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Abstract. An insurance activity model that allows to evaluate the duration of the negative surplus is presented in 

this paper. Assuming the surplus process as continuing if ruin occurs, we consider how long this process will stay 
below zero. The compound Poisson continuous time surplus process is used for the model development. Analytical 
formulas are obtained for estimating the expected value and the dispersion of both the number and the duration times 
of negative surpluses when individual claims amount is distributed according to the Gamma (α, β) distribution, with 
free choice of the parameters α ∈N and β  > 0. We use simulation to verify the soundness of the analytical results, 
evaluating the performance of surplus process under various factors. An aggregate approach has been used for creation 
of formal description of insurer’s business process. The characteristics of the duration of the negative surplus are 
computed and compared with the theoretical approximate values obtained from the analytical expressions. 
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1. Introduction  

In this paper the insurance activity is described 
according to the classical risk theory [1], which con-
centrates on the claim process, looking first at a 
claim number, then at a distribution of a claim size 
and finally putting these two together into an 
aggregate claims amount process. Premiums are 
fixed and re-ceived at every time moment. 
Therefore, the financial operations of an insurer can 
be viewed in terms of se-ries of cash inflows and 
outflows. While a lot of work done in calculating 
ruin probability [2], we are inter-ested in finding 
some characteristics of how long the surplus will 
stay below the zero level. Fig. 1 shows a typical 
sample path of the surplus process consid-ered for 
this problem.  

In the figure, Tis the time of ruin, uis the initial 
surplus, yis the severity of ruin, T1is the duration of 
the first negative surplus, Ti (i>1) is the duration of 
any other negative surplus. Let TT=T1+T2++TN 

represent the total time that surplus process U(t)is 
below zero, Nbeing the stochastic number of 
negative surpluses.  

The model is based upon earlier work of Reis 
[3]. In author’s paper, the case when ruin occurs is 
con-sidered. In such situation, the insurance 
company can  

 

Figure 1. The surplus process 
ask for a credit to support some negative surplus for 
some time with the hope that the process will 
recover in the future. The problem is to consider 
whether this recovery is quick or not. The author 
derived the mo-ment generating function of the 
duration of negative surplus or the time to recovery, 
given that ruin oc-curs. Since the surplus can fall 
below the zero level more than once, Reis presented 
formulas for the dis-tribution of the number of 
periods, as well as the total duration, of negative 
surpluses. He demonstrated two examples, 
considering Exponential and Gamma(2,β)individual 
claims amount distributions, resulting ex-plicit 
formulas for the target variables. The extension of 
Reis model is to account for the situation where the 
individual claims amount is distributed according to 
the Gamma(α,β),α,β>0distribution. This deci- 
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sion was based on the fact that some kind of insurance
loss data typically has a skewed distribution, but does
not include extremely high claims which would re-
quire the use of long tailed distributions like, for ex-
ample, the Pareto distribution [4]. Changing the pa-
rametersα andβ freely, Gamma distribution func-
tion may be used to approximate the loss data of such
type. The duration of the negative surplus depends on
the severity of ruin, which means that the distribution
of the severity of ruin should be known. In article of
Sutiene [5], following Reis work it was shown how
the conditional distribution of severity of ruin can
be derived when the special cases of Gamma(α, β)

claims amount are considered. In this paper the for-
mula of the conditional distribution function of sever-
ity of ruin that can be used for all combinations of pa-
rametersα ∈ N andβ > 0 is derived. Using of QR
approximate method described in the book [6] solves
the estimation problem of the adjustment coefficient
for finding the polynomial roots that lay on the right
half of the complex plane.

An important aspect of any kind of performance
modeling study is to validate the model and its im-
plementation to whatever extent is possible. One way
to do this is to study a system using more than one
model, for example, both simulation model and an-
alytical model. Following this, the characteristics of
the duration of negative surplus from the analytical
model are compared with the results from detailed
simulation. The simulation model is developed using
piece-linear aggregates [7], modeling only premiums
income and claims outcome, and then reporting about
the duration times of the negative surpluses.

