
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2008, Vol.37, No.2

BUSINESS KNOWLEDGE-BASED GENERATION OF THE SYSTEM
CLASS MODEL♣

Tomas Skersys
Information Systems Department, Kaunas University of Technology

Studentu St. 50-309a, LT−51368 Kaunas, Lithuania

Abstract. The article presents principles of the Enterprise model-based generation of the Class model of the
system (on the Platform independent level). Enterprise model being an integral part of the Repository of a CASE
system becomes a core structure (Knowledge base) for the accumulation of business domain knowledge. The purpose
of this article is to show that the knowledge stored in the Knowledge base is enough to generate one of the main
models of the object-oriented Information systems development approaches, namely, Class model on the Platform
independent level. In order to show the basic principles of the Class model generation algorithm, Enterprise and Class
metamodels as well as mappings between the corresponding elements of these metamodels are presented and briefly
discussed. The algorithm of the Class model generation and a brief overview of its realization are also presented in this
paper.

Keywords: knowledge-based, enterprise model, class model, generation, UML, MDA.

♣ The work is supported by Lithuanian State Science and Studies Foundation according to High Technology Development Program Project

"VeTIS" (Reg.No. B-07042).

1. Introduction

Recently, one can observe much effort coming
from the developers of CASE (Computer-Aided Sys-
tem Engineering) tools to improve processes of the
Information systems (IS) development life cycle using
various techniques. One of the techniques is the auto-
mation of Information system development (ISD).
Indeed, in theory all stages of ISD life cycle are
closely linked and it should be possible to find stage-
to-stage mappings to perform an automated transition
from one stage of ISD to another. But the practice
shows that most of the CASE tools still face serious
problems while trying to reach some satisfactory re-
sults in this area. Usually, a model that was developed
on the early stages of the ISD (e.g. Business modeling,
User requirements specification) is not used for the
generation of models on the later stages. System de-
signer develops models of the system by analyzing
earlier created models and relying on his own expe-
rience and knowledge about the problem domain. In
other words, the transition from stage to stage is done
empirically. P. Coad identified such logical gaps and
called them “twilight zones” [4] nearly 20 years ago.
This is one of the reasons why some still use CASE
tools simply as a mean to nicely document the specifi-
cation of the system under development [3]. Practi-
tioners of Agile methods suggest using as simple tools

as possible in order to accomplish one or another stage
of ISD [2].

No doubt, with the advent of OMG’s Model Dri-
ven Architecture (MDA) [15, 17] in 2001 the ISD
automation processes gained a new boost. The OMG
vision was that the models would be specified using
UML and UML CASE tools would automate model-
to-model transformations, especially forward enginee-
ring transformations: Business model (or Computation
independent model – CIM) -> Platform independent
model (PIM) -> Platform specific model (PSM) ->
program Code. Some CASE tools already claim that
they fully support MDA; however, in most cases this
remains just a claim as some aspects of MDA itself
still lack clear definition and are open to various inter-
pretations, and the Repositories of such CASE tools
do not store sufficient amount of domain knowledge
in order to fulfil such claims [7].

UML alone is not enough to fulfil the main object-
tives of MDA at the moment. From our point of view,
main problems with MDA arise when trying to define
and specify Business model (CIM) using UML; yet
another issue with MDA that has to be solved is the
definition of mappings to realize the transformation
step “CIM -> PIM”. Objects and classes are core
concepts for the object-oriented (OO) system analysis
and design, and building the Class model of a system

145

T. Skersys

at the Platform independent level is among the main
objectives of the OO software development. However,
there is still no clear, well-developed process proposed
to help the software engineers solve this problem
successfully. Following the principle of MDA and
assuming that UML Class model is a part of Platform
independent modeling (that can later be transformed to
one or more PSMs) it is obvious that the source of
knowledge for the Class model development (genera-
tion) should be a Computation independent model and
System requirements model (e.g. Use case model, that
may be assumed as a part of CIM, or PIM). However,
despite the progress in analysis techniques ISD still
suffers from poor requirements acquisition, and full-
scale business modeling often is not even recognized
as an activity of the ISD. According to [11], 80% of
software development projects fail or fall well short of
their goals, or significantly overrun their budgets or
schedules because of inadequate consideration of the
business requirements.

