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Abstract. The study deals with the problem among to formally reduce a complex finite element structural model to 
a simpler one. As a sample task, the reduction of a girder model to the simpler equivalent membrane model has been 
investigated. The coincidence of model displacements at given loading conditions is employed as a criterion of mutual 
adequacy of the two models. Both static and dynamic displacements at selected reference points have been used in the 
expression of the penalty-type target function, the minimum of which indicates the best fit between the original and 
reduced models. The target function has been minimized by using the geometrical and physical parameters of a typical 
membrane element as optimization variables. The calculations have been performed in MATLAB environment. The 
validity of obtained parameters of the membrane model has been tested by investigating the original and reduced 
structures of different geometrical shapes at complex loadings. 
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1. Introduction 

Finite element techniques in principle enable to 
analyse structures of any level of complexity, includ-
ing their essentially non-linear behaviour, peculiarities 
of internal texture, etc. [11]. The models are often 
generated by the expense of very complex structures, 
huge dimensionalities and internal interactions, which 
require very large and often prohibitive amounts of 
computational resources. Building simplified (re-
duced) computational models is a common practice 
enabling to obtain solutions with practically accept-
able costs. 

 Modest size computational models of bodies the 
internal structure of which is complex and heteroge-
neous are generally obtained by using appropriate 
constitutive equations describing the material beha-
vior. In structural analysis, constitutive relations con-
nect applied stresses or forces to strains or deforma-
tions. More generally, in physics, a constitutive equa-
tion is a relation between two physical quantities that 
is specific to a material or substance, and does not 
follow directly from physical law. It is combined with 
other equations that do represent physical laws to 
solve physical problems [10]. Some constitutive equa-
tions are simply phenomenological; others are derived 
from first principles. Most commercial finite element 
systems possess large libraries of constitutive models. 
For example, LS-DYNA program accepts a wide 
range of material and equation of state models, each 
with unique number of history variables. Approxima-

tely 100 material models are implemented in LS-
DYNA. Some materials include strain-rate sensitivity, 
failure, equations of state and thermal effects [7]. 

The concept of multi-scale finite elements has been 
introduced to describe the generalization of the 
traditional finite element by prescribing it to more 
complex behavior laws than could be possible by 
using traditional constitutive equation models [4]. 

Multiscale finite element can be regarded as scale-
able, mathematical macro-model, which captures the 
response of a sub-region of the computational domain, 
in a manner seamlessly compatible with the finite ele-
ment modeling infrastructure. Such generalized finite 
elements are implemented by using domain decompo-
sition methodology. Domain decomposition methods 
solve a boundary value problem by splitting it into 
smaller boundary value problems on subdomains and 
iterating to coordinate the solution between the sub-
domains. The problems on the subdomains are inde-
pendent, which make domain decomposition methods 
suitable for parallel computing. Domain decomposi-
tion is an active, interdisciplinary research area con-
cerned with the development, analysis, and imple-
mentation of coupling and decoupling strategies in 
mathematical and computational models of natural 
and engineering systems. The simplest applications of 
the idea of domain decomposition are super elements 
in linear static problems, which are implemented in 
most finite element programs such as ANSYS, 
NASTRAN, etc. However, there are numerous studies 
of application of domain decomposition in dynamics, 
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such as component mode synthesis methods. General-
ly, computational model reduction methodologies are 
important in research area leading to efficient and rea-
sonably adequate models of various engineering sys-
tems [6]. 

