
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2008, Vol.37, No.2

PRACTICAL APPLICATION OF BRTL APPROACH FOR
FINANCIAL REPORTING DOMAIN1

Olegas Vasilecas, Sergejus Sosunovas
Vilnius Gediminas Technical University

Sauletekio al. 11, LT-10223 Vilnius, Lithuania

Abstract. Business rules are evidently important for organisations as they describe how they are doing business.
Business rules templates are often proposed as a means of the specification of business rules. Business rules templates
language (BRTL) is a language developed for the specification of business rules templates. This paper documents the
findings of an experiment aimed at determining the extent to which business rules specified using BRTL can be used
within the model driven development of the financial reporting systems. The results of the experiment are compared
with the data available from the four historical projects of the same domain.

1 The work is supported by Lithuanian State Science and Studies Foundation according to High Technology Development Program Project

"Business Rules Solutions for Information Systems Development (VeTIS)" Reg. No. B-07042

1. Introduction
1.1. Business Rules and Templates

Business rules are evidently important for organi-
sations as they describe how they are doing business.
Their value has also been recognised within the infor-
mation system (IS) domain, mostly because of their
ability to make applications flexible and amenable to
change. [1].

Natural language is an initial requirement for the
business rules representation language [2]. Templates
are a popular way of knowledge representation. It al-
ready has showed its effectiveness in information ex-
traction and ontology axioms specification. Ability to
create templates can help enforce the consistent de-
ployment of rules across different business scenarios,
applications, projects and business units. Templates
allow end users to modify or create rules within a
strict set of constraints appropriate to satisfying differ-
rent user requirements, application functionality, and
security concerns.

BRTL [3] is a language developed for the speci-
fication of business rules templates. It was prototyped
in the tool BRidgeIT [4]. The language complies with
the MDA [5] requirements and is fully transformable.
It is intended that users of BRTL will develop a
custom business rules template, integrated with ORM
[6] model, specify business rules using this template
and transform these business rules to PSM.

The main tenet of MDA is to abstract away from
particular implementation technologies (platforms) by
modelling systems in a platform independent way and

automating the process of developing implementations
on particular platforms from those models. It is
intended that a Platform Independent Model (PIM) is
realized through the use of a modelling language such
as UML [2] and exists to document a technology inde-
pendent architecture for a specific computing process
at a high level of abstraction. Since the PIM is plat-
form independent no specific implementation techno-
logy is specified. Mappings from these PIMs to
Platform Specific Models (PSMs) are documented
where a specific PSM models the architecture required
for software deployment within a specific implemen-
tation technology.

1.2. Experiment Overview

The experiment is concerned with the specifica-
tion and implementation of a fragment of fully execut-
able test code. The application chosen for develop-
ment was a set of financial reports providing no tech-
nical user with the reporting information. Our main
arm in this experiment is to trace the report algorithm
specified using business rules in the language accept-
able for user to the executable SQL statement and
evaluate results.

This type of application was chosen because of its
wide distribution, reporting functionality is an eternal
part of many enterprise systems. At the same time
algorithms of these reports have to be constantly
reviewed in order to insure confidence in reporting
data. Changes to these algorithms happen on the re-
gular basis.

106

Practical Application of BRTL Approach for Financial Reporting Domain

To comply with MDA information systems deve-
lopment requirements, the experiment was initiated
through the development of a test system PIM. It is
important to note that while business rules templates
are platform independent in the respect that no
implementation technology constraints are specified
within the templates structure, they are domain speci-
fic because of the references to the domain model spe-
cified in ORM and elements of the domain language
common to the user. These templates are described
within Section 2.

A PSM consisting of the architecture required for
the implementing of the test system using a specific
set of technologies was created in parallel to the PIM.
By implementing the two models concurrently, the
PIM architecture could be used within the relation of
the PSM to create two complementing models with
inherent similarities. These similarities could be
exploited to facilitate the extraction of PIM to PSM
mappings. The PSM is described within Section 3.

Section 4 compares experiment results with histo-
rical data from the previous projects.