The necessity to establish an explicit, logically
motivated link between the business environment and
the ISD processes (and, therefore, the IS itself) is
relevant and recognized a long time ago, yet, as it has
been mentioned already, there are not so many
solutions found up to date. We found it the most
promising to use the Enterprise model (EM) as the
integrating link between the business environment and
the ISD [7, 21]. Enterprise modeling stage is set as a
starting point of the IS development life cycle here,
and the Enterprise metamodel represents a structure
for business domain knowledge accumulation – this
conforms to the MDA vision of model-driven system
development. Moreover, we believe that the use of the
Enterprise model in the ISD eliminates, or at least
narrows, the existing gap between CIM and PIM, and
also gives a great benefit for automation process of the
“CIM -> PIM” transformation.

The main purpose of this article is: to present the
core of the Enterprise metamodel (EMM) and propo-
sed Class metamodel (CMM); show how the elements
of EMM are mapped to the elements of CMM; re-
present basic principles of the Enterprise model-based
generation of the Class model. CMM can be presented
as an extension to UML metamodel, but this is not the
topic of this article.

2. Current Situation in “CIM -> PIM” Area

There is a great number of Enterprise modeling
methods and approaches (such as CIMOSA, GERAM,
IDEF suite, GRAI etc) [20], standards (ISO 14258,
ISO 15704, PSL, ISO TR 10314, CEN EN 12204,
CEN 40003 etc.) and supporting Enterprise modeling
tools. Moreover, CASE tools which appear in contem-
porary market and are intended for the development of
Information systems, include graphical editors for
Enterprise modeling and analysis techniques. Business
process modeling, as an integral part of Enterprise
modeling, gradually becomes acknowledged as a part

of any ISD process. However, the integration of Enter-
prise modeling techniques into the ISD process is still
not sufficient.

MDA is one of the most significant attempts to
standardize the object-oriented (OO) ISD process that
is complemented with the Enterprise modeling (Busi-
ness modeling) stage. Even though MDA declares
Business modeling (CIM) as one of the stages of ISD,
where CIM specifications should be transformed to
PIM specifications [15, 17], it still remains more like
abstract declaration with no clear definitions or rules,
these transformations hold an empirical character. Ac-
cording to OMG and some other scientists, CIM is not
obligatory and, if such model exists, could be used
just as a guiding specification in the process of plat-
form independent model (PIM) development [6, 18].

At present CASE tool developers concentrate on
“PIM -> PSM” and “PSM -> Code” transformations;
some tools generate DB schemas as well. However,
modern MDA CASE tools (such as AndroMDA,
ArcStyler, OptimalJ, Together or MagicDraw UML)
do not support automated “CIM -> PIM” transfor-
mations, as there are no such well known methods that
could be implemented at the moment. Class model of
a system is a core model of the whole IS design.
Nevertheless, there are no well defined methods of
automated building (generation) of such Class models
(on PIM level) from the business models either. Some
supporters of Agile Model Driven Development
(AMDD) say that in order to get correct PIM models
transformations from CIM should be performed
manually [1] (empiric knowledge). There are some
approaches that propagate the development of the
Class models from the user requirements gathered on
system analysis stage – scenarios and Use case models
are the most common examples in this case [12, 13,
19, 26]; RUP and ICONIX are among the most well
known methods propagating Use case model-driven
development of Class models. Some methods propa-
gate the development of conceptual schemas based on
linguistic analysis of the requirements [16]. However
user requirements specified in a form of Use case
models tend to be insufficient for the development of a
Class model of a system, and Use case models with
high level of detail become very complicated and
hardly acceptable by the problem domain experts.
This article supports the idea of automated Class mo-
del development from the main source of domain
knowledge, i.e. Enterprise model [7, 9].