Numerous engineering approaches to construction 
of multiscale finite element approaches have been 
reported in the scientific literature. As an example, the 
very high velocity contact interaction problems are 
among the most complicated in computational mecha-
nics. The failure processes that follow the interaction 
are initiated in micro-volumes considerably smaller 
than the measurements of the interacting bodies. It is 
practically impossible to model the behavior of the 
material at the micro-level – the number of degrees of 
freedom of such a model would be too large and 
unrealistic for computer resources nowadays and 
probably in the nearest future as well. In practice, 
usually the computations are performed by using 
macroscopic material models that approximately de-
scribe real processes taking place in the material. In 
[5] real and numerical shooting-through experiments 
are presented for the Nextel fabrics and the Kevlar-
epoxy shield. The micro- and mezzo-mechanical mo-
dels have been used to simulate the behavior of small 
specimens, and in comparison of the numerical results 
with experimental data the material model characte-
ristics have been found. The stiffness coefficients were 
used for determining the deviatoric stresses and by 
means of state equation of the relationship between 
the pressure and volume change was established. Fur-
ther computations have been performed by using the 
macro-mechanical model where a layered structure 
has been presented as the porous continuum. It 
enabled to disregard the real geometry of the weave 
and to present the averaged strength parameters of 
fabrics. The resulting model was axisymmetric, of 
reasonable dimension, and the obtained results were 
satisfactorily close to the experimental ones. 

As an example, a woven textile structure can be 
represented by using models of different levels of 
detalization. A woven structure composed of shell 
elements [2], simpler and more efficient combined 
particles model [3], orthotropic membrane models [1], 
have been employed in order to represent the dynamic 
behavior of textile cloths under conditions of mecha-
nical impact and penetration. A special attention and 
prospective deserve models, in which central and 
distant zones of the same structure are presented by 
different models. As in [1], the zone of ballistic inter-
action of textile structure has been modeled by using 
the complex contact model of a woven structure, 
meanwhile the distant zones have been presented by 
membrane elements. The coupling between the zones 
has been implemented by means of tie constraint. The 
main purpose of this combination was to implement 
the “almost infinite” surrounding. 

As a rule, such combined models are obtained by 
using a lot of engineering intuition and basing on pro-
found knowledge of physical properties of the 

investigated phenomena. More regular approaches are 
necessary, which enable to synthesize simplified or 
reduced models of internally complex structures. The 
parameters of the reduced model can be adjusted by 
performing the minimization of error functions, quan-
titatively indicating the non-coincidence of the res-
ponse between the simplified and reference models. 
An alternative approach can be based on neural net-
work techniques in order to synthesize the models 
exhibiting the required structural response [9]. 

Generally, simplified (reduced) models of complex 
structures can be obtained on the base of comparison 
of their response to appropriate set of excitations 
against the response of a more detailed model exposed 
to the same excitations. In this work, we demonstrate 
probably the simplest approach to the construction of 
reduced models based on minimization of penalty-
type target function representing the residual between 
the two sets of responses. The work presents the pro-
cedure and results of synthesis of the continuous 
membrane model, which imitates the behavior of 
girder structure under static, as well as, dynamic loa-
dings. 

2. Problem Formulation 

The analyzed source structure is a 2D girder, 
which is composed of tiny beam elements, and the 
approximating reduced model is a planar membrane. 
The girder consists of rods of uniform width and 
thickness. It is necessary to find the parameters of the 
equivalent orthotropic membrane. Assume that the 
membrane model presents a satisfactory approxima-
tion of the girder if the displacements of nodes at the 
same loading are obtained nearly the same by using 
both models. 

Consider rectangular plate and rectangular girder, 
which have identical dimensions (Figure 1). The gir-
der geometry is described by rod width h, rod thick-
ness b and N number of cells along the side of the 
girder. Physical parameters used in the small displace-
ment elasticity model are Young module gE  and mass 
density gρ . The membrane model is characterized by 

thickness  and orthotropic material parameters: 

Young module 
ms

mE , Poisson ratio mν , shear module 
 and mass density mG mρ . 

Membrane parameters mν , ,  and  have 
to be established, which enable the membrane to 
exhibit the same or similar behaviour in terms of 
displacements of respective element nodes at a given 
loading. 

mE mG ms

As a measure of quality of the approximation of 
the girder model by equivalent membrane model we 
employ the minimum of a penalty-type target function 
expressed as a sum of squares of differences between 
the displacements of corresponding nodes of each 
model. The static as well as dynamic behaviour of the 
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two structures has been analyzed. The schemes of two 
static loading cases are presented in Figures 2 a) and 
b), where both structures have been exposed to static 
load F and the differences of displacements of 4 selec-
ted nodes have been included into the penalty function 
expression. 