1.3. Goals

Figure 1 illustrates an overview of the experiment
structure in which the top and bottom entities repre-
sent the PIM and PSM respectively.

Figure 1. Domain structure

The BRTL supporting BRidgeIT tool and transfor-
mations appearing in the centre of the diagram repre-
sents the experiment objective. As well as creating
workable business rules templates for the specification
of business rules on platform independent level the
experiment is aimed at an investigation into the extent
to which transformational support for these templates
can be realized thought the utilization of element held
within BRTL and ORM. Therefore the experiment
result will consist of a documented set of PIM to PSM
transformations with indications to where extra
information is required to be presented within trans-
formable business rules specification to facilitate their
use.

Some existing research address the issues surroun-
ding code generation from business rules specifica-
tions. Armonas and Nemuraite [8] present transforma-
tion principles for business rules between PIM and
PSM levels. Vasilecas and Valatkaite [9] concentrates
on relational database trigger generation from business
rules presented as conceptual graphs. However, the
approaches proposed in these papers currently work at
a high level of abstraction. Within our paper, we aim
to present a framework through which executable part
of code can be created from a supporting PIM busi-
ness rules specification using the MDA.

2. Platform Independent Model

The Platform Independent Model (PIM) has been
developed using BRTL and ORM implementation in
prototype tool BRidgeIT.

 2.1. ORM model of the test application

ORM model in Figure 2 is used to present the
main terms and their relations from the domain of
interest. It is clearly seen that presented ORM model
can be rewritten in natural language. Its development
actually starts from the sentences that are used by the
domain experts. At the same time ORM model does
not seem close to any database model or any other
formal model, it is just a graphical representation of
every day phrases used by the domain profession and
this, as consequence, minimizes any negative reaction
of domain professionals.

BRidgeIT

Business Rules
BRTL, ORM

Existing transformational
mapping tools:

openArchitectureWare
ATL, MOFScript

SQL

The application domain model consists of the enti-
ties all together describing the reporting domain.
Report is a report term that has relations with entities
Column and Row as it is presented in Figure 2. Each
entity has a reference schema specified in the brackets
that is used to identify instance of an entity.

Moving towards analyzing the model presented in
Figure 2 it is possible to see that Row is related to
three other entities GL, ARP and CGR. These entities
are native for the domain of interest and are the acro-
nyms of terms used in the ten years old legacy system.
To be specific, GL is an acronym of “General Ledger”.
According to the same logic, CGR corresponds to
“Customer GRoup”. Unfortunately, we did not break
the ARP code; however the meaning of these three
letters is a more detailed grouping of GL records.

These entities represent terms used to describe the
algorithm of mapping rows in the data source to rows
in the report applying some aggregation operation. For
example predicate “positive balance in” prescribes to
include only positive balance of some particular GL to
the corresponding row in the report. However this
model is not enough to specify all business rules
related with our test-application financial report. It is
only the structure that will be used for the develop-
ment of business rules template. It is obvious that in
this form it is possible to present only most simple
rules, whereas complex rules requiring order of terms,

107

O. Vasilecas, S. Sosunovas

optional and mandatory elements cannot be presented
using this model.

BRidgeIT currently does not support graphical
notation of the ORM model. We have used textual
notation instead.

Report
(Report code)

GL
(Code)

CGR
(Code)

ARP
(Code)

Row
(Row code)

Report title

Row title

… Belongs to ...

Column
(Column code)

… consists of …

… has title …

2.2. BRTL specification of the test application

The next phase of development PIM is creation of
business rules template and specification of business
rules according to this template. Developed templates
will have reference to the ORM domain model
presented in the previous section.

The usual development of the template starts from
the identification of the patters in the requirements. In
our case we have used old user requirements describe-
ing report algorithm in order to develop templates.
This approach insures that domain professionals will
work with business rules statements that are close to
their everyday phrases. As a result of this activity, two
templates were created.

