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Abstract. This paper suggests that the measurement of error between mesh surfaces that are similar can be 
performed more time-efficiently than the existing methods offer. We presume that evaluation of error between similar 
surfaces does not require so many sample points and two-way distance measurement. Also we apply a different 
technique for sample point picking that involves barycentric coordinates. Tests versus other methods show that our 
method performs faster in cases of identical and similar surfaces, but also produces a less precise result. Thus, it is 
considered to be effective in applications that do not need precise measurements, like fast detection of flaws, defor-
mation or overlapping areas. 
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1. Introduction 

The measurement of error between surfaces gives 
us information how similar or different they are. It is a 
convenient way to tell if one of presumably identical 
surfaces is flawed (not identical). This is one of geo-
metrical analysis problems that lose a great deal of 
practical potential, because of relatively slow perfor-
mance when processing large amount of data. Most of 
up-to-date applications, involving such analysis, 
process a large amount of data. While memory requi-
rements can be satisfied easily, processor upgrades are 
usually expensive and are not always available. That is 
why time efficiency is the most considerable para-
meter of the analysis method. Thus we invested some 
effort to develop a method that exceeds the perfor-
mance of the existing similar algorithms. 

The existing error measurement tools, like Mesh 0 
and Metro 0, were primarily developed to evaluate 
error between surface and its simplified copy, but also 
work in general case as well. Both tools evaluate 
Hausdorff distance between certain points (samples), 
lying on compared surfaces. The mean value, acquired 
from distances, represents the level of difference. The 
precision and performance of such algorithms is 
determined by the quantity of sample points, the point 
projection method and also the distance evaluation 
technique. For example, Mesh suggests a sampling 
step, smaller than 0.5% of the diagonal length of the 
bounding box. Also it employs a triangle region check 
to ensure that the sample point is projected within the 
bounds of a face. 

In this work we introduce a new constraint to the 
problem and also expect a substantial increment of 

time efficiency at low cost of precision. Actually, we 
consider the compared surfaces to be similar. It allows 
us to use less samples (one sample per vertex) and 
simple Euclidean distance instead of Hausdorff dis-
tance. We also apply less time-consuming sample 
projection technique that involves barycentric coor-
dinates [2, 5, 6, 7]. The concept and the tests of time 
efficiency increment versus precision loss are stated in 
further sections. 

2.  Evaluation of Error between Similar 
Surfaces 

The mesh representation of the surface S can be 
compared to the other mesh surface S’ by measuring 
distances d(pi, pi’) between surfaces at certain points, 
called samples (sample points).  Sample points pi lie 
on the surface S and pi’ lie on S’, where i = 1, 2.. N; N 
denotes the number of samples on one surface. In our 
case, the surface S is called a base surface (pivot mesh 
0 – a pattern to which other surfaces are compared) 
and S’ is called a destination surface. Consequently, 
distances d(pi, pi’) represent error values between base 
and destination surfaces. High error values mean a 
significant difference between S and S’, while consi-
derably low error values suggest S and S’ to be very 
similar. Presumption that surfaces are similar allows 
setting an upper bound r for d(pi, pi’), called a search 
radius. All areas of the surface S’ containing pi’, such 
that d(pi, pi’) > r, are interpreted as dissimilar and are 
excluded from further calculations. The constraint of 
similarity is the key concept in formulating the 
problem of evaluation of error between two similar 
surfaces; it is covered in the following section.  

198 



Measuring Error between Similar Surfaces 

2.1. Surface Similarity 

There are a few requirements that must be met 
before measuring error. Whereas evaluation is perfor-
med between two surfaces represented as meshes, 
similarity is discussed in mesh–specific terms. Since 
the distance d(pi, pi’) is measured between sample 
points pi and pi’ lying on meshes, each sample is either 
a specific vertex point or a certain point on a face. 
Obviously, to obtain the smallest distance values, base 
and destination mesh elements (vertices and faces) 
must be as close to each other as possible. That is, if 
both surfaces are identical (all distances expected to 
equal zero), but oriented differently, most of distances 
will be greater than zero. Thus the position, orienta-
tion and scale of both surfaces are expected to be ade-
quate. These are called calculation space integrity 
requirements, while the calculation space is a three-
dimensional space defined by a single box bounding 
both meshes. 

