative) operators. In order to achieve 
more efficiency, the additional improving algorithms 
(heuristics) are usually incorporated; at the same time, 
more attention is paid to the exploitative character of 
the genetic process [7, 22]. The resulting GAs are 
known as hybrid genetic (memetic) algorithms [20]. 
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Figure 1. Illustrative examples of landscapes  

((a) — simple unimodal problem, (b) — relatively easy problem with wide basin of attraction ("big valley"),  
(c) — hard optimization problem with isolated regions of local optima) 

Although the hybrid genetic algorithms enable to 
get quite satisfactory solutions (see, for example, 
[8,10,17]), the quality of the obtained solutions may 
still be insufficient, especially when comparing to 
other refined intelligent optimization techniques like 
tabu search or simulated annealing. The main reason is 
the loss of the genetic variability of individuals fol-
lowed by stagnation of the evolution process, as a 
result of a straightforward rapid improvement of off-
spring. Of course, there is always also a danger of 
falling into local optima without easy ways of es-
caping from them.2

One of the alternatives to overcome these barriers 
is the development of new conceptual modifications 
of the hybrid GAs oriented to the exploitative ability 
of the genetic search. We propose a strategy called an 
"enhanced-improvement-based genetic algorithm" 
(EIGA). The central philosophy of this approach is to 
increase the effectiveness of the genetic search by 
concentrating, in particular, on the improvement of 
individuals during the evolution process. In contrast to 
the straightforward standard (hybrid) GAs that are 
based on evolution of primitive biological systems, the 
enhanced-improvement-based genetic algorithm rather 
imitates more complex, cultural environment, where 
the lifetime transformations and adaptations are very 

                                                           
2 In genetic algorithms, the solutions are equivalent to 
individuals of a biological system and the cost of a solution 
(the value of the objective function) is equivalent to the fit-
ness of an individual. For a more thorough description of the 
principles and applications of genetic algorithms, the reader 
is addressed to [2, 4, 6, 11, 12, 17, 21, 23-25, 29]. 

likely much more significant than the transmission of 
the parents' genetic information. 

The most important features of EIGA are as 
follows. 

A. EIGA operates with highly compact populations 
that consist solely of the superior quality individuals 
(super-individuals). This policy is completely different 
from that of classical GAs, which maintain quite 
large-sized populations with average or below-average 
individuals. 

B. The super-individuals of EIGA can be obtained 
by means of powerful local-search based heuristics 
like tabu search, simulated annealing, iterated local 
search, etc. These heuristics might be quite time-con-
suming. However, the compensation could be 
achieved by utilizing very small-sized (miniature) po-
pulations — the size of populations is sacrificed for the 
increased computation time for the improvement of 
individuals. 

C. The enhanced improvement of individuals 
needs an adequate diversification strategy to keep a 
balance between exploitative and explorative capabi-
lities. The gentle mutations of the ordinary GAs would 
be clearly insufficient. Instead, more deep restructu-
ring of the genotype of a population is desirable to 
prevent falling back into the previous (visited) local 
optima and drive the search to yet unexplored regions. 

EIGA is a universal optimization methodology. 
There exists a great variety in the choice of how to 
design and implement the particular features (compo-
nents) of the algorithm. Some possible variants of 
EIGA are briefly concerned in the next section. 
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Figure 2. Generalized structure (flowchart) of the enhanced-improvement-based genetic algorithm

The generalized structure of EIGA is shown in 
Figure 2. 

2. Variants of the enhanced-improvement-
based genetic algorithm 

2.1. Compounded approach 

It is of extreme importance that EIGA starts with 
as good a population as possible. The compounded 
approach (CA) especially addresses this aspect. In the 
original version of CA [9], one starts with several 
populations (sub-populations), where the individuals 
of every population are independently optimized by 
the improving algorithm. After this, a pre-defined 
number of the best individuals are selected from these 
populations to form the single (compounded) initial 
population – similarly to migration of the best species 
to an elite population. 

We may also use only one initial population in-
stead of many sub-populations. We, however, have to 
use a "pre-improvement" (i.e. spend much more time 
by optimizing the members of the starting population). 
In this case, the number of generations of a genetic 
algorithm should be correspondingly decreased. 