3. Enterprise Metamodel

The implementation of MDA approach in UML-
based methods, that are capable to process Enterprise
modeling activities, is highly desirable. However, the
UML itself does not satisfy the needs and require-
ments for the domain knowledge modeling in the area
of information systems engineering. IS engineering
requires business-specific constructs and the Enter-
prise metamodel (accepted by users as business

146

Business Knowledge-Based Generation of the System Class Model

domain experts and IS developers) from which Enter-
prise models of specific business domain could be
developed.

In [7, 9], basic concepts of the Enterprise meta-
model (Figure 1) were presented. At the core of the
EM is the interaction of Function and Process. A
Process here is a partially ordered set of steps, which
can be executed to achieve some desired material end-
result. A process consumes material resources (it is an

input of the process) and produces some material
output (production). From the management point of
view a Process is defined by two sets of attributes: a
set of Process state attributes, and a set of Process
control attributes. A set of Process state attributes
includes process Input (material flow) attributes, pro-
cess Output (material flow) attributes, and the attri-
butes of the Process itself.

Process

Function

Actor

MaterialFlow

MaterialOutputFlow

InformationFlow

IPInputAttributesInterpretation Realization

-is performed *

-performs 1

*

*

-is controled 1..*

-controls
*MaterialInputFlow

BusinessRule

ProcessStateAttributes IPOutputAttributes ProcessControlAttributesInformationProcessing

Goal

-is initiated

0..1

-initiates

1..*

-initiates1..*

-is initiated0..1

Event

1..*

*
InformationActivity

1..*

-is performed

*

-performs

1

-initiates

*

-is initiated

0..1

-realizes

*

-is realized

1

-is enforced
*

-enforces0..1

BR_preCondition

BR_postCondition

0..1

*

-is input 1..*

-consumes

1

-is output

1..*

-produces 1

P_postCondition
*

-triggers

*

-is triggered 0..1

*

*

-is 0..1
-preCond 1

-triggers

*

-is triggered0..1

Act_preCondition
*

-is

0..1

-preCond

1

Act_postCondition

-is triggered

0..1

-triggers

*

*

Figure 1. Enterprise metamodel (UML notation)

A Function is set to control the flow of one or
more processes and the resources assigned to these
processes. A function is comprised of the predefined
sequence of mandatory steps of information transfor-
mation; these steps are called Information activities
and can be of type Interpretation, Data processing/
Decision-making (Information Processing) or Realiza-
tion. Inputs and outputs of information activities are
Information flows. A sequence of information active-
ties composes a management cycle – a feedback loop.
Making reference to the System and Control Theory,
one can state that a process can be effectively cont-
rolled only if some feedback loops are implemented
[5, 10].

Elements Process, Function and Business rule are
triggered by occurrences of one or more events
(Event). Processes, functions and business rules are
performed by certain actors (Actor); construct Actor is
an active resource (human, org. unit, application or
machine with control device). Construct Goal repre-
sents a hierarchical structure of business goals of the
organization. Goals of the organization are realized
through (influence) management functions and direct-
ly influence the content of these functions (i.e. Busi-
ness rules). Business rules are interpreted as the

integral part of the decision-making mechanism of the
organization. A decision-making mechanism in the
proposed EMM is implemented through the composite
construct Function. Construct Business rule in EMM
defines conditions, constraints, and calculations to be
associated with particular Function (its Information
activities). Talking in object-oriented manner, function
encapsulates a well-defined fragment of business logic
that is expressed in a form of business rules. More
about Business rules integration in EMM, and EMM
itself, can be found in [7, 9, 21, 23].