The rest of the paper is organized as follows. In
Section 2 the basic model that describes insurance
company activity is presented. Some assumptions are
given according to the purpose of this paper. In Sec-
tion 3 the distribution of severity of ruin, as well as
moments, are derived using Gamma(α, β), α ∈ N,
β > 0 individual claims amount. In Section 4 some
features concerning the duration of negative surplus,
that is, its moment generating function and respec-
tive moments, such as the expected value and the dis-
persion are presented. In Section 5 the aggregate ap-
proach that has been used for the creation of a for-
mal description of insurer’s business activity is pre-
sented. The following section relates to the analyti-
cal model validation performed by using an appropri-
ate simulation model. Investigation of these models is
performed, determining the factors that have effect on
the duration of period of the negative surplus.

2. Description of the basic model

In this section, a mathematical model for the
variations in the amount of an insurer’s surplus over
an extended period of time is presented. By surplus
we will mean the excess of some initial fund plus
premiums collected over claims paid. This is a con-
venient mathematical, but not accounting definition
of surplus. Formally, the insurer’s surplus process
{U(t); t ≥ 0} at timet can be expressed as

U(t) = u+ ct− S(t),

whereu = U(0) is the initial surplus,c is the pre-
mium rate per unit time,{S(t); t ≥ 0} is an aggre-
gate claims process up to timet. It is assumed that
aggregate claims are described according to the com-
pound Poisson process with Poisson parameterλ and
are given by

S(t) = X1 +X2 + · · · +XN(t),

where{Xi}
∞

i=1 is a sequence of independently and
identically distributed random variables:Xi is the
amount of theith claim and has the density func-
tion p(x), the cumulative distribution functionF (x)
with F (0) = 0, the moment generating function
MX(z) for (at least)z ≤ 0 and thekth moment about
the originE[Xk]; {N(t); t ≥ 0} is a Poisson claims
number process with Poisson parameterλ. Fig. 2 il-
lustrates the aggregate claims process graphically; ev-
ery occurrence which gives rise to a claim is presented
by a vertical step, the height of the step indicating the
amountXi of the claim. In the basic model we have
thatS only changes by means of jumps, which occur
at random times, the heights of the successive jumps
are not all equal to one, instead being a sequence
of independently and identically distributed random
variables. Time is measured to the right along the
horizontal axis and the altitudeS(ti) of the stepped
line at timeti shows the total amount of claims dur-
ing the time interval(0, ti]. The expected value and

Figure 2. A sample path of claim process
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the dispersion of aggregate claims are expressed by
E[S(t)] = E[X ]λt andD[S(t)] = E[X2]λt, respec-
tively.

In the development of the basic model we con-
sider Gamma(α, β), (α ∈ N, β > 0) individual
claims amount of the form

FX(x) = 1 − e−βx

α−1
∑

k=0

(βx)k

k!
,

(1)

E(Xk) =
α(α+ 1) · · · (α+ k − 1)

βk
, k ≥ 1,

and premium income rate, as follows

c = (1 + θ)λα/β. (2)

With assumptionc > λE(X), we claim that per unit
time premium income exceeds the expected outgo,
i.e. the surplus will go to infinity with probability one,
whether or not ruin occurs. Note that the surplus in-
creases linearly except at those times when claims oc-
cur. Then the surplus declines by the amount of the
claim. As illustrated in Fig. 1, the surplus might be-
come negative at certain times. Considering the dura-
tion of this negative surplus we need the conditional
distribution function ofY , the severity of ruin. The
ruin is said to occur if the insurer’s surplus reaches the
zero level. It is also necessary to calculate the proba-
bility of ruin that depends from both the initial surplus
u and the deficity at time of ruin. The derivation of
these probabilities is given in the next section.

3. The distribution of severity of ruin

The time of ruin is denoted asT and defined by

T =

{

inf(t : U(t) < 0),
∞ if U(t) ≥ 0 for all t > 0.

Letψ(u) be the probability of ruin with initial surplus
u. This probability is given by

ψ(u) = Pr[T <∞|U(0) = u].