Apart from calculation space integrity require-
ments, meshes must meet discretization step require-
ments that also have a great impact on the definition of 
similarity. Two meshes, acquired from the same 
surface, using a different discretization step, are 
considered to be less similar than meshes acquired 
using the same step. Also, there are topology require-
ments, involving vertex indexation. The same sur-
faces, meshed using different methods to generate 
topology, despite different enumeration and usage of 
different vertices to form edges as long as they are 
correct (no crossing edges, no duplicated vertices, 
etc.), are treated as slightly dissimilar. Therefore topo-
logy requirements can be omitted, as long as faces are 
formed using the same number of vertices. In this 
paper, faces are considered to be triangles, formed by 
three vertices. 

We need a more formal definition of the factor of 
similarity, involving distances d(pi, pi’) and the 
requirements stated before. Let a vertex v belong to 
the set of vertices V of the surface S and vj’ belong to 
the set V’ of the surface S’. The index j is such that the 
distance d(v, vj’) is a minimum possible Euclidean 
distance between v and vertices in V’: 
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The sum of such distances dv per area of the sur-
face S divided by the maximum available distance dmax 
gives a normalized value that defines how different 
two surfaces are. Thus the factor of similarity can be 
calculated from the expression: 

∑
=

++
−=

FN

i
i

iviviv F
ddd

Sd 1

321

max 3
11ς ,  (2) 

where dv1i, dv2i, dv3i are distances from the vertices of a 
face Fi and |Fi| denotes its area, also NF stands for the 
number of the faces of the surface S. The notation |S| 
represents the overall area of the surface S. Since 
surfaces must meet calculation space integrity 

requirements, dmax is calculated by taking a half length 
of the bounding box diagonal. In fact, switching base 
and destination surfaces results in a different factor of 
similarity (a non-symmetrical case – see Section 
2.2.2), therefore the minimum value is chosen: 

),min( SSSS ′′= ςςς , where SS ′ς  is acquired when S is 
a base surface and SS 'ς  is acquired when S‘ is a base 
surface. Obviously, 0.1=ς  means an ideal similarity 
when the surface is compared to itself. The situation 

0.0=ς  will never occur, unless one of surfaces is 
concentrated in one point. It is important to note that 
the distance dv is usually not the smallest Euclidean 
distance between surfaces (as mentioned before, the 
smallest distance represents error value), but it encap-
sulates information about discretization. 

2.2. Error Measurement 

Once the compared surfaces are considered to be 
similar, the error measurement algorithm can be 
defined by several steps: (1) the search of sample 
points, (2) the calculation of the distance between 
certain sample points, (3) the generalization of results. 
The search of sample points is the most complicated 
step, involving sample picking techniques. The calcu-
lation of the distance includes a simple mathematical 
processing regarding to either symmetrical or non-
symmetrical case. The generalization consists of the 
extraction of statistical values from raw data. 

2.2.1. Sample Point Search 

The search of sample points is divided into finding 
samples pi, lying on the base surface S, and finding an 
appropriate sample point pi’, lying on the destination 
surface S’, for each point pi. Since the step of 
discretization can not be infinitely small, the mesh 
representation can not offer complete accuracy for 
smooth surfaces. Thus base surface mesh is taken as it 
is, presuming it provides 100% correct information 
about geometry. All spatial information (peaks) is 
presumed to be concentrated in vertices, while points 
along faces represent only intermediate values. 
Therefore all vertices of a base surface are treated as 
required sample points , where i = 1, 
2. N

SVvp ii ⊂∈=

V; NV represents the number of vertices of base 
surface. Points p’∈ S’ are found according to two 
cases of the minimum distance between surfaces (see 
Figure 1).  