4. Class Metamodel

In OO methods, Class models are typically used:
as domain models to explore domain concepts; as
conceptual/analysis models to analyze requirements;
as system design models to depict detailed design of
OO software. Class model is also a part of OMG
standard, namely Unified Modeling Language (UML).
Class model in UML-based CASE systems serves as a
main source of knowledge for the development of
Information system prototype: DB specification, gra-
phical user interface (GUI), application code. How-
ever, from the ISD perspective UML metamodel is too

147

T. Skersys

complicated and heaped with unnecessary elements
[25] and it seems that every new version of UML gets
more and more complicated. From our point of view it
is important to note that UML metamodel does not
have sufficient set of constructs, essential for Business
modeling (e.g. business rules) as it does not impose

none of the fundamental business logic (e.g. feed-back
loops, business rules, types of business objects etc.).
In this article, Class metamodel is proposed. The Class
metamodel is based on UML metamodel, but also
incorporates constructs from the Enterprise metamodel
(Figure 2).

Class Attribute

FunctionFlow Actor

RelationshipRelationshipEnd

-is related 1

-relates

*

Operation

*

Action
*

Process

ClassModel

*

*

BusinessRule

FlowState

*

*

ModelElement

0..1

*

0..1

*

Event

Parameter
*

-is initiated

0..1

-initiates *

-is triggered

0..1

-triggers

*

0..*

0..1

Generalization

Association

Composition

Agregation

-preCond1

-is0..1

-is initiated

0..1

-initiates*

Method

-is realized

1

-realizes

*

Op_preCondition
*

-is

0..1

-preCond
1

BR_preCondition

BR_postCondition

*

MaterialFlow

InformationFlow

Op_postCondition

-is triggered0..1

-triggers*

*

Figure 2. Proposed Class metamodel (UML notation)

The core constructs of the proposed Class
metamodel (Figure 2) are as follows:
• Class model (ClassModel) is composed of the

model elements (ModelElement). Class model ele-
ments can be either classes (Class) or relationships
(Relationship) that hook these classes to each
other. Each relationship has at least two connection
ends (RelationshipEnd) and also may have some
constraints or structural rules (BusinessRule) that
specify that relationship.

• We enriched construct Class with certain subtypes:
Process, Flow, Actor and Function. Such a
modification is based on the specification of the
Enterprise metamodel (Figure 1). The classifica-
tion of classes is not a new idea – P. Coad’s UML
modeling in colour, Robustness diagrams are just a
few examples of various class stereotyping tech-
niques. Techniques that classify classes pursue cer-
tain practical goals. In our case this classification
is made in order to make a close link between the
business environment (Enterprise model) and the
IS design models (in this case, Class model).

• Classes of type Flow may have states (FlowState).
• Traditionally, classes have attributes and opera-

tions. In the proposed Class metamodel every class
may have attributes (Attribute), but the operation

level (Operation) is specific only to the Function
type classes. Construct Operation represents
algorithmically-complex operations, and algo-
rithmically-simple operations (such as Create,
Connect, Access, Release) are not modeled in
order to reduce the complexity of the class models.
Classes of type Function are at some degree
similar to the controller type classes in Robustness
diagrams. Class attribute (Attribute) may have a
number of constraining rules (Business Rule).

• Class operation (Operation) is composed of ac-
tions (Action), and may have parameters (Para-
meter) and methods (Method) that realize the
operation in the certain programming platform.
Class operations may also have pre- and post-
conditions (Op_preCondition, Op_postCondition).

• Action (Action) represents single business rule
(BusinessRule) of type Computation, Action or
Inference (more on that can be read in [21, 23]).
These rules may have pre- and post-conditions
(BR_preCondition, BR_postCondition).
Business rules and operations may be initiated by

events (Event), but also may trigger the activation of
events themselves.

148

Business Knowledge-Based Generation of the System Class Model

5. Principles of the Enterprise Model-based
Generation of the Class Model

5.1. Correspondence between Elements of EMM
and CMM

Mappings among the source and target models
have to be identified before the algorithm of EM-
based Class model generation is presented. In Table 1,

it is shown how the elements of Enterprise metamodel
are mapped to the elements of Class metamodel (ϕ:
EnterpriseModel → ClassModel).