The complementary probability is known as the sur-
vival probability δ(u) = 1 − ψ(u). The probability
that ruin occurs with the initial surplusu and that the
deficit at the time of ruin is less thany is given by

G(u, y) = Pr[U(t) > −y, ∀t : t ≥ 0|U(0) = u],

and its density is denoted asg(u, y). Taking the rela-
tion H(u, y) = G(u, y)/ψ(u), we will get the con-
ditional distribution function of severity of ruin pro-
vided ruin has occurred. Its density function is de-
noted ash(u, y). In general, it is not possible to find

explicit solution for ruin probabilitiesψ(u), which
results that probabilitiesG(u, y) andH(u, y) don’t
have explicit solutions, also. This problem is solved
by finding an approximate formula for the probabil-
ity of ruin, where the adjustment coefficientR plays
a key role in the case of light-tailed claims. The value
of R can be derived from the following equation

e−cRMN(t)(logMX(R)) = 1, (3)

whereM(z) denotes the moment generating func-
tion. If there exists a non-zero solution to the Eq. (3),
we call suchR as an adjustment coefficient. Consid-
ering given assumptions of the basic model, Eq. (3)
leads to

1 + (1 + θ)
α

β
R =

(

β

β −R

)α

, (4)

whereθ ∈ (0, 1] is the insurer’s premium loading fac-
tor. As noted by Gerber and Shiu [8], in the right half
of the complex plane the solutions of Eq. (4) play an
important role in calculating ruin probabilities . Per-
forming a changew = β/(β − R), we get the poly-
nomial

wα + wα−1 + · · ·+ w − α(1 + θ) = 0, α ∈ N,
(5)

which is of degreeα, with (α + 1) real number coef-
ficients. In the field of complex numbers, the polyno-
mial in Eq. (5) has at mostα roots. If the parameter
α = 1, 3, we use exact formulas for finding rootsw.
In caseα > 3 we construct the following matrix

P =















−1 −1 · · · −1 α(1 + θ)
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0















,

where values are taken from polynomial Eq. (5). In
such way the problem of finding polynomial roots
w is reduced to calculating eigenvalues of the ma-
trix P , using the QR method described by Plukas [6].
Complex roots make a couple, because the polyno-
mial coefficients are real. Ifα is an even number, we
have two real rootsw: one of them is negative, an-
other is larger than one. Ifα is an odd number, we
have one real rootw, larger than one. That’s why we
claim that in the right half of the complex plane, the
Eq. (4) hasα adjustment coefficients. We denote these
α roots byR1, R2, . . . , Rα . Using the formula taken
from Karpickaite [9] and considering Gamma(α, β),
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(α ∈ N, β > 0) individual claims amount, the ap-
proximate formula for probability of ruin is

ψ(u) =

α
∑

k=1

Cke
−Rku, (6)

whereCk = θ/((β/(β −Rk))α+1 − (1 + θ)) is con-
stant,k = 1, α . For exponentially distributed claims
the Eq. (6) yields an exact result. In other cases it is an
approximate formula ofψ(u) asu → ∞. Setting ex-
treme values of the initial surplusu = 0 andu = ∞,
the well known relations follow

ψ(0) =
1

1 + θ
, ψ(∞) = 0.

In the paper of Karpickaite [10] the exact method was
used to derive the analytical formula for the density
of ruin probabilityg(u, y). Employing her result and
applying the model assumptions, it follows

g(u, y) =
β

αθ
e−βy

α
∑

k=1

Ck

(

α−1
∑

m=0

(

−βm

+
βα

(β −Rk)α−m

)

ym

m!

)

e−Rku. (7)

The probability function is then given by

G(u, y) =
β

αθ

α
∑

k=1

Ck

(

αθ

β
+ e−βy

(

−
αθ

β

+

α−1
∑

s=1

α−1
∑

m=s

(

βs−1

−
βα−m+s−1

(β −Rk)α−m

)

ys

s!

))

. (8)

In this paper we used the agreements that
∑0

k=1(·) =
0 and0! = 1. To simplify Eqs. (7) and (8), we used
the following identity derived during the investigation

−α

β
+

α
∑

k=1

βk−1

(β −R)k
≡
αθ

β
, ∀R.