 
Figure 1. Two cases of the minimum distance: a) vertex-

vertex; b) vertex-face 
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In Figure 1 the blue line illustrates a 2D projection 
of the faces of the surface S’, the green line illustrates 
the faces of the surface S. An appropriate pi’ for each 
sample pi is found either by picking the closest vertex 
(a) vertex-vertex case), or by calculating the closest 
point on a certain face Fj’∈ S’ (b) vertex-face case). In 
vertex-face case, the point pi’ is the projection of the 
sample pi to the face Fj’ and the line pipi’ is parallel to 
the normal of the face Fj’, where Fj’ is the closest face 
to the point pi. As faces are triangles bounded by 
specific vertices, a sample point pi’ can be outside the 
triangle (represented by red lines in Figure 1 – case 
a)). Thus the closest vertex of the destination surface 
is picked as pi’ instead. Generally, the sample pi’ is the 
closest point of all vertices V’ and all projection points 
(pi to Fj’), positioned inside the triangle of the face Fj’ 
where j = 1, 2.. NF’ and NF’ denotes the number of the 
faces of the destination surface S’. The length of pipi’ 
must not be greater than the search radius.  

Since every point pi is to be projected onto a face 
Fj’ (to acquire a sample point pi’) and pi’ must be 
inside the triangle of the face Fj’, two problems must 
be solved: (1) the projection of a point and (2) the de-
termination if a point is inside a triangle. Alternatively, 
a single task can be formulated instead: the line-
triangle intersection, where the line is parallel to the 
normal of Fj’ and includes the point pi. This operation 
is performed many times during the search of sample 
points on a destination surface, thus a time efficient 
method is vital for the entire error measurement 
process. The evaluation of three different approaches 
was performed to determine the most efficient one: (1) 
the calculation of a line and a face plane intersection 
point, forming three angles with vertices of the same 
face, that sum equals 360 degrees 0; (2) the con-
version of point coordinates to barycentric coordinates 
of a triangle 0, 0, 0 and 0; (3) the calculation of a line 
and a face plane intersection point, passing a triangle 
region check 0. The barycentric coordinate method 
involves no cross product operations and requires no 
pre-calculated projection point. Therefore it proves to 
be the most effective in our case. 

The concept of barycentric coordinates enables us 
to convert 3D space coordinates of a point to the 
parametric coordinates of the specific triangle 0. 
Barycentric coordinates (u1, u2) define if the projected 
point pi’ falls within the bounds of the triangle of the 
face Fi’. Furthermore, it is simple to convert barycent-
ric coordinates back to 3D coordinates, which gives 
the position of the projection point (not the original 
point): 
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where v1’, v2’ and v3’ are three vertices of the face Fj’. 
If pi’ is located outside Fj’, then the position of pi’ is 
considered invalid and a more distant sample point 
(i.e. a vertex or other projection point) is taken as pi’. 
It is possible that there is no valid sample point within 

the search radius. Such distances d(pi, pi’) are not re-
garded in the step of the generalization of results. 

2.2.2. Distance Calculation 
Once every vertex vi of a base surface S is a 

sample point pi and has a closest point pi’ on a 
destination surface S’, the distance d(pi, pi’) can be 
calculated for every vi, where i = 1, 2.. NV; Nv is the 
number of vertices in V⊂ S. The distance d(pi, pi’) 
represents the error value and shows how far the 
vertex vi is from the destination surface (this is not 
applicable to vertices, which distance from S’ exceeds 
the search radius). The distance between two points p 
= (x, y, z) and p’ = (x’, y’, z’) is calculated from the 
expression: 

222 )'()'()'()',( zzyyxxppd −+−+−= .  (4) 