Mapping “ϕ2: <EMM.Function> → <KMM.
Class>, <KMM.Function>” means that the element
Function of EMM is mapped to the CMM elements
Class and Function (Class being the core element of
CMM and Function – type of that class).

Table 1. Mappings among the elements of EMM and CMM.

EMM element Mapping CMM element
<EMM.ModelElement> ϕ1 <CMM.ModelElement>
<EMM.Function> ϕ2 <CMM.Class>,<KMM.Function>
<EMM.Process> ϕ3 <CMM.Class>,<KMM.Process>
<EMM.MaterialFlow> ϕ4 <CMM.Class>,<KMM.Flow>,<KMM.FlowState>
<EMM.InformationFlow> ϕ5 <CMM.Class>,<KMM.Flow>,<KMM.FlowState>
<EMM.Actor> ϕ6 <CMM.Class>,<KMM.Actor>
<EMM.Event> ϕ7 <CMM.Event>
<EMM.InformationActivity> ϕ8 <CMM.Operation>
<EMM.Attribute> ϕ9 <CMM.Attribute>
Rel-ships among EMM elements ϕ10 <CMM.Relationship>,<KMM.RelationshipEnd>
<EMM.BusinessRule> ϕ11 <CMM.Action>, <KMM.BusinessRule>
<EMM.BusinessRule> ϕ12 <CMM.Relationship>,<KMM.RelationshipEnd>, <KMM.BusinessRule>
<EMM.BusinessRule> ϕ13 <CMM.Attribute>, <KMM.BusinessRule>

The same principles are applied to all of the map-
pings in Table 1. It should be mentioned that a set of
mappings {ϕ1, …, ϕ13} is sufficient to develop all the
elements of Class model on the Platform independent
level.

5.2. The Algorithm of Class Model Generation

The algorithm of Class model generation (Figu-
re 3) on the basis of business knowledge stored in
CASE system’s Knowledge base (EM) will be pre-
sented in this section.

 The core of the algorithm is composed of the set
of mappings {ϕ1, …, ϕ13} and the set of rules of
Enterprise model analysis and data querying. The
sequence of the processing of these rules is managed
by the CM algorithm itself.

Theoretically speaking, Class model can be deve-
loped on the basis of any element of EM (instance of
an element), however, actual practical use can be
gained from the Class models generated from the
selected management function, technological process
or structural element of the EM.

The core business object for generation is selected
according to the purpose of the future IS (or sub-
system of IS). If certain function of EM is selected
(e.g. Workload management), the scope of the IS
design will be narrowed to that segment of the busi-
ness domain (i.e. to the particular management func-
tion Workload management); one should select a
technological process (e.g. Furniture construction) of
the EM if the goal is to prepare specifications for the

computerization of all the management activities of
that particular technological process; if one is willing
to computerize some particular work place (e.g. Ac-
countant) in the organization.

[1] Select management function F from
EM and create class K_f for that function

[2] Select EM elements related with F
and create classes for these elements

[3] Create relationships among the
created classes

[4] Verify and specify CM
relationships among classes on the
basis of business rules

Perform BR-based enhancement of
CM relationships?

[5] Create attribute level for the classes
of CM

[6] Verify and specify attribute level
of CM classes on the basis of
business rules

[9] Specify the content of
computerizable operations of K_f on the
basis of business rules

[7] Create operation level for the class
K_f of CM

[8] Identify computerizable operations
of the CM class K_f on the basis of Use
case model

YES

NO

Perform BR-based enhancement of
classes’ attribute level ?

YES

NO

Figure 3. CM generation algorithm (at the PIM level)

149

T. Skersys

Class model generation should be performed on the
basis of the selected structural unit of the EM, and the
scope of the Class model development will be
narrowed to the structural and functional aspects of
that particular work place. This article concentrates on
the Class model generation on the basis on the
selected management function.