2.2. Quick improvement vs. time-expensive 
improvement 

The enhanced genetic search is, in fact, based on 
the combination of the exploitative process (intensi-
fication) and explorative operations (diversification). 
Intensification (improving algorithm) aims at focusing 
the search within promising localized regions of the 
search space, while diversification (crossover, muta-
tion) biases the search towards regions that are "far" 
from the current focus. 

There may be different needs for the balance bet-
ween intensification and diversification for different 
problems. This fact must be necessarily taken into 
consideration when designing EIGA for the particular 
problem (or even for the particular instance of the 
same problem). 

If the degree of intensification, i.e. the number of 
improving iterations is small (this is the case of a quick 
(fast) improvement), then the convergence speed may 
possibly be slow. If it is large (this is the case of a 
time-expensive improvement), then the overall com-
putational time increases. Fortunately, in the last case, 
the increased time for the over-intensified search can 
be effectively compensated by using more compacted 
populations. In addition, the number of generations 
may be accordingly decreased to keep the overall run 
time fixed. 

2.3. Reinforced improvement 

2.3.1. Improvement of parents 

The underlying idea of this strategy is to apply the 
improving algorithm to the selected parents. The im-
provement is followed by the crossover procedure (of 
course, the improving algorithm is applied to the 
produced offspring, too). With the pre-crossover im-
provement, we are a bit closer to the nature — indeed, 
in the real life, only the best (young and healthy) 
members of a population are usually "licensed" to 
produce their offspring. The parent improvement just 
takes this point into account. Some variations of this 
approach are available; for example, it is possible that 
only one of the parents — the worse parent — under-
goes the reinforced improvement. In this case, it is 
guessed that there probably is more potential to con-
siderably improve the below-average individual than 
the above-average individual which is already of good 
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quality. In addition, doing so prevents the significant 
increase in run time of a genetic process. 

2.3.2. Reinforced improvement of offspring 

The other strategies are related to the enhanced im-
provement of offspring. For example, the following 
rule may be proposed. After producing and improving 
the offspring, it is tested if the new offspring is better 
than its parents. If this is not the case, the offspring is 
additionally improved by allotting a substantially in-
creased number of improving iterations. (Otherwise, 
the algorithm continues in an ordinary way.) This 
seems to be a quite "altruistic" policy. It also means 
that some select individuals are given more chances 
than the rest of the "masses". 

3. Computational experiments with the 
quadratic assignment problem 

3.1. The quadratic assignment problem 

In order to evaluate the efficiency of the proposed 
algorithm, the computational experiments have been 
carried out on the well-known combinatorial optimi-
zation problem, the quadratic assignment problem 

(QAP) [5,14]. This problem is formulated as follows. 
Given two matrices A = (aij)n×n and B = (bkl)n×n and the 
set Π of permutations of the integers from 1 to n, find 
a permutation π = (π(1), π(2), ..., π(n)) ∈ Π that 
minimizes 

∑∑
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The QAP is a classical combinatorial optimization 
problem, where solutions are represented by permuta-
tions and the objective function is described according 
to the above formula. The QAP is used in many appli-
cations (including computer-aided design, factory/ 
office layout design, network design). It is thus a very 
good testing domain for different optimization me-
thods. 

3.2. Enhanced-improvement-based genetic 
algorithm and its variations for the QAP 

The high-level description of the enhanced-im-
provement-based genetic algorithm for the QAP in a 
programming language-like form is presented in 
Figure 3. 

procedure EnhancedImprovementBasedGeneticAlgorithm; 
// input: n − problem size, A,B − flow and distance matrices, PS − population size, Ngen − # of generations, 
//           Noffspr − # of offspring per generation, Q − # of improving iterations, W − tabu search depth, ρ − mutation rate 
// output: π∗ − best solution found (resulting solution) 
begin 
  create the high-quality initial population P ⊂ Π (| P | = PS) in two steps: 
   (1) generate members of P in a random way; 
   (2) optimize each member of P by using the iterated tabu search algorithm IteratedTabuSearch; 
  ; // π)(ππ