Let the function cl(vi) refer to a point pi’∈ S’, the 
closest point from the vertex vi to the surface S’. Since 
pi = vi, the distance between points pi and pi’ can be 
expressed: d(vi, cl(vi)). Let S’ stand for the base 
surface instead of S and S stand for the destination 
surface. In that case the number of sample points pi’ = 
vi’ equals the count of vertices vi’ and the distance for 
every vi’ equals d(vi’, cl(vi’)). Whereas vi ≠  vi’, vi ≠  
cl(vi’), cl(vi) ≠  vi’ and cl(vi)  ≠  cl(vi’), obviously, d(vi, 
cl(vi)) ≠ d(vi’, cl(vi’)), except when surfaces are 
identical and vi =  vi’. This gives us a general case of a 
non-symmetrical distance, when error values obtained 
from calculations for S, standing as the base surface 
(forward distance measurement) and S, standing as the 
destination surface (backward distance measurement), 
are different 0, 0 (see Figure 2).  

a) b) 
Figure 2. A non-symmetrical distance case, when surfaces 
are not similar: a) a cow with no horns; b) a cow with horns 

In general case, compared surfaces can be very 
dissimilar. Results from forward and backward dis-
tance measuring may differ greatly. In Figure 2, two 
surfaces are compared: a cow with no horns and a cow 
with horns. The green color denotes similar areas, and 
the blue color denotes dissimilar areas. The cow with 
horns treated as the base surface produces more dis-
similar area than the cow with no horns. This is called 
a non-symmetrical problem. Asymmetry arises be-
cause of the different number of mesh elements and 
the different orientation of faces. Thus the Hausdorff 
distance is employed in order to make calculation 
results symmetrical. It requires forward and backward 
calculations, and returns the maximum value as the 
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result. In case, when surfaces are similar, we presume 
that forward and backward distances are very small 
and nearly the same, so only one way calculation is 
needed. 

2.2.3. Result Generalization  

Since the distance is measured for every vertex of 
the base surface, the comparison of high resolution 
surfaces produces a large amount of data. Thus result 
generalization is necessary to provide a few values, 
representing the overall error value. The generaliza-
tion is performed by calculating the average error 
value for the area unit. Mean error (dME) and root 
mean square (dRMS) values are sufficient for this task: 
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where dv1i, dv2i, dv3i are distances from vertices of the 
face Fi, |Fi| is the area of Fi and NF is the number of 
the faces of the surface S. The notation |S| represents 
the overall area of the surface S. Mean error and root 
mean square values are non-negative and equals zero 
only if surfaces are identical. 

3. Implementation 

This section covers practical implementation of the 
suggested method for the measurement of error bet-
ween similar surfaces. The method was implemented 
using the C# .Net programming language and tested 
for performance versus the method presented in 0.  

As noted in [1, 4], a full search of the closest 
element of the surface S’ for all vertices V⊂ S, in 
general case, leads to the number of iterations equal to 
NF×NF’. Here NF stands for the number of faces F⊂ S 
and NF’ is the number of faces F’⊂ S’. Therefore to 
reduce the number of iterations, segmentation of the 
calculation space is applied. The entire calculation 
space is defined by a box that bounds compared 
meshes. Segmentation is performed by dividing the 
bounding box into smaller cubic boxes, called cells [1, 
4]. Every cell has its index and references to certain 
elements of meshes. It is obvious that elements in the 
same cell are closer to each other than elements in two 
distant cells. As we seek for the shortest distance, only 
adjacent cells must be searched. 

As it is noted in Section 2.2.1, vertices of the base 
surface S are used in the calculation of error, so they 
are assigned to certain cells. In the case of the surface 
S’, not only vertices, but also faces are assigned to 
cells. Presuming that surfaces are similar, faces are 
assigned by taking four points: vertices v1’, v2’ and v3’ 
of a face and its midpoint m’ (drawbacks will be noted 
in Section 4.5) defined as follows: 
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The segmentation of the space allows saving the 
search time, but also decreases the integrity of the 
calculation space. In fact, the distance between two 
points in neighboring cells may even be smaller than 
the distance between points in the same cell. Thus all 
cells of at least the first rank of adjacency must be 
searched (except identical surfaces). Apart from both 
surface mesh information, the algorithm requires a 
few more parameters, described in the following 
section. 