The first one Row name is used to relate row code
and row name. It is specified using BRTL:

SE "Row" LE ? CE "has title" LE ?.
Subject expression (BRTL keyword: SE) is used to

refer to entity Row from the ORM model. Keyword
characteristic expression (BRTL keyword: CE) is used
to denote “has title” relation between entities Row and
Row title. This template has two parameters of literal
type (BRTL keyword: LE) expressed by two question
marks. It is intended that such kind of templates would
be developed by IT professionals. Domain profession-
nals will work with user friendly presentation of the
template:

Row {?} has title {?}
After the domain professionals have provided all

necessary parameters there were developed more than
50 rules of such kind:

Row {1.} has title { Cash and Balances with
Central Banks }

Row {2.} has title { Financial Assets Held For
Trading Total }

Row {2.1.} has title {Financial Assets Held For
Trading Derivatives }

Row {2.2.} has title {Financial Assets Held For
Trading Equity Instruments }

Row {2.3.} has title {Financial Assets Held For
Trading Other Debt Instruments }

This rule seems relatively simple and naturally can
be implemented in one table of relational database.
However in relational database case we would have
rule interpretation difficulties by domain profession-
nals. The support process of business rules imple-
mented as tables and corresponding forms is more
resource intensive than in template case. This argu-
mentation seems even more assured in more compli-
cated template case (e.g. Report algorithm).

As it was mentioned before, for the experiment we
have developed two business rules templates. The
second one is called “Report algorithm”. This temp-
late is used to describe the most important part of the
system under consideration. It is an algorithm inten-
ded to map records in the data sources to the rows in
the report. The rules described using this template
represent mapping criteria, which could be presented
as logical statements. However, domain professionals
prefer to work with natural language statements
instead of the set of logical operators (e.g. “AND” and
“OR”). Report algorithm template specification in
BRTL is presented in the next paragraph:

[KE "Negative"]{paramMinus}
SE "GL" (NE ? | NE ? CE "ARP" NE ?)
 {paramGLARP}
[
 KE "All" CE "CGR" |
 [KE "except"]{parIskirCGR} CE "CGR" NE ?
]{parCGR}
(
 CE "positive balance in" LE ?|
 CE "negative balance in" LE ?|
 CE "balance in" LE ?
){parLikuciai}
[
 [KE "all these GL"| KE "GL" LE ?]
 KE "credit (negative) balance does not decrease
them but is shown in row" LE ?

… Has title …

... has …

.. has ..

… negative balance in …

… positive balance in …

… balance in …

Figure 2. Domain ORM model

108

Practical Application of BRTL Approach for Financial Reporting Domain

 [
 KE "except account" NE ?
 KE "which negative balance is showed in "
LE ?]
]
[KE "except GL" NE ? KE "for which the result is
shown"]
[KE "additionally" NE ? KE "negative balance with
opposite sign"]

This template differently from the previous one
has optional (BRTL keyword “[“ and “]”) and
mandatory (BRTL keyword “(“ and ”)”) elements. The
notation is very close to the regular expression nota-
tion. However differently from regular expressions
business rules specified using this template are stored
in the ECORE model format and are acceptable for
MDA transformations. Additionally, in order to simp-
lify specification of transformation it is possible to
define names of the composite rule parts within the
template definition (BRTL keyword “{“ and ”}”). For
example, elements paramGLARP and paramMinus
allow direct reference to the rule parts which simpli-
fies specification of transformation.

The template report algorithm allows specifying
over 500 different variations of business rules. We are
presenting only the most typical variations of business
rules defining report algorithm as it is specified by the
user:

GL {1111} ARP {3333} All CGR balace in {1.}

GL {4568} ARP {4789} balance in {1.} credit
(negative) balance does not decrease them but is
shown in row {24.}

GL {15987} ARP {4567} CGR {245} balance in
{1.} credit (negative) balance does not decrease them
but is shown in row {24.}

The first example rule says: GL {1111} ARP
{3333} all CGR positive balances are presented in
report row {1.}. It means that the generated code must
select only positive records from the data source that
have GL account number 1111 ARP number 3333 and
any client group.