The obtained parameters of the equivalent memb-
rane shall be tested by using several freely selected 
test models (loading cases), two of which are presen-
ted in Figures 2 c) and d). 

 
a)         b) 

Figure 1. The girder (a) and equivalent steel membrane (b) 

a)          b)  
 

c)   d)  

Figure 2. The finite element models: a) 1st analysis model; b) 2nd analysis model; 
c) 1st test model; d) 2nd test model 

 In the case of dynamic analysis, the differences 
between displacements of nodes are minimized at 
selected time moments. The analysis has been perfor-
med by using ANSYS and MATLAB software. The 

displacements obtained in ANSYS have been used 
when forming the target function, which subsequently 
has been minimized by employing MATLAB function 
FMINCON(). 
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3. Analysis of Results 
3.1. Static analysis 

Further, the analysis of the statics of selected 
girder as well as parameters of membrane resulted in 
the optimization, are presented. In order to facilitate 
the optimization problem assume g mE E= , 0mν = , 

g mρ ρ=  and . Assume the girder rods being thin 
enough to maintain the mechanical features of the 
girder: 

h b=

1 1 ,
20 8 20 8m

m

b L LL b
L N N

≤ ≤ = ⇒ ≤ ≤
⋅ ⋅

where L is the side length of the rectangular element 
and N – number of divisions of the side, which is 
equal to the number of cells along the side of the 
girder. 

 In this example, numbers of divisions of the 
membrane and the girder are selected the same, 
however, generally the grid spacing may be much 
smaller than side length of the membrane element. 

,L
N

 (1) 

Consider the models in Figure 3. In the first load 
case (LC1) (Figures 3 a), b)), all nodes of the bottom 
side are fixed meanwhile all nodes of the right hand 
side are exposed to forces imitating distributed 
loading along the Ox direction. In the second load case 
(LC2) (Figures 3 c), d)) the top side is exposed to 
distributed loading along the Oy direction. 

    a)            b)   

c)   d)  

Figure 3. The finite element mesh and loads of the : 1st analysis model of the membrane  
(a) and the girder (b); 2nd analysis model of the membrane (c) and the girder(d) 

 
 

The target function is read as follows: 

2 2
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where ,  are the vectors of i-node displacements 
of the 1

1
ip 2

ip
st and 2nd models of membrane,  and  are 

the vectors of i-node displacements of the 1
1
iq 2

iq
st and 2nd 

models of girder, 2( 1)n N= +  – total number of the 
nodes of each model.  

After the minimization of (2) we obtained the 
relationship of optimum thickness of the equivalent 
membrane against the girder rod thickness b and 
against the shear module . By applying the least 
squares approximation (LSA), the quadratic and linear 
relationships between the geometric parameters of the 

ms

mG
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girder and the equivalent membrane have been estab-
lished as in Figure 4. 

a)  
 

b)  
Figure 4. The pairs of optimal parameters of the girder and 

the equivalent membrane (points marked by crosses) and the 
regression curves,(a) – square fit; (b) – linear fit 

The analytical expressions of the regression curves 
presented in Figure 4 are read as  

),(bNN) ,,(b

N ) ,(NG(N,b)G

N),,,(bs(N,b)s

m

m

4502910001326818110

6260,30929310

1088112751

10228

3

2

⋅⋅+⋅−⋅+

+⋅−⋅==

⋅+⋅==
(3) 

The estimation of derived formulas (3) against 
calculated pairs of optimum parameters at different 
values of girder parameter b and side division N is 
presented in Figure 5. 

It follows from Figure 5 that the increase of the 
mesh division parameter N, makes each rod of the 
girder thinner, see formula (1). The corresponding 
values of the thickness of the equivalent membrane 
and its shear module tend to decrease. The deviations 
of calculated optimum values of the membrane 
parameters with respect to the obtained regression (3) 
have been evaluated as  

2 2

1

( ) ( )
,

(| | | |)

i i i i
x x y y

i n
i i
x y

i

n p q p q

q q
=

⋅ − + −
Δ =

+∑
 (4) 

where n – total number of nodes of each model, 
,i i

x yp p  are x  and y  displacements of node i of the 
membrane,  are x and y displacements of node i 
of the girder. 