π
z

P∈
=∗ argmin: ∗ denotes the best so far solution 

  for i := 1 to Ngen do begin 
    P• := ∅; 
    sort the members of P according to the ascending order of the values of the objective function; 
    for j := 1 to Noffspr do begin // creation of the offspring 
      select parents π′, π′′ ∈ P; 
      apply the iterated tabu search algorithm IteratedTabuSearch to argmax{z(π′), z(π′′)}; 
      apply crossover to π′ and π′′, get the offspring π′′′; 
      improve the offspring π′′′ by using IteratedTabuSearch, get the improved solution π•; 
      if z(π•) ≥ z(argmax{z(π′), z(π′′)}) then apply reinforced improvement to π• by using IteratedTabuSearch; 
      P• := P• ∪ {π•}; if z(π•) < z(π∗) then π∗ := π• // saving the best so far solution 
    endfor; 
    remove Noffspr worst individuals from P ∪ PP

•, get the updated population P such that | P | = PS; 
    if diversity lost then begin // population diversification 
       (1) mutate the members of P by using the mutation procedure ControlledChainedMutation; 
       (2) improve each mutated solution by using the improving procedure IteratedTabuSearch; 
       if < z(π))(( π

π
zz

P∈
argmin ∗) then π∗ :=  )(π

π
z

P∈
argmin

    endif 
  endfor 
end. 

Figure 3. High-level pseudo-code of the enhanced-improvement-based genetic algorithm for the QAP 

EIGA is initiated by creation of a fixed-size start-
ing population P = {π1, π2, ..., π| P |} ⊂ Π (| P | = PS, 
where PS denotes the population size). Further, the 
selection, crossover, improvement, and replacement 

are applied iteratively until a stopping condition is 
satisfied. 

For the construction of the initial population, we 
use the iterated tabu search (ITS) algorithm which has 
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been found to be greatly effective, in particular, for the 
quadratic assignment problem [19]. The pseudo-code 
of the ITS algorithm is given in Appendix, Figure A1. 
The ITS algorithm is, in turn, based on an improved 
robust tabu search (IRoTS) procedure and a special 
mutation procedure called a controlled chained muta-
tion (CCM). IRoTS is similar to the robust tabu search 
algorithm due to Taillard [26], but has also several 
significant differences, among them, randomized tabu 
criterion, "intra-intensification" and "inter-intensifica-
tion" mechanisms. The mutation procedure within the 
ITS algorithm is based on random pairwise inter-
changes of the elements (genes) of a solution (chro-
mosome of an individual). The pseudo-codes of the 
IRoTS and CCM procedures are shown in Appendix, 
Figures A2, A3. 

The functioning of the ITS algorithm is organized 
according to a so-called (Q, W, 1, ρ)-scheme. In this 
scheme, the number of improving iterations is equal to 
Q, whereas W is the tabu search depth (i.e. the number 
of iterations of the IRoTS procedure). Q may also be 
thought of as a measure of the search breadth (exten-
sity), while W can be viewed as the search intensity. A 
single execution of the mutation procedure takes place 
every W iterations, and the mutation strength (disrup-
tiveness) is defined by the parameter ρ. 

The degree of intensification (exploitation) can be 
flexibly controlled, in particular, by the parameter Q. 
The decreased values of Q mean that the search is less 
intensified, whereas increasing the value of Q implies 
the enhanced improvement of the individuals. 

In the compounded approach, we radically in-
crease the number of improving iterations at the ini-
tialization phase, Qinit, to achieve higher quality initial 
population. In particular, Qinit = 7Q, where Q is the 
usual number of improving iterations used for the 
post-crossover improvement. 

For the parents selection, a rank based selection 
rule [28] is applied. The offspring is produced by a 
cohesive crossover proposed by Drezner [8]. Note 
that, in our implementation of EIGA, we produce 
Noffspr children at each generation. 

The improvement is performed by the use of the 
iterated tabu search algorithm, as mentioned above. By 
using time-expensive improvement, we increase the 
number of improving iterations by a factor of 2 (i.e. 
Qtime_expens = 2Q). The parents are improved by using 
the standard number of improving iterations (Q), 
while, for the reinforced offspring improvement, we 
use a factor of 5 (i.e. Qreinforc = 5Q) (this is due to the 
fact that the reinforced offspring improvement is, in 
general, more rare than the parent improvement). 