It should be noted that in our case one rule is not
enough to provide algorithm for all rows in the report.
Even more, business rules corresponding to one
template are not enough to generate even the simplest
report, it is necessary to use a set of business rules that
correspond to different templates. ORM in this case
serves as a structure that allows connection of busi-
ness rules specified using two different templates,
however satisfying one common functional purpose.

3. Platform Specific Model and
Transformations

Existing data warehouse can be used in order to
provide data source for test system report. According
to MDA, code generation should be executed in two
steps. During the first step business rules are
transformed to the SQL select statement ECORE mo-
del. The second step is when generation of code from
SQL ECORE model is executed.

In order to execute the first MDA transformation
step two components are needed. The first one is SQL
select statement metamodel, which will be used for
the experiment, and the second one is model to model
transformation tool [10]. At the moment of experiment
there was no known mature enough SQL select state-
ment metamodel available. Therefore the new one
very simplified metamodel presented in Figure 3 was
developed.

Figure 3. SQL select statements simplified metamodel

109

O. Vasilecas, S. Sosunovas

Our developed simplified SQL metamodel is very
close by its nature to the UML and OCL metamodels.
The main element of the metamodel is select expres-
sion (metaclass SelectExp) which is contained within
SQLModel metaclass. Select expression in our meta-
model has only basic elements select list items, basic
SQL formulas (metaclass OperationCallExp) and
references to the database structures metaclasses
ColumnCallExp and TableCallExp. Naturally we need
to develop very basic metamodel of data base
elements, they are represented by metaclasses Table
and Column. Despite its simplicity this SQL metamo-
del is enough to experiment with code generation from
business rules specified in templates for the test
application.

Despite of the fact that actual SQL code is gene-
rated only on the second transformation step, the main
decisions regarding test system implementing code are
made during the first step when model to model trans-
formation is specified. Therefore it is feasible to dis-
cuss the code resulting from the business rules trans-
formation.

First of all, ORM model will be transformed to the
SQL model. Mapping ORM model in transformation
rules is necessary in order to provide rules with infor-
mation about relying database structure, in particular
tables and column names.

As it was mentioned before, test-system report will
be using existing data warehouse structures, therefore
the only thing that should result from transformations
is correct select statement. The main intention of this
statement is to map existing records to report rows
according to business rules. Resulting SQL statement
is trivial by its nature; however because of the big
number of rules (more than 500) its support is rather
complicated.

For the purpose of the experiment MOFScript [11]
model to code generation tool was used. The MOF-
Script language has been submitted as a proposal for a
model to text transformation language to the OMG.
MOFScript is based on the QVT-Merge [12] specifi-
cation in terms of metamodel extensions and lexical
syntax. A MOFScript rule is a specialisation of QVT-
Merge operational mappings, and MOFScript const-
ructions are specialisations of QVT-Merge construc-
tions. The main goals with the language are to provide
ease-of-use, minimize additions to QVT, as well as
providing flexible mechanisms for generating text
output.

4. Evaluation of the Results

In the previous sections we have described our ex-
periment environment and technical implementation
results. As it was mentioned earlier, one of the pur-
poses of the experiment was to evaluate BRTL based
MDA transformational approach comparing it to the
alternative ones. For this purpose we have selected
experiment domain that satisfies three requirements:
• Not difficult to implement.
• Many business rules > 500.
• Availability of historical data from the previous

implementation projects.
After the execution of the experiment we have

recorded the time spend for the development of
different test–system artifacts. It was compared to the
historical data collected in one of the Lithuanian
enterprises and presented in Table 1. In this section we
will briefly describe historical scenarios, provide
comments on the activities and time necessary to
implement them.