3.1. Input Parameters 

The set of input parameters includes the search 
radius (recall Section 2), the number of cells and the 
maximum rank of adjacency. The search radius (r) de-
fines how far from a given point the search is perfor-
med. In case, when space segmentation is applied, the 
search radius defines the maximum rank of the 
adjacency of cells to be searched. To simplify the 
problem, the adjacent cells are taken in the pattern of 
cube, not sphere. In practice, it is handier to define this 
parameter in an absolute value. While comparing 
shapes of differently scaled objects, it is better to 
handle r relatively to the length of the bounding box 
diagonal. 

The number of cells (NCX×NCY×NCZ) defines the 
degree of space segmentation. A higher number of 
cells reduces the number of search iterations in one 
cell, but accordingly increases the number of cells to 
be processed, as r is constant. Another input para-
meter, the maximum rank of adjacency (RCMAX) de-
notes how far from a given cell the search must be 
performed in order to find an appropriate point. The 
rank RC = R0

C = 0 means the same cell (N0
C = 1), RC 

= R1
C = 1 means all cells adjacent to it, that comprises 

N1
C = 26 cells. Actually, the formula that relates the 

rank of adjacency Ri
C to the number of cells to be 

processed Ni
C is: 

13)12( −−+⋅= i
C

i
C

i
C NRN .  (8) 

This gives the maximum number of cells to be 
processed: 

3)12( +⋅= CMAXC RN . (9) 

It is clear that even small ranks, like RCMAX = 5, 
involve a considerable amount of cells to be searched 
(NC = 1331).  

All these parameters are related, but to calibrate 
the algorithm, they must be altered separately. In this 
manner, the most effective configuration is found (see 
Section 4.1). The number of cells and the maximum 
rank are set automatically, according to the number of 
faces and the given search radius, relieving a user of 
the burden. Once the error measurement between sur-
faces is completed, the algorithm outputs the results. 
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3.2. Output Parameters 

The algorithm returns error values for all vertices 
of a base surface (Figure 3) as well as marks vertices, 
where distance was greater than the search radius r. 
Zero distance points are colored in green and points, 
where the distance equals the search radius, are 
colored in red. All intermediate colors denote 
intermediate values. The blue color marks vertices, 
where an appropriate point on other surface within the 
bounds of r has not been found. Also the algorithm 
returns several generalized values. 

 
a)  b)  

Figure 3. Comparison of two dissimilar surfaces: a) a bunny 
and a horse; b) a horse and a bunny 

Apart from the mean error (dME) and the root mean 
square (dRMS), defined in Section 2.2.3, there are a few 
more parameters that describe the error measurement 
process: iterations (it), blindness (b) and the calcula-
tion time (t). Iterations show the number of iterations 
performed during the search. Blindness evaluates the 
percentage of vertices for which the distance from a 
destination surface exceeds the search radius (blue 
vertices in Figure 3). It is important to note that blue 
vertices are not involved in the calculation of the mean 
error and the root mean square. Finally, the 
calculation time involves the duration of assignment 
to cells, the search of sample points and the calcula-
tion of distances. It is not linear dependant on itera-
tions, because iterations do not include cell prepara-
tion. Therefore the ratio t/it gives information about 
cell preparation overhead. 