Class model generation algorithm (on PIM level)
may be divided into four main stages (Table 2): (1)
generation of the classes of CM, (2) generation of the
relationships among the classes, (3) generation of the
attribute level of the classes, (4) generation of the ope-
ration level of the classes. These stages may be further
decomposed into steps.

Table 2. Stages, steps and mappings of the Class model generation algorithm

Stage Step Mapping
Step 1. Select management function F from EM and create class
K_f for that function.

ϕ1, ϕ2 Stage 1. Identification of business objects of
the problem domain and generation of classes
for the Class model. Step 2. Select EM elements related with F and create classes for

these elements.
ϕ1, ϕ3 - ϕ6

Step 3. Create relationships among the classes. ϕ10 Stage 2. Identification and generation of
relationships among the classes of the Class
model.

Step 4. Specify and augment relationships among CM classes on
the basis of business rules.

ϕ12

Step 5. Create attribute level for the CM classes. ϕ9 Stage 3. Generation of the attribute level of
the classes. Step 6. Verify, specify and augment attribute level of CM classes

on the basis of business rules.
ϕ13

Step 7. Create operation level for the CM class K_f . ϕ7, ϕ8
Step 8. Identify computerizable operations of the CM class K_f on
the basis of Use Case model.

-
Stage 4. Generation of the operation level of
the classes.

Step 9. Specify the content of computerizable operations of K_f on
the basis of business rules.

ϕ7, ϕ11

The sequence of the execution of the steps reminds
of the traditional Waterfall model where every step is
processed one after another one time. However, this
sequence may be interrupted by the user (system
analyst/designer) at any point and become iterative.

Let us shortly describe steps 1-9 of the algorithm
in some more details.

Step 1. Generation process begins with the selec-
tion of the certain management function F (i.e. the
instance of the EM element Function) from the EM.
After the function F is selected, new Class model M1
is created and the class K_f is created in M1. The
name of F and the stereotype <<Function>> is
assigned to the class K_f .

Step 2. Analysis of EM and data querying is pro-
cessed. During this process instances of the EM ele-
ments Process, Actor and InformationFlow that are
related to F are collected. Structural elements (Actor
instances) and material flows (MaterialFlow instant-
ces) that have relationships with the selected processes
(Process instances) are also collected. For each collec-
ted instance of the EM elements Process, Actor, Infor-
mationFlow and MaterialFlow a corresponding class
in M1 is created. The names of the classes correspond
to the names of the instances of the EM elements, and
stereotypes of these classes are assigned with regard to
the type of the particular EM element (i.e. Process ->
<<Process>>, InformationFlow, MaterialFlow ->
<<Flow>>, Actor -> <<Actor>>).

Step 3. The relationships among the classes of M1
are specified with respect to the corresponding rela-
tionships among the elements of EMM. For example,
if there is an association between the Process and

Function in EMM, then there will be an association
created between M1 classes that have stereotypes
<<Process>> and <<Function>>. In other words,
Enterprise metamodel is the main guide in the process
of the generation of relationships among the classes of
CM.

Step 4. The relationships that were generated in
Step 3 can be automatically validated and augmented
with respect to the particularity of the problem do-
main. This is achieved using Business rules. Business
rules can specify additional relationships between
certain classes or augment the existing relationships
with stricter cardinalities and other constraints (the
latter may not be visible in graphical view of the Class
model). Business rules-based specification and aug-
mentation of the Class model is quite a complicated
activity that was presented and extensively discussed
in [22, 24], therefore this topic will not be further
elaborated in this article.

Step 5. Attributes of the instances of the EM ele-
ments are mapped to the attributes of the correspond-
ding classes of M1. Some system attributes of the
instances of EM elements (e.g. system name, id) are
also stored in the attribute level of the classes as
system attributes – this is done in order to maintain
close link between EM and CM. System attributes of
EM allow us to track changes in business environment
and react accordingly.

Step 6. The attributes that were generated in Step 5
can be automatically validated and augmented with
respect to the particularity of the problem domain.
This is achieved using Business rules. Business rules
can specify additional attributes specific to a certain

150

Business Knowledge-Based Generation of the System Class Model

business object or specify constraints on certain attri-
butes. Again, for more details on this step, refer to [22,
24].