Table 1. Comparison of the results in one enterprise case

Custom repository with code generation Scenario
Activities

No code
generation No interface Forms Universal

BRTL
(experiment)

Tool development 0 h. 160 h. 320 h. 600 h. 3200 h.
Tool customisation 0 h. 0 h. 0 h. 50 h. 20 h.
Specification of algorithm
- Domain professional 80 h. 80 h. 80 h. 80 h. 100 h.
- IT professional 50 h. 50 h. 50 h. 50 h. 20 h.
Coding of algorithm 160 h. 120 h. 120 h. 700 h. 60 h.
- Lines of code to load
repository 4000 3000 3000 5500 0

- Lines of code to generate
code 0 3000 3000 6000 1200

Algorithm change (typical one change)
- Domain professional 0,5 h.
- IT professional 1 h. 2 h. 0 h. 1 h. 0 h.
Change delivery to the
production environment 40 h. 40 h. 0 h. 40 h. 0 h.

Algorithm change
(not typical) 20 h. 40 h. 40 h. 80 h. 15 h.

110

Practical Application of BRTL Approach for Financial Reporting Domain

The figures presented here should be understood as
a relative measures and they might change from pro-
ject to project and are highly depending on the qualifi-
cation of the IT and domain professionals. The results
might be different applying different software deve-
lopment process methodologies. However, we still
believe that presented results are relevant because of
the implementation of the scenarios in the same orga-
nization over the 3 years and without any explicit acti-
vity towards improving software development pro-
cess. It is possible to state that these figures are accu-
rate and are affected only by the technology being
used.

The scenarios presented in Table 1 are the natural
evolution towards increasing the effectiveness of IT
professional’s work and development of the tool that
simplifies the life of the IT professionals. We do not
distinguish separate group of graphical reporting solu-
tions here because at the moment of experiment none
of the major business intelligence consultants provi-
ded us with any solution that contradicts or affect our
presented list. Even more, it is possible to make an
assumption based on our experience with several
Lithuanian enterprises that our presented list is a typi-
cal list of the most often implemented scenarios.

No code generation scenario is a straightforward
approach to the problem. First of all, domain profess-
sionals specify in natural language algorithm for the
report. Then IT professionals implement this algo-
rithm in some programming language. After some
testing phase the solution is presented for domain pro-
fessionals. The change to the report requires repeating
of all before mentioned steps.

Custom repository. This scenario includes develop-
ment of data base based solution for the storage of
report algorithm. This repository structure is suitable
for the storage of only one type of algorithm that is
described in the natural language. This scenario in-
cludes three possible options available in our analysed
enterprise: No interface, Forms, Universal. Con-
sequently, this scenario includes development of the
software component implementing code generation
from the repository.

No interface scenario omits the development of the
interface available for the user. Database table storing
an algorithm are edited by the IT professionals or
advanced domain professionals.

Forms scenario involves development of the user
interface in order the domain professionals would be
able to enter and modify the algorithm.

Universal scenario differently from the previous
two includes development of the universal repository.
The developed repository was the most complex one
comparing with No interface and Forms scenarios.
The designed repository was intended to store any
possible algorithm that could be specified within one
SQL statement. Actually, this universal repository
structure reminds simplified abstract syntax of SQL
language with financial reporting domain specific

additions. In order the user could use the user interface
of Universal scenario he should have the basic
understanding of SQL syntax and the principles the
code was generated from repository. These require-
ments for the user qualification were too high and as
consequence user interface was never used by the
domain professionals. After unsuccessful implementa-
tion of user interface non MDA domain specific lan-
guage (DSL) was developed. This DSL was used to
load algorithm to the repository. The main challenge
with DSL is to develop a language that is common to
the domain professionals and is not too technical. In
our analyzed enterprise, developed DSL was not
accepted by the user, and as a result it was used solely
by IT professionals.

BRTL scenario includes development of the busi-
ness rules templates, specification of the business
rules and MDA based model-to-model and model-to-
code transformation as it was described in the pre-
vious sections.

The development time of all scenarios is separated
to the following activities:

Tool development activity includes development
of the algorithm storage tool. In no code generation
scenario no tool was developed. In repository scenario
this activity includes development of the repository
database. In BRTL scenario it includes development of
BRidgeIT. It is important to note that BRidgeIT differ-
rently from homemade repositories can be used to
describe different types of templates from different
domains.