,i i
x yq q

 

 
Figure 5. 2D regressions of depending parameters 

Further, we present the evaluation of the derived 
dependencies (3). The number of divisions along the 
side of tested models was , and the values b of 
the girder was chosen in accordance with the formula 

38=N

N
Lb
⋅

=
8

. The parameters of equivalent membrane 

have been calculated according to formula (3). The 
same loading of the model has been used in all 
investigated cases as in Figures 2 a) and b). The 
estimation of the deviations of membrane displace-
ments from the reference displacements of the girder 
is presented in Figure 6. 

The largest deviations of the first model (Figu-
re 6 a)) are at the nodes in the vicinity of the constrai-
ned side of the membrane. On the contrary, in the 
second model (Figure 6 b)) the deviations at the nodes 
in the vicinity of the constrained side of the membrane 
are the smallest. 

The next numerical experiment is performed by 
loading the same girder and equivalent membrane by 
means of the force applied in the plane xOy at the 
corner at angle 450, (model Figure 2 c), Figure 7 a)). 
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Figure 7 b) is obtained using model (model Figu-
re 2 d)) by applying the force at the mid-side node. 

a)  

b)  
Figure 6. The estimated values of differences of 

displacements of the corresponding nodes of membrane  
and girder by using 1st (a) and 2nd (b) models (Figure 2) 

We have found the equivalent membrane for the 
selected girder by considering the extra loading cases 
(models Figure 2 c) and d)) and determined that the 
deviations of relevant nodes have increased up to 6 
times. The maximum value of relative displacement 
deviation between the two models was equal to appro-
ximately 16%. The biggest deviations of displace-
ments appear at the nodes affected by the force. In 
order to reduce the deviations we should include the 
displacements of nodes of the two models into the tar-
get function to be optimized. Formula (2) is to be 
modified by adding the summation terms representing 
the reference nodes of all investigated models. As a 
consequence, the regression formulas (3) could have 
been altered. 

The approximation of the reference girder model 
by the equivalent membrane has practical importance 
only if linear dimensions of membrane elements are 
much bigger than the distance between the adjacent 
rods of the girder. The parameter optimization proce-
dure remains essentially the same. The only difference 
is that the reference points on the girder may corres-
pond to the points between the nodes of the membrane 
and therefore the interpolation of membrane displace-
ments is necessary. 

 

a)  

b)  
Figure 7. The estimated values of differences of 

displacements of the corresponding nodes of membrane  
and girder with free selected models 

The estimations of displacement differences bet-
ween the two models in the first loading case is 
presented in Figures 8 a), b) for the coincident (N=38) 
and non-coincident (N=24) mesh, respectively. 

It can be observed that the maximum estimation 
values did not change, however, the estimations at in-
dividual nodes may change significantly (up to 6 times 
in this case). 

3.2. Dynamic analysis 

Here we extend the regression formulas deter-
mined in section 3.1 for the static analysis to the 
dynamic analysis. Time is introduced as continuous 
variable [0; ]t T∈  and optimization is performed by 
using a new target function, obtained by integrating 
expression (2) over time. Now P and Q are three-
dimensional matrices, in which nodal displacements 
are stored at all time steps  . The integration over 
time is performed numerically by using the 5

kt
th order 

Newton – Cottes quadrature formula [8]. 
The time law of the loading is read as 

2
1

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≈

g

gE
LT

ρ
. We chose the time interval of the 

transient dynamic analysis equal to the time necessary 
for the longitudinal elastic wave to travel distance L 
equal to the side length of the model. The sine-pulse 
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shaped by time law of force F we assumed to have 
period 

2F
TT ≈  , Figure 9 b). Forces at individual nodes 

have been applied ( )
12

sin2 max

−⋅
⋅⋅⋅

=
N

tFF π  . In order to 

imitate the distributed loading of the side of the 
membrane, the nodes at vertices of the rectangular 
membrane are affected by only half of the force, 
which is applied to other nodes of the membrane 
boundary. 

a)  

b)  
Figure 8. The estimated values of differences of 

displacements of respective nodes of equivalent membrane 
and reference girder at coincident meshing N=38 (a)  

and non-coincident meshing N=24 (b) 

We select 8 reference nodes (Figure 9 a)), at which 
displacement time laws of both structures are com-
pared against each other. 