In addition, the precision (Pd, Pdiag) parameter is 
evaluated. As it is noted before, error measurement 
between similar surfaces requires less sample points 
and only one-way distance measurement, while error 
evaluation between dissimilar surfaces demands more 
sample points and two way distance measurement. 
The reduction of the number of performed iterations 
shortens the calculation time, but also reduces preci-
sion. To find out how precise the suggested method is, 
the following expressions are calculated by comparing 
the acquired mean error value dME to the values of the 
forward mean error DFME and the backward mean 
error DBME, obtained by Metro tool. Precision is 
evaluated with respect to the average mean error value 
DFME+DBME/2, calculated by Metro, and to the half of 
the diagonal length of the bounding box diag/2: 
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4. Results 

In this section the suggested method is referred to 
as MESS (Measuring Error between Similar Surfaces). 
Results obtained by MESS were compared to results 
calculated by Metro 0. Metro was chosen instead of 
Mesh 0, because its developers offered a more up-to-
date version. The newest version of Metro 4.07 has 
been downloaded from 0. Also 3D models, as input 
data, were taken from 0. The performance of algo-
rithms was tested on a Pentium IV 3.20 GHz, 1 GB 
RAM machine. The following sections cover the para-
meter calibration and the analysis of the results of er-
ror measurement between identical, similar, dissimilar 
surfaces. Also Section 4.5 describes an exceptional 
case of simplified surfaces.  

4.1. Parameter Calibration 

During calibration tests that involve various num-
bers of cells (Figure 4), calculation time jumps were 
observed. The jumps occur due to the increment of 
RCMAX. A larger number of cells means a smaller cell 
size (lC – the length of the cell edge), while under the 
constant search radius, a greater number of cells must 
be searched. It is also obvious that the increment of 
the search radius radically extends the calculation time 
as well as the amplitude of jumps.   
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Figure 4. Calculation time versus the number of cells  

(red circles indicate b > 0) 

Every jump of the calculation time has its local 
minimum. Naturally, the first local minimum is the 
lowest. As described in Section 3.1, it occurs when 
RCMAX = 0, which means a great probability of mis-
calculation (b > 0), since no adjacent cells are 
searched. Therefore, the second local minimum is 
taken as the most effective. This happens when 
r=2α⋅lC. Experiments show that the value of α≈0.95 is 
suitable. Having lC and r related decreases the 
performance on relatively low search radii. Also to 
avoid segmentation overhead, the number of faces per 
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cell must be regarded. The following formula shows 
how lC is evaluated: 
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where diag is the length of the diagonal of the 
bounding box, and the constant 0.02 was chosen 
experimentally. It defines the most optimal experi-
mentally found relation between the number of faces 
and the number of cells, it can vary for specific 
surfaces. 

4.2. Identical Surfaces 

In our first experiment, various surfaces were 
compared to themselves (see Table 1). Naturally, the 
factor of similarity (ς ) equals 100%. Error measure-
ment between identical surfaces shows that lower 
resolution surfaces (containing a small amount of 
faces) were processed 2.6 times faster, while higher 
resolution surfaces were processed up to 8.3 times 
faster. 

Table 1. Error measurement between identical surfaces: the 
calculation time and the precision 

Calc. time, s Surface 
(face count) Metro  MESS  

Pd, % 

BishopH (269 568) 91.600 11.015 100 
BunnyH (186 752) 22.953 5.828 100 

Cow (5 804) 0.485 0.187 100 

4.3. Similar Surfaces 

In the tests described in this section, surfaces were 
compared to a slightly deformed version of them-
selves. The mesh surface, representing a chess bishop, 
was deformed at the top and near the base (in Figure 
5a) red spots mark-deformed areas). Also 3D model of 
a bunny had its ears vertices repositioned (Figure 5b), 
while the mesh of a cow was slightly deformed at the 
back (Figure 5c). All surfaces retained the discreti-
zation step (the number of faces– Table2). The factor 
of similarity between the compared surfaces equals 
99.9% approximately.  

 
a) 

 
b) c) 

Figure 5. Comparison of similar surfaces:  
a) a bishop; b) a bunny; c) a cow 

In the case of similar surfaces, the suggested me-
thod (MESS) performed from 2.2 up to 3.2 times faster 
than Metro. Obviously, time saving is significantly 

lower than in the case of identical surfaces. Also the 
loss of precision is quite significant in the comparison 
of cowH and CowH2 meshes (Table 2). On the other 
hand, absolute values of error between similar sur-
faces are very small, so precision, relative to a half of 
the diagonal length of the bounding box, still reaches 
99.96%. 