Tool customisation activity is not applicable in No
code generation and Repository scenario, because re-
pository is created already customized for the particu-
lar algorithm. In BRTL case this includes development
of templates.

Specification of algorithm activity is applicable for
all scenarios. The time necessary to execute this acti-
vity is distributed between Domain professionals and
IT professionals. This activity includes specification
of algorithm by domain professionals and its under-
standing by IT professional. In BRTL scenario only
domain professional is responsible for the specifica-
tion of algorithm using predefined templates.

Domain professional is understood as a person
familiar with domain application, however without
programming background. This means that he has no
experience of algorithms specification using program-
ming language as well as using any formal language.
Usually they are persons with understanding of trivial
logical operations such as “AND” and “OR” but
having difficulties with formulation of complex
logical statements consisting of more than 3 such
logical operations in the expressions with brackets.
They also have no experience identifying logical con-
tradictions within such statements.

IT professional is understood as a person with
programming experience, with no or very little under-
standing of the domain logic and how it should be

111

O. Vasilecas, S. Sosunovas

implemented in the information system. We do not
distinguish systems analysts responsible for the re-
quirement specification as it is intended that IT profes-
sionals have some basic background of requirements
analysis.

Coding of algorithm is actual implementation of
algorithm in programming language. In no code gene-
ration scenario this activity represents the classical
coding of algorithm using some programming lan-
guage. In custom repository scenario this activity
includes development of code generation software
component and loading the repository with first ver-
sion of the algorithm. Because of the usage of stan-
dard code generation facility in BRTL scenario
specification, model-to-model and model-to-code
transformations take less time. The usage of well-
formed templates provides IT professionals with al-
ready “filed repository”.

Algorithm change activity represents a typical
change of the algorithm. In our analyzed algorithm it
was addition/removal of one account to the row in the
report. This requires relatively many effort of domain
professional in Forms scenario. This is because of the
necessity to browse over the number of complicated
forms in order to make corrections. In BRTL scenario
this activity requires to edit one particular business
rule. However it takes a significant amount of time of
IT professional in No code generation scenario. In
repository scenario the time is used to fill in the
repository, in no interface scenario to change repo-
sitory manually, in Universal to edit DSL specification
and update repository.

Change delivery to the production environment is
a typical activity in the enterprises having several
environments (e.g. development, testing and produc-
tion) and implementing changes on the regular basis
during service windows. In our analyzed enterprise the
changes were applied to the production environment
once in two weeks. Therefore in some scenarios when
the code migration to the production was necessary
there is a time lag of 40 working hours.

Tool change activity is necessary to introduce
changes that were not foreseen at the tool develop-
ment time. In no code generation scenario it took 20
hours to change implementing code. In Repository
scenario it was necessary to change repository struc-
ture and, as a consequence, edit code generation soft-
ware component. In BRTL case modification of temp-
late and transformation specifications was necessary.

5. Conclusions

The results of the present experiment demonstrate
the viability of the solutions based on the business
rules templates, BRTL and MDA transformations.
Comparison of the experiment results with historical
records demonstrates that BRTL solution is feasible to
use in a very often changing environments. Only in
this case relatively high technology development price

can be compensated by the saved time. BRTL
technology allows reallocating change prices from IT
professional to domain professionals.

The comparison of experiment results with real
project historical data clearly demonstrate that MDA
based solutions is economically not feasible in rarely
changing environments and in case of availability of
cheap development resources. Code generation from
the repository scenario is feasible when the changes
are typical and code generation from repository is not
too complex. However this scenario is not flexible
enough to support any algorithm change, even addi-
tion of one column to the condition is a time con-
suming task. Making these repositories more flexible
and universal results in increased development time
and makes development of code generation very
complex task. In this case MDA based tools allow re-
duce development time significantly.

However the wide usage of the transformations as
it was recognised by the previous researches [13, 14]
is limited by the lack of metamodels for the majority
of programming languages. Anyone who is planning
to implement transformation solution based on the
language not belonging to the most popular one is re-
quired to develop it own metamodel. The other less
flexible opportunity is to execute direct transformation
of business rules in templates to code omitting model-
to-model transformation.