The formulas (7) and (8) are rather complicated and
need to be checked for correctness. It is well-known
that

g(0, y) =
1

(1 + θ)E(X)
(1 − FX(y)),

G(0, y) =
1

(1 + θ)E(X)

∫ y

0

(1 − FX(x)) dx,

from which it follows

g(0, y) =
β

(1 + θ)α
e−βy

α−1
∑

k=0

(βy)k

k!
, (9)

G(0, y) =
1

(1 + θ)
−

e−βy

α(1 + θ)

×

α−1
∑

k=0

βk

k!

(

yk

+

k
∑

m=1

(−1)mk(k − 1) · · · (k −m+ 1)

(−β)m

× yk−m

)

, (10)

given thatFX(x) = 1 − e−βx
∑α−1

k=0
(βx)k

k! and
E(X) = α

β
. Settingu = 0 for Eqs. (7) and (8) yields

g(0, y) =
β

αθ
e−βy

α
∑

k=1

Ck

(

α−1
∑

m=0

(

−βm

+
βα

(β −Rk)α−m

)

ym

m!

)

, (11)

G(0, y) =
β

αθ

α
∑

k=1

Ck

(

αθ

β

+ e−βy

(

−
αθ

β
+

α−1
∑

s=1

α−1
∑

m=s

(

βs−1

−
βα−m+s−1

(β −Rk)α−m

)

ys

s!

))

, (12)

which in analytical form can‘t be compared with Eqs.
(9) and (10), respectively. Finding identities

α
∑

k=1

Ck ≡
1

1 + θ
,

α
∑

k=1

Ck

(β −Rk)m
≡

1

βm
, ∀m = 1, 2, . . . , α,

result the same formulas as (9) and (10). Settingy =
∞ in Eq. (12) leads to the following

G(0,∞) =

α
∑

k=1

Ck =
1

1 + θ
.

During this procedure we checked the expressions of
ruin probabilities under extreme values and obtained
well known relations that verify the derived formulas.
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Thus, we can derive the conditional distribution func-
tion of severity of ruin for Gamma(α, β) individual
claims amount that is given by

H(u, y) =
β

αθ

α
∑

k=1

Ck

(

αθ

β
+ e−βy

(

−
αθ

β

+

α−1
∑

s=1

α−1
∑

m=s

(

βs−1

−
βα−m+s−1

(β −Rk)α−m

)

ys

s!

))

× e−Rku
/

α
∑

k=1

Cke
−Rku,

and its respective density as

h(u, y) =
β

αθ
e−βy

α
∑

k=1

Ck

(

α−1
∑

m=0

(

−βm

+
βα

(β −Rk)α−m

)

ym

m!

)

× e−Rku
/

α
∑

k=1

Cke
−Rku.

After some simplification, we get the equivalent ex-
pressions for the distribution of severity of ruin

H(u, y) =
α−1
∑

k=0

Aα−k(u)

(

1 − e−βy

k
∑

m=0

(βy)m

m!

)

,

(13)
and

h(u, y) = e−βy

α−1
∑

k=0

Aα−k(u)
β(k+1)

k!
yk, (14)

where

Az(u) =

∑α

k=1 Ck(−1 + ( β

β−Rk

)z)e−Rku

αθ
∑α

k=1 Cke−Rku
,

z = 1, α.

The conditional distribution of severity of ruin in
Eqs. (13) and (14) can be expressed as a mixture of
Gamma(1, β), Gamma(2, β), . . . ,Gamma(α, β) dis-
tributions, with weight functionsAα(u), Aα−1(u),
. . . , A1(u), respectively. When the initial surplusu =
0, we getAα(0) = Aα−1(0) = · · · = A1(0) =
1/α. When u increases, weight functions stabilize
very quickly, the “Gamma(1, β) part” tends to have
more importance and the “Gamma(α, β) part” tends

to have less importance. For large values ofu the
weight function can be expressed as