During the replacement phase, the current popu-
lation is updated by the new one. We apply an elitism 
strategy, that is, the individuals chosen for the next 
generation are the best PS members of PPS ∪ , 

where P
offsprNP

PS is the population at the beginning of the 
current generation and  denotes the set of newly 

created individuals (PS is the population size and 
N

offsprNP

offspr denotes the number of offspring per generation). 
In addition, if the diversity3 of individuals of the 
obtained population is lost, then two auxiliary steps of 
the population diversification take place. In the first 
step, the members of the population are mutated in a 
quite aggressive manner (this is done using the CCM 
procedure with the maximally available mutation rate 
(ρ = n)). In the second step, the mutated solutions are 
transformed again into the optimized (elite) solutions. 
To get even more effect, we substantially increase the 
number of improving iterations during this step, 
Qdiversif; in particular, Qdiversif = 5Q, where Q is the 
default number of iterations. 

The overall process is continued until a pre-de-
fined number of generations, Ngen, have been perfor-
med. 

The following short notations will be used for 
different variants of EIGA: EIGACA — compounded 
approach, EIGATEI – time expensive improvement of 
offspring, EIGARI1 – reinforced improvement (parents 
only), EIGARI2 – reinforced improvement (offspring 
only), EIGARI3 – reinforced parent-offspring improve-
ment, EIGA  – combined variant (EIGA۞ ۞

 ≡ EIGACA + EIGATEI + EIGARI2). 

3.3. Results of computational experiments 

We have examined our genetic algorithm on the 
benchmark problems taken from the quadratic assign-
ment problem library – QAPLIB [5]. The following 
types of the QAP instances were tested: 

a) uniform random instances (these instances are 
randomly generated according to a uniform distribu-
tion; in QAPLIB, they are denoted by tai20a, tai25a, 
tai30a, tai35a, tai40a, tai50a, tai60a, tai80a, and 
tai100a); 

b) real-life like instances (they are designed to 
resemble real world problems (the distribution of the 
data is not uniform); these instances are denoted by 
tai20b, tai25b, tai30b, tai35b, tai40b, tai50b, tai60b, 
tai80b, tai100b, and tai150b). 

As a performance criterion for the algorithms, we 
use the average relative deviation (δ ) of the solutions 
from the best known (pseudo-optimal) solution 
(BKS). It is defined by the formula: 

%][ ) (100 ◊◊−= zzzδ , where z  is the average 
objective function value over 10 runs of the algorithm 
and ◊z  denotes the best known value (BKV) of the 
objective function. (BKVs are from QAPLIB [5].) 

                                                           
3 The diversity is measured by using the entropy of a 

population. The entropy of the population P is calculated 
according to the following formulas: 
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where κij is the number of times that the gene i occupies the 
locus j in the current population P (see also [18]). 
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The experiments were performed on a 1.8 GHz 
computer. The values of the main control parameters 
for different modifications of EIGA used in the 
experiments are collected in Table 1. The results of the 

comparison of different variants of EIGA (EIGACA, 
EIGATEI, EIGARI1, EIGARI2, EIGARI3, EIGA ۞) are 
presented in Tables 2, 3. 

Table 1. Main control parameters of EIGA 

Parameter Value 
Random instances Real-life like instances   Remarks 

Population size, PS 2⋅⎣ n ⎦ ⎣ n ⎦   n is the size of the problem 
Number of generations, Ngen n‡ 10n  
Number of offspring per generation, Noffspr 1 PS/2  
Number of improving iterations, Q 5‡‡ 5  
Search depth, W n2 n  
Mutation rate, ρ ⎣0.4n⎦ ⎣0.4n⎦  

‡ in reinforced improvement and combined variants, the number of generations is correspondingly decreased; 
‡‡ i) in EIGACA and combined variant, the number of improving iterations at the initialization phase, Qinit, is equal to 7Q; 
 ii) in EIGATEI and combined variants, Qtime_expens = 2Q; 
 iii) in reinforced offspring improvement mode and combined variant, Qreinforc = 5Q; 
 iv) the number of improving iterations in the population diversification phase, Qdiversif, is equal to 5Q. 