References
 [1] M. Bajec, M. Krisper. A methodology and tool sup-

port for managing business rules in organizations.
Information Systems, Vol.30 , Issue 6, 2005, 423- 443.
URL: http://infolab.fri.uni-lj.si/marko/downloads/
Bajec%20&%20Krisper%202004,%20A%20methodol
ogy%20and%20tool%20support%20for%20managing
%20BR%20in%20organisations.pdf, retrieved on
2007.12.10.

 [2] T. Morgan. Business Rules and Information Systems.
Addison Wesley, 2002.

 [3] S. Sosunovas, O. Vasilecas. Precise notation for busi-
ness rules templates databases and information sys-
tems. Proceedings of the 7th International Baltic
Conference on Databases and Information Systems,
Technika, 2006, 55-60.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumbe
r=1678474, retrieved on 2007.12.16.

 [4] S. Sosunovas. Open source tool Bridge IT.
http://isl.vtu.lt/BRidgeIT/, retrieved on 2007.12.08.

 [5] J. Miller, J. Mukerji. Model Driven Architecture
(MDA). Technical Report, ormsc/2001-07-01.

 [6] T. Halpin. Object-Role Modeling (ORM/NIAM). P.
Bernus, K. Mertins and G. Schmidt (Eds.): Handbook
on Architectures of Information Systems, Springer-
Verlag, 1998, http://www.orm.net/pdf/springer.pdf,
retrieved on 2007.12.09

 [7] OMG. UML 2.0 Superstructure Final Adopted
specification. OMG document: ptc/03-08-02,OMG,
2003, URL: http://www.omg.org/cgi-bin/doc?ptc/03-
08-02.pdf, retrieved on 2007.12.15.

112

Practical Application of BRTL Approach for Financial Reporting Domain

 [8] A. Armonas, L. Nemuraite. Traceability of Business
Rules in Model Driven Development. Proceedings of
the 6th International Conference on Perspectives in
Business Information Research – BIR'2007, Jyrki
Nummenmaa and Eva Söderström (eds.), 2007, 22-36.
http://www.cs.uta.fi/reports/dsarja/D-2007-13.pdf,
retrieved on 2007.12.21.

 [9] I. Valatkaite, O. Vasilecas. A Conceptual Graphs Ap-
proach for Business Rules Modeling. Advances in
Databases and Information Systems, LNCS 2796,
2003, 178-189.

[10] F. Jouault, I. Kurtev. Transforming Models with
ATL. Proceedings of the Model Transformations in
Practice Workshop at MoDELS 2005, Montego Bay,
Jamaica, (January, 2008). http://www.sciences.univ-
nantes.fr/lina/atl/bibliography/MTIP05, retrieved on
2007.12.24.

[11] Softeam. MOFScript Revised Submission to the MOF
Model to Text Transformation RFP. OMG document
ad/05-05-04, http://www.omg.org/cgi-bin/apps/
doc?ad/05-05-04.pdf, retrieved on 2007.12.21.

[12] QVT-Merge Group. Revised submission for MOF 2.0
Query/Views/Transformations RFP version 2.0. OMG
document id ad/2005-03-02, http://www.omg.org
/cgibin/apps/doc?ad/05-03-02.pdf, retrieved on
2007.12.15.

[13] J. Bézivin, S. Hammoudi , D. Lopes, F. Jouault. An
Experiment in Mapping Web Services to Implemen-
tation Platforms. Technical report: 04.01, LINA,
University of Nantes.
http://lina.atlanstic.net/documents/RR_pdfs/RR-LINA-
0401.pdf, retrieved on 2007.12.15.

[14] M. Staron, L. Kuzniarz, L. Wallin. A Case Study on
a Transformation Focused Industrial MDA Realiza-
tion. 3rd Workshop in Software Model Enginee-
ring, http://www.metamodel.com/wisme-2004/present
/7.pdf, retrieved on 2007.12.15.

Received February 2008.