Az(∞) =
−1 + ( β

β−R
)z

αθ
, z = 1, α,

whereR denotes the real value of adjustment coeffi-
cient in case ofα is an odd number. Ifα is an even
number,R is the lesser value of two real adjustment
coefficients. Using the distribution mixture Eq. (14),
the moment generating function (as well as moments)
of severity of ruin can be derived

MY (z;u) =
α−1
∑

k=0

Aα−k(u)

(

β

β − z

)k+1

, z < β,

E[Y |u] =
1

β

α−1
∑

k=0

(k + 1)Aα−k(u),

E[Y 2|u] =
1

β2

α−1
∑

k=0

(k + 1)(k + 2)Aα−k(u),

D[Y |u] =
1

β2

(

α−1
∑

k=0

(k + 1)(k + 2)Aα−k(u)

−

(

α−1
∑

k=0

(k + 1)Aα−k(u)

)2)

.

4. Duration of the negative surplus

The results from previous section are used in de-
riving formulas for the moments of duration of nega-
tive surplus. We will consider the duration of the first
negative surplus, duration of any other negative sur-
plus and total duration of negative surpluses. As noted
by Reis [3], the moment generating function of the
first negative surplus can be considered as a function
of the moment generating function of the severity of
ruin. Then the moment generating function ofT1 is
given by

MT1
(f(s);u) =

α−1
∑

k=0

Aα−k(u)

(

β

β − f(s)

)k+1

,

wheref(s) is some function ofs such that

s = f(s)c− λ
(

MX(f(s)) − 1
)

.

The properties of the functionf(s) can be found in
Gerber’s work [11]. Then, we get the expected value
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and the dispersion of the first negative surplus

E[T1|u] =
1

αλθ

α−1
∑

k=0

(k + 1)Aα−k(u),

D[T1|u] =
(α+ 1)

(αλ)2θ3

α−1
∑

k=0

(k + 1)Aα−k(u)

+
1

(αλθ)2

(

α−1
∑

m=0

(m+ 1)(m+ 2)

×Aα−m(u)

−

(

α−1
∑

l=0

(l + 1)Aα−l(u)

)2)

.

Note that these characteristics depend onu, in gen-
eral. In dealing with other possible durationsTi, i > 1
of negative surpluses, Reis notices that there is no
need of finding the distribution of the severity of ruin,
because it is possible to calculate its moments as func-
tions of the moments of the individual claims amount.
Since the initial surplus is depleted during the first
negative surplus, we can use the same formulas as in
calculating the duration of the first negative surplus
except that the initial surplus should be considered
equal to zero. We have then the moment generating
function of any other negative surplus

MTi
(f(s); 0) =

1

α

α−1
∑

k=0

(

β

β − f(s)

)k+1

,

and the moments

E[Ti|u = 0] =
(α + 1)

2αλθ
,

D[Ti|u = 0]

=
(α+ 1)(6(α+ 1) + 4θ(α+ 2) − 3θ(α+ 1))

12(αλ)2θ3
.

While considering the total duration of the negative
surplus, we will discuss the special case ofu = 0
and the general case ofu ≥ 0. We begin with the
random number of negative surpluses. While the ini-
tial surplus is considered to be zero, the numberN of
negative surpluses follows the geometric distribution,
with the moment generating function

MN (z;u = 0) =
θ

1 + θ − ez

and the moments

E[N |u = 0] =
1

θ
,

D[N |u = 0] =
1 + θ

θ2
.

In special case the total duration timeTT of negative
surpluses has a compound geometric distribution. It
then follows

MTT (s;u = 0) = αθ
/

(

α(1 + θ)

−

α−1
∑

k=0

(

β

β − f(s)

)k+1
)

,

E[TT |u = 0] =
(α+ 1)

2αλθ2
,

D[TT |u = 0] =
(α+ 1)(9(α+ 1) + 4θ(α+ 2))

θ2
.