Table 2. Results of the comparison of different variants of EIGA for the random QAP instances 

Instance N BKV δ  
 EIGACA EIGATEI EIGARI1 EIGARI2 EIGARI3 EIGA ۞

Average 
CPU time 
per run

(sec.) 
tai20a 20 703482 0.000 0.000 0.030 0.000 0.000 0.000 1.1 
tai25a 25 1167256 0.007 0.041 0.041 0.000 0.000 0.000 2.6 
tai30a 30 1818146 0.010 0.009 0.000 0.000 0.000 0.000 7.2 
tai35a 35 2422002 0.000 0.021 0.000 0.000 0.000 0.000 16.5 
tai40a 40 3139370 0.194 0.245 0.222 0.263 0.213 0.138 41 
tai50a 50 4938796 0.399 0.402 0.407 0.382 0.428 0.363 140 
tai60a 60 7205962 0.498 0.524 0.412 0.336 0.394 0.343 350 
tai80a 80 13515450 0.446 0.476 0.383 0.410 0.372 0.371 1500 
tai100a 100 21054656 0.375 0.442 0.372 0.315 0.330 0.316 5000 

Table 3. Results of the comparison of different variants of EIGA for the real-life like QAP instances 

Instance N BKV δ  
 EIGACA EIGATEI EIGARI1 EIGARI2 EIGARI3 EIGA ۞

Average 
CPU time 
per run

(sec.) 
tai20b 20 122455319 0.000 0.000 0.000 0.000 0.000 0.000 0.04 
tai25b 25 344355646 0.000 0.000 0.000 0.000 0.000 0.000 0.27 
tai30b 30 637117113 0.000 0.001 0.000 0.000 0.000 0.000 0.58 
tai35b 35 283315445 0.000 0.003 0.000 0.007 0.005 0.000 1.1 
tai40b 40 637250948 0.000 0.000 0.002 0.000 0.003 0.000 2.3 
tai50b 50 458821517 0.000 0.009 0.010 0.007 0.011 0.001 8.3 
tai60b 60 608215054 0.018 0.019 0.011 0.013 0.009 0.003 11.8 
tai80b 80 818415043 0.009 0.025 0.034 0.022 0.023 0.006 63 
tai100b 100 1185996137 0.048 0.099 0.083 0.067 0.072 0.045 180 
tai150b 150 498896643 0.097 0.143 0.140 0.119 0.125 0.055 900 

 

Overall, from Tables 2, 3, it could be viewed that 
all our algorithm variants are very effective and fast. 
We observed only slightly different behaviour of our 
algorithm variants for the uniform random and real-
life like QAP instances. For example, it seems that, for 
the random instances, the reinforced improvement 
strategy yields quite promising results. Meanwhile, the 
compounded approach demonstrates very encouraging 
performance for the real-life like instances. Obviously, 
the combined enhanced variant is superior to the re-
maining variants; however, it consumes some more 
computational resources. It should be noted that the 
reinforced-offspring-improvement approach (EIGARI2) 
slightly outperforms both the parent-improvement and 
combined parent-offspring-improvement strategies 

(EIGARI1, EIGARI3). This means that the straight-
forward naive increasing of the improving iterations 
does not necessarily leads to the better performance. 

We have also performed the comparisons of our 
enhanced genetic algorithm with other heuristic 
algorithms. The algorithms used in the comparison are 
as follows: robust tabu search (RoTS) [26], fast ant 
system (FANT) [27], simple genetic algorithm (SGA) 
[28], hybrid genetic-local search algorithm (HGLSA) 
[15], improved hybrid genetic algorithm (IHGA) [17], 
and enhanced-improvement-based genetic algorithm 
(combined version – EIGA ۞). (SGA is a canonical 
genetic algorithm without local improvement. The 
next two GAs use local improvement procedures 
(descent local search – in HGLSA, tabu search – in 
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IHGA); however, the remaining structure of these 
algorithms (especially HGLSA) is quite different from 
that of EIGA.) The results of the comparison are 

shown in Table 4. They confirm the excellent 
efficiency of our approach when comparing with other 
methods. 