Table 2. Error measurement between similar surfaces: the 
calculation time and the precision 

Calc. time, s Base 
(face count) 

Destination 
(face count) Metro  MESS 

Pd  
(Pdiag), 

% 

Bishop
(7 936)

Bishop2 
(7 936) 

0.765 0.234 96
(99.99)

BunnyH  (186 
752)

BunnyH2  
(186 752) 

25.877 11.296 95
(99.99) 

CowH
(139 296)

CowH2 
(139 296) 

22.328 8.370 70
(99.96)

4.4. Dissimilar Surfaces 

In the tests described below, surfaces were com-
pared to different surfaces. A visual representation of 
the error value per vertex is given in Figure 7 and 
generalized values are shown in Table3. A chess king 
is compared to a chess pawn (Figure 7a), then surface 
of a cow is compared to a chess king (Figure 7b) and 
finally, the mesh of a horse is compared to the mesh of 
a cow (Figure 7c). The factor of similarity differs in 
each case, so it is also given in Table 3.  

a) 
 

b) c) 
Figure 6. Comparison of dissimilar surfaces:  

a) king-pawn; b) cow-king; c) horse-cow 

Table 3. Error measurement between dissimilar surfaces: 
the calculation time, the precision and the factor of simila-
rity 

Calc. time, s Base 
(face 

count) 

Destination
(face count) Metro  MESS  

Pd 
(Pdiag), 

% 

ς , 
% 

King
(8 448)

Pawn
(4 864)

4.609 10.953 98
(99.88)

93.4

Cow
(5 518)

King
(8 448)

29.532 139.92 97
(99.36)

78.0

Horse
(5 946)

Cow
(5 804)

4.766 3.640 77
(98.16)

91.6

The calculation time of MESS in two (out of three) 
cases exceeded the calculation time of Metro, since it 
is closely related to the search radius. Higher r values 
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result in a lower number of cells that pulls further off 
the optimal ratio of the number of faces to the number 
of cells. This can be avoided by altering the calib-
ration mechanism. In some cases, the measured mean 
error is very close to the average value of forward and 
backward mean distances, measured by Metro. Surpri-
singly, the method maintained decent precision, rela-
tive to the half of the diagonal length of the bounding 
box Pdiag. 

4.5. Simplified Surfaces 

Tools, like Metro 0 and Mesh 0, were developed 
primarily to compare the original surface to its 
simplified copy (i.e. a reduced number of vertices and 
faces). Our method is not suitable for fast calculation 
of the error value between surfaces that involve a 
simplified version of a mesh (recall the discretization 
step in Section 0). The usage of a limited number of 
sample points, while assigning faces to cells, causes 
high blindness values (Figure ), because the length of 
the search radius is insufficient to reach those cells. 
This situation can be avoided by either increasing the 
search radius, or increasing the number of points, 
while assigning faces to cells. Both solutions extend 
the calculation time. The comparison of a simplified 
version of the surface to the original surfaces does not 
cause this problem. 

 
Figure 7. Error measurement of a higher resolution surface 

versus a lower resolution surface 

5. Conclusion 

The suggested method demonstrated a good per-
formance, while comparing identical and similar sur-
faces. The algorithm handled the given tasks from 2.2 
up to 8.3 times faster than Metro 4.07, although in 
some cases of error measurement it was less precise 
than Metro. The error measurement between dissimilar 
surfaces, because of a high search radius, in most 
cases was processed slower, but retained quite a 
decent precision. The analysis of the results suggests 
that, under a low search radius, the method proves to 
be very effective. This is useful in fast detection of 
flaws or deformed areas, as well as overlapping areas 
of surfaces. Applying this method can save some time 
when the identity of a surface must be confirmed, 
regardless to a different topology.  Because of the lack 
of precision in the error evaluation, the method is not 
suitable for applications, where high accuracy is 
required. 
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