In general case ofu ≥ 0, the moment generating
function of the numberN of negative surpluses has
the following form

MN (z;u) = 1 −

α
∑

k=1

Cke
−Rku

+
θez

∑α

m=1 Cke
−Rmu

1 + θ − ez
,

and the expected value and the dispersion of negative
surpluses is as follows

E[N |u] =
1 + θ

θ

α
∑

k=1

Cke
−Rku,

D[N |u] = (1 + θ)

α
∑

k=1

Cke
−Rku

×

((

1 −

α
∑

m=1

Cme
−Rmu

)

× (1 + θ) + 1

)

/

θ2.

As noted by Reis, in general case theTi’s are not inde-
pendently and identically distributed, because the first
negative surplus occurs with probabilityψ(u), u ≥ 0.
Thus, any other negative surplus will occur with prob-
ability ψ(0). The moment generating function of total
duration time is obtained as

MTT (s;u)

= 1 − αθ

α
∑

k=1

Cke
−Rku

×

(

α−1
∑

m=0

Aα−m(u)

(α(1 + θ) −
∑α−1

l=0 ( β

β−f(s) )
l+1)

×

(

β

β − f(s)

)m+1
)

.
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The moments of total duration time of negative sur-
pluses are expressed as

E[TT |u] =

α
∑

k=1

Cke
−Rku

(

1

αλθ

α−1
∑

m=0

(m+ 1)

×Aα−m(u) +
(α+ 1)

2αλθ2

)

,

E[TT 2|u] =

α
∑

k=1

Cke
−Rku

(

1

(αλθ)2

×

α−1
∑

m=0

(m+ 1)(m+ 2) ·Aα−m(u)

+
2(α+ 1)

(αλ)2θ3

α−1
∑

l=0

(l + 1)Aα−l(u)

+
3(α+ 1)2 + (α+ 1)(α+ 2)θ

3(αλ)2θ4

)

,

D[TT |u] = E[TT
2|u] − E2[TT |u].

5. Formalization of an insurance activity

In order to create a simulation model, the Piece
Linear Aggregates (PLA) approach [7] is used, which
permits to develop formal specification of simulated
system. Aggregate is the mathematical scheme that
belongs to the class of hybrid automation. The state
of the aggregate consists of two components: discrete
and continuous. In the intervals with no input signals,
the continuous coordinates change according to the
linear law. Discrete components of state change only
due to the input signals or when continuous coordi-
nate becomes zero. Using PLA formalism we will
give the formal specification of the surplus process.
The goal is to find some characteristics for both the
number and the duration of negative surpluses during
the defined period.

The structure of the insurer’s activity corre-
sponds to the analytical model described above: pre-
miums are added to the insurer’s asset, while the
wealth is depleted by claim payments. So there are
two flows in the system: the flow of premiums and
the flow of claims. The discrete version of model is

Ut = Ut−1 + c−

Nt
∑

i=1

Xi, t ≥ 1,

whereU0 = u is defined by user. Modeled values
are the first negative surplus, the number and the total
duration of all negative surpluses.

The simulated system is described by single ag-
gregate. Ten items present the aggregate specification
of the modeled activity:

1. The set of input signalsX = {}.
2. The set of output signalsY = {}.
3. The set of external eventsE′ = {}.
4. The set of internal eventsE′′ = {e′′1 , e

′′

2},
wheree′′1 = {e′′1j}, j = 1,∞ – the arrival of pre-
mium,e′′2 = {e′′2j}, j = 1,∞ – the arrival of accumu-
lated claim.

5. The transition rates between the system states:
e′′1 7→ {ξ1j }, j = 1,∞ – time period between the
jth and the(j − 1)th premium arrival to the system,
e′′2 7→ {ξ2j }, j = 1,∞ – time period between the
jth and the(j− 1)th accumulated claim arrival to the
system.

6. ν(tm) = {n(tm), T 1(tm),NR(tm),TT (tm)}
is the discrete component, wheren(tm) – insurer’s
surplus value,T 1(tm) – duration of the first nega-
tive surplus,NR(tm) – number of negative surpluses,
TT (tm) – total duration of all negative surpluses.