Step 7. Algorithmically complex operations may
be owned just by the classes of M1 that have stereo-
type <<Function>>. Operation level for the class K_f
is generated on the basis of the information activities
(Information activity – Figure 1) that compose the
management function F in EM. Each information acti-
vity is mapped to one operation of K_f. If the opera-
tion is quite complex, it can be further decomposed
into a set of operations of lower complexity, however,
it is advisable to perform such actions on the Enter-
prise modeling level (one can model a hierarchy of
information activity workflows on the Enterprise mo-
deling level [14, 8]).

Step 8. Operation set generated in Step 7 is a com-
plete set of operations of the particular management
function, however not all of them are necessarily
computerizable. The best way to identify compute-
rizable operations is to merge them with the use cases
of the Use Case model (developed for the same prob-
lem domain) and find the overlaps. Not overlapping
operations of the class K_f are automatically identified
as non-computerizable and gain invisibility property
(these operations can be changed to visible at any time
later). The process of the Enterprise model-based
development of Use Case models is presented in [14].

Step 9. The Repository of the Enterprise model
stores not only structural rules (Terms and Facts) but
operational rules (Computational, Inference, Action
rules, Constraints) as well. Operational rules are used
to formally specify the content of the computerizable
operations of K_f declaratively. This is a third addi-
tional step of business rules-based specification and
augmentation of CM.

It should be noted that Steps 4, 6, 9 can be perfor-
med independently, without a reference to other steps
of the algorithm. Such an approach was demonstrated
in [22, 24]. This means that the developed class model
can be additionally validated and augmented using
business rules at any time later.

The generated PIM level Class model can be addi-
tionally customized and be transformed into one or
more PSM level models. In order to utilize the
existing “PIM -> PSM” transformations, the proposed
Class metamodel should be presented as an extension
of the UML metamodel (this can be achieved using
UML extension mechanisms).

5.3. Experimental Realization of the Algorithm

The prototype of the algorithm has been imple-
mented as an add-on to the CASE tool Visio 2000. A
short illustration of how the algorithm works is pre-
sented in Figures 4 and 5 – it is just enough to illust-
rate the main principles of the algorithm (Figure 3).
Figure 4 presents the interaction of the management
function “Order estimates management” and process
“Order fulfillment”. The problem domain is presented

in a form of modified workflow models in the en-
vironment of Provision Workbench CASE tool. The
workflow model is captured into EM using certain
algorithms [14].

Figure 4. Workflow model of the problem domain “Order

estimates management”

-orderCode
-custCode
-regDate
-deliveryDate
-custDiscount
-calculation

<<Flow>>
Order

-registers estimate / dispatches estimate

1

*

1*

1

*

-performs

1*

*

1

-procCode
-typeOfDelivery
-isActive
-startDate
-Duration

<<Process>>
Order fulfillment

-DepCode
-Address

<<Actor>>
Logistics

-furCode
-furName
-amount
-price

<<Flow>>
Furniture

<<FlowState>>
corrected

<<FlowState>>
rejected

<<FlowState>>
calculated

-DepCode
-Address

<<Actor>>
Administration

-DepCode
-Address

<<Actor>>
Marketing

<<Actor>>
Customer

<<FlowState>>
registered

+Estimate_registration()
+Estimate_calculation ()
+Estimate_confirmation()
+Estimate_dispatch()

-funcCode
-funcProcDate

<<Function>>
Order estimates management

<<FlowState>>
delivered

<<FlowState>>
undelivered

<<FlowState>>
dispatched

-calculates estimate

1*

<<FlowState>>
confirmed

<<FlowState>>
unregistered

-confirms estimate

1*

1
*

-estimateCode
-orderCode
-custDiscount
-calculation

<<Flow>>
Estimate

<<FlowState>>
submited

<<FlowState>>
fulfilled

Figure 5. Generated Class model for the management
function “Order estimates management”