Table 4. Results of the comparison of EIGA with other algorithms 

Instance n BKV δ  
 RoTS FANT SGA HGLSA IHGA EIGA ۞

Average 
CPU time 
per run

(sec.) 
tai20a 20 703482 0.071 1.011 7.034 0.197 0.000 0.000 1.1 
tai20b 20 122455319 0.000 0.141 9.381 0.015 0.000 0.000 0.04 
tai25a 25 1167256 0.153 1.543 7.008 0.500 0.007 0.000 2.6 
tai25b 25 344355646 0.044 0.008 10.566 0.077 0.000 0.000 0.27 
tai30a 30 1818146 0.068 1.100 6.998 0.905 0.000 0.000 7.2 
tai30b 30 637117113 0.488 0.043 13.982 0.456 0.000 0.000 0.58 
tai35a 35 2422002 0.222 1.321 6.943 1.245 0.005 0.000 16.5 
tai35b 35 283315445 0.288 0.233 14.006 0.279 0.002 0.000 1.1 
tai40a 40 3139370 0.484 1.545 6.921 1.463 0.219 0.138 41 
tai40b 40 637250948 0.208 0.000 12.002 0.195 0.001 0.000 2.3 
tai50a 50 4938796 0.789 1.882 7.407 1.583 0.428 0.363 140 
tai50b 50 458821517 0.253 0.230 11.065 0.369 0.008 0.001 8.3 
tai60a 60 7205962 0.801 1.824 8.417 1.736 0.598 0.343 350 
tai60b 60 608215054 0.294 0.179 10.592 0.418 0.009 0.003 11.8 
tai80a 80 13515450 0.756 1.436 9.383 1.156 0.422 0.371 1500 
tai80b 80 818415043 0.290 0.325 14.734 0.448 0.019 0.006 63 
tai100a 100 21054656 0.694 1.376 10.987 1.320 0.389 0.316 5000 
tai100b 100 1185996137 0.197 0.099 15.086 0.208 0.040 0.045 180 
tai150b 150 498896643 0.399 0.554 17.378 0.423 0.056 0.055 900 
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Figure 4. Graphical illustrations of the behaviour of different variants of EIGA for the QAP instance tai30a: 

(a) basic variant (no pre-improvement, no enhanced improvement, no diversification), (b) compounded approach, 
(c) enhanced (time-expensive) improvement, (d) enhanced improvement combined with population diversification 
(Note. Average deviation for the entire population and deviation for the best member of the population are given) 

In Figure 4, the behaviour of different variants of 
EIGA for the QAP instance tai30a is graphically depic-
ted. From this figure, the impact of the enhanced im-
provement on the quality of solutions is clearly 
visible. Note that, in compounded approach, one starts 
from the better quality population, however the pro-
cess converges less rapidly (see Figure 4b). The effect 
of population diversification can also be seen (see 
Figure 4d). Also notice that, in Figure 4d, the increase 

in the average deviation just corresponds to the 
moment of population diversification. We have ob-
served a similar kind of behaviour for all other QAP 
instances. 

4. Concluding remarks 
In this paper, a new conceptual modification of the 

genetic algorithms entitled as an enhanced-improve-
ment-based genetic algorithm (EIGA) is proposed. 
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The key idea of EIGA is to speed up the convergence 
of the evolutionary process by operating with the out-
standing quality individuals (super-individuals). The 
enhanced improvement of individuals is coupled with 
strong enough mutation to keep a proper balance bet-
ween exploitative and explorative capabilities of the 
genetic algorithm. Miniature populations are used to 
compensate the increase in time for the improvement 
of individuals. 

Our genetic algorithm is implemented and tested 
on the hard combinatorial optimization problem, the 
quadratic assignment problem. The results obtained 
from the experiments with the random and real-life like 
QAP instances show great potential of using the 
superior-quality individuals in a genetic algorithm. 

The further investigations of the enhanced-impro-
vement-based approach would be worthwhile. Among 
other things, it would be worthy to analyze the impact 
of using different kind of diversification strategies 
within the enhanced-improvement-based GAs. It 
might also be worthy to apply this type of genetic 
search to other combinatorial optimization problems. 
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