7. zv(tm) = {w(e′′1 , tm), w(e′′2 , tm)} is the con-
tinuous component of the state, wherew(e′′1 , tm) =
tm – time moment of the next premium arrival to the
system,w(e′′2 , tm) = tm – time moment of the next
accumulated claim arrival to the system.

8. Parameters:u ≥ 0 – the initial surplus of in-
surer,λ > 0 – the Poisson parameter,α ∈ N, β > 0
– Gamma distribution parameters,θ ∈ (0, 1] – the
safety loading.

9. Initial stateν(t0) = {u, 0, 0, 0}, zv(t0) =
{t0 + ξ11 , t0 + ξ21}.

10. Transition operators

H(e′′1) :

n(tm+1) = n(tm) + (1 + θ)λα/β,

w(e′′1 , tm+1) = tm + ξ1j ,






NR(tm+1) = NR(tm) + 1, if n(tm+1) < 0
∧n(tm) ≥ 0

NR(tm+1) = NR(tm), otherwise
{

TT (tm+1) = TT (tm) + 1, if n(tm+1) < 0
TT (tm+1) = TT (tm), otherwise







T 1(tm+1) = T 1(tm) + 1,
if n(tm+1) < 0 ∧ NR(tm+1) = 1

T 1(tm+1) = T 1(tm), otherwise

H(e′′2) :

Generatek ∼ Poisson(λ)

if k = 0 thenn(tm+1) = n(tm)

else fori = 1 to k

generateXi ∼ Gamma(α, β)

n(tm+1) = n(tm) −Xi

end if

w(e′′2 , tm+1) = tm + ξ2j .
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Table 1. Model parameters that form the base case scenario

Parameter Value Meaning
θ 0.2 Safety loading
u 1 Initial insurer’s surplus
α 10 Shape parameter of Gamma distribution
β 2 Scale parameter of Gamma distribution
λ 0.1 Average claims frequency (Poisson parameter)

Figure 3. The realization of the modeled surplus process

The formal specification presented above is used for
creation of the simulation model using the ARENA
simulation modeling and analysis software [12], cap-
turing the behavior of the basic model. The created
simulation model is formulated to test the analytical
expressions of the duration of the negative surplus un-
der given assumptions.

6. Modeling Results

In the investigation of both analytical and simu-
lation models, the deterministic scenario is used. It’s
a run of the model listing the particular variables and
their particular values. Such a type of scenario is use-
ful at answering “what if” questions. Therefore, it is
valuable to have one base case scenario against which
to compare the alternative scenarios. Modifying one
variable while leaving all others constant can isolate
the effect of that variable. Therefore, we start with a
base case scenario that serves as a point of reference.
Table 1 lists all of the parameters used to obtain the
result from the analytical approach, as well as by sim-
ulation. Their values are chosen for a basis of model
investigation. In the following, the model is simulated
over a horizon of ten years simulation time. One pos-
sible situation under the base case scenario is illus-
trated in Fig. 3 :T1 is the duration of the first negative
surplus,T6 – the duration of the sixth negative sur-

plus,T9 – the duration of the ninth negative surplus.
Then, a set of scenarios, see Table 2, is selected to in-
vestigate, altering the model to reflect these scenarios.
In defining the factors that give weight to the duration
of negative surplus, the chosen parameter is enlarged
for three times, and the others parameters are fixed,
resulting as an alternative scenario.

By simulating the replications according to the
idea of the Monte Carlo method, we estimate the du-
ration of the first negative surplus, both the number
and the total duration of negative surpluses. Thus, the
simulation consisted of one run of 1000 iterations for
each scenario, resulting the confidence interval of re-
quired characteristics, meaning that in about 95% of
the cases of making one thousand simulation replica-
tions as we did, the interval formed like this would
“cover” the true expected value of target variable.