Actors of the problem domain are deployed on the
left side of the model (Figure 4). Actor Logistics per-
forms technological process Order fulfillment. The
process has material inputs – material flows Order.
submited and Furniture.undelivered, and outputs –
material flows Order.fulfilled and Furniture.delivered
(.submited, .undelivered, .fulfilled, .delivered are the
states of the corresponding flows). Actors Administ-
ration, Marketing and Customer perform certain
information activities that compose the management
function “Order estimates management”. These infor-
mation activities are of the particular type (Inter-
pretation, Information processing or Realization).

151

T. Skersys

Information activities have their inputs and outputs –
information flows; these flows may also have states.
Remark: we assumed that information activity “Esti-
mate data correction” will not be computerized; there-
fore it was hidden in the operation level of the class
“Order estimates management” (Figure 5).

It should be pointed out that not all of the know-
ledge of the business domain can be represented in
graphical notation of the workflow models. Business
rules are not visible in the graphical notation of
workflow models – they are gathered using another
specialized tool [21] and kept in formalized textual
form apart from the workflow models. Features
(attributes) of business objects cannot be visualized in
Figure 4 as well, but they are stored in the Repository
of EM. Each stereotype of the Class model may have
its own colour setting, however, for the sake of a
standard black and white paper presentation format all
the background colours were reset to white (Figure 5).

The developed Class model is independent of any
platform. In order to develop PSM models, new plat-
form specific classes may be added and even the exis-
ting classes restructured. The boundaries of the
developed Class model are restricted by the selected
management function “Order estimates management”.

Algorithmically complex operations are assigned
to the stereotyped <<Function>> class. Classes with
stereotypes <<Process>>, <<Flow>>, <<Actor>> may
be assumed as entity (or persistence) classes which on
the stage of DB schemas (or other data models) deve-
lopment are transformed into tables (entities) – these
classes supply data for the operations of <<Func-
tion>> class. At the stage of user interface develop-
ment, <<Actor>> classes may indicate the need for
boundary classes as well.

6. Conclusions

Nowadays efficient IS development and Enterprise
modeling are directly related issues. Enterprise mode-
ling can be a source of enterprise knowledge that adds
value to the business process and also influences me-
thods of ISD. Some of the ISD approaches use Enter-
prise models as a source of structured knowledge
about the real world (business domain) in ISD life
cycle stages, such as user requirement analysis and
specification, development of detailed IS project solu-
tions and other. According to [11], MDA will not
reach its goals unless the Business model (CIM) is
formally connected to other layers of MDA (first of all
to PIM) as well. Not the less important is to maintain
such developed models and they will not be main-
tained unless they are connected to the code – this
includes the Business model as well.

One of the main goals of this article was to show
how Enterprise model could be used for ISD purposes.
Enterprise model becomes the main source of know-
ledge in various processes of ISD, such as model
development, augmentation and validation. Moreover,

the usage of such EM facilitates the automation of
model development and therefore the automation of
the whole ISD. This article concentrated on the issues
of Class model generation. The proposed solution
narrows the existing logical gap between Business
modeling and ISD stages and also automates the
process of ISD at some degree.

References

[1] S.W. Ambler. A Roadmap for Agile MDA. The
Official Agile Modeling Site, 2005. Interactive, last
visited 2007 06 16, www.agilemodeling.com.

[2] S.W. Ambler. It's “Use the Simplest Tool” not “Use
Simple Tools”. The Official Agile Modeling Site,
2004. Interactive, last visited 2007 06 16, www.
agilemodeling.com.

[3] J. Bettin. Model-Driven Software Development: An
Emerging Paradigm for Industrialized Software Asset
Development. SoftMetaWare Ltd, 2004.

[4] P. Coad, E. Yourdon. Object-oriented analysis. 2nd
ed. Yourdon Press, New Jersey, 1991.

[5] ENV 12204 – Systems Architecture: Language Const-