In order to perform the minimization of the penalty 
type target function, the parameters of the membrane 
are calculated by using formula (3) derived for the 
static analysis case. In the simplest case we are using 
only one optimization variable as equivalent mass 
density mρ  of the membrane. The mesh 48×48 in both 
structures is employed. The numerical values of the 
parameters are presented in Table1. First column 
presents the parameter names, second column – 
formulas, by which they are calculated, and the third – 
the values of the parameters. 

We use FMINCON() function in order to deter-
mine  value. The minimization process is shown in 
Figure 10. 

∗
mρ

a)  
 

b)  
Figure 9. a) The reference nodes of the model, b) The time 

law of the loading force  

 
Figure 10. The variation of the value optimization 

parameter during iterations 

We get the equivalent membrane by having the 

density 067,2,16125
*

3
* ≈=

g

m
m m

kg
ρ
ρρ . The obtained den-

sity value of the equivalent membrane does not neces-
sarily correspond to the density of a real material. It is 
rather a mathematical approximation of the density of 
equivalent membrane, which provides good coinci-
dence of displacements of both structures. On the 
other hand, when estimating the “reality” of the equi-
valent density we should take into account the surface 
density ( mm s⋅ρ ) rather than volumetric density mρ , 
because the planar behavior of the structure is 
investigated. 
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Table 1. Parameters of the girder and equivalent membrane obtained as a result of target function minimization 

Parameter name Formula, by which parameter is 
calculated Parameter value 

gE ,Pa. − 1.5·1011

,b m. 
gN

L
⋅8

 0.00234375 

,h m. b  0.00234375 

,gρ .
m
kg

3  − 7800 

gN  − 48 

mν  − 0 

,mE Pa. gE  1.5·1011

,ms m. ),( bNs  0.000298551116 

,mG Pa. ),( bNG  1179631860 

,mρ .
m
kg

3  mρ
∗  16125 

mN  − 48 

 b)  
Figure 11. The magnitudes of displacements at several selected time moments in the girder  

(a) and equivalent membrane structure (b) 

Figure 11 presents the magnitudes of displace-
ments caused by the transient vibration process (the 
wave traveling along the Ox direction, Figure 2 a)) at 
several selected time moments in the girder (a) and 
equivalent membrane structure (b). The two graphs 
are practically equivalent to each other. Figure 12 pre-
sents errors of displacements of reference nodes. 

The obtained errors are quite small indicating that 
the regression formulas (3) are suitable for employing 
them for the dynamic analysis only with the equiva-
lent density value of the membrane being adjusted 
properly. 

4. Conclusions 

A formal approach to the reduction of a complex 
finite element structural model to the simpler one has 
been proposed. The procedure is based on the penalty 
type target function minimization in the space of pa-
rameters of the reduced model. As a sample task, the 
synthesis of the reduced equivalent continuous memb-
rane model, which imitates the behavior of the girder 
structure, has been solved.  

For the static analysis case the equivalent memb-
rane parameter set has been determined at which the 
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models worked satisfactorily in the case of coincident, 
as well as, non-coincident meshes of the reference and 
reduced equivalent structure and different loading 
configurations. Regression formulas for obtaining the 
equivalent parameters have been derived.  

The model based on the equivalent parameters ob-
tained for static analysis has been demonstrated to 
work also in the dynamic analysis case, provided that 
a proper equivalent mass density value of the equiva-
lent reduced structure is selected. 

 
Figure 12. Differences between corresponding displacements of reference nodes of the girder and membrane model 
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