As seen from Tables 3 - 5, in alternative 1 sce-
nario the number and the duration of negative sur-
pluses are reduced when bigger value of safety-
loading is chosen. While the loadingθ has no effect
on claim frequency and amount, it determines a steep
growth of the process curve yielding the lesser values
of duration of negative surpluses. Setting the safety-
loading equal to its maximum value, both the dura-
tion and the number of the negative surpluses become
close to zero. Considering the alternative 2 scenario,
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Table 2. The set of alternative scenarios

Model
parameters

Alternative 1 sce-
nario

Alternative 2 sce-
nario

Alternative 3 sce-
nario

Alternative 4 sce-
nario

Alternative 5 sce-
nario

θ 0.6 0.2 0.2 0.2 0.2
u 1 3 1 1 1
α 10 10 30 10 10
β 2 2 2 6 2
λ 0.1 0.1 0.1 0.1 0.3

Table 3. DurationT1 of the first negative surplus.

Expected value Dispersion Confidence interval (95%)
Base case scenario 23.52 6744.04 23.99± 5.72
Alternative 1 scenario 6.81 169.15 5.01± 0.91
Alternative 2 scenario 19.41 5570.77 19.43± 5.07
Alternative 3 scenario 24.27 6495.70 24.78± 6.07
Alternative 4 scenario 19.41 5570.77 19.43± 5.07
Alternative 5 scenario 7.84 749.34 8.91± 1.67

Table 4. NumberN of the negative surpluses.

Expected value Dispersion Confidence interval (95%)
Base case scenario 4.82 29.79 4.36± 0.32
Alternative 1 scenario 1.53 4.29 1.30± 0.11
Alternative 2 scenario 4.36 28.95 3.97± 0.33
Alternative 3 scenario 4.94 29.94 4.59± 0.32
Alternative 4 scenario 4.36 28.95 3.97± 0.33
Alternative 5 scenario 4.82 29.79 4.23± 0.23

Table 5. Total durationTT of the negative surpluses.

Expected value Dispersion Confidence interval (95%)
Base case scenario 129.31 59483.78 128.01± 14.75
Alternative 1 scenario 13.28 804.84 12.96± 1.79
Alternative 2 scenario 113.98 54136.92 112.33± 13.94
Alternative 3 scenario 126.40 53782.41 125.31± 14.15
Alternative 4 scenario 113.98 54136.92 112.33± 13.94
Alternative 5 scenario 43.10 6609.31 39.91± 4.63

the value of initial surplusu is enlarged for three
times, keeping the other parameters not changed as
in base case scenario. In the result the number and
the total duration of negative surpluses are reduced.
It means that as we increase the initial reserves, we
increase the distance between the process values and
the critical zero level, not changing the process curve
itself. The changing of parameters for Gamma(α, β)

distribution results the alternative 3 and alternative 4
scenarios. Choosing the parameterα larger, the in-
dividual claims amount, as well as premium, also
grows. But varying values of the parameterα has a
very small effect on the expected value of the dura-
tion of negative surpluses. When the bigger value of
Gamma parameterβ is chosen, the duration of neg-
ative surplus is reduced. For higher values ofβ the
duration of negative surplus of the modeled insurance

company becomes equal to zero. Setting the Pois-
son parameterλ=0.3 yields larger claim frequency, as
well as amount of premium. The results of an alter-
native 5 scenario show that while the duration is re-
duced, the parameterλ has no effect on the number
of negative surpluses.

7. Concluding remarks

The focus of this work was to present an analyt-
ical model of the surplus process. The created model
can guide in the determination of the duration of neg-
ative surplus and allows the investigation of the rela-
tionship between the duration and the parameters in-
volved in the model. The obtained analytical results,
which were tested by simulation, demonstrate that:

• The moments of both the duration and the
number of negative surpluses are very much influ-
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enced by thesafety loading, especially thedispersion,
which is high for low values of initial reserves and
safety loading. The dispersion is very much reduced
if higher valuesof these parametersareconsidered.

• Thehigher claim frequencyλ determinesmore
premium income. That’s why it helps to reduce the
total duration of negative surpluses of the modeled
insurance company, keeping the number of negative
surplusesunchanged.

• Whiletheshapeparameterα of Gammadistri-
bution hasno clear effect on the expected duration of
negative surpluses, the scale parameter β of Gamma
distribution operatesas reduction in thevaluesof du-
ration moments of negative surpluses if higher β is
considered.

( α, β)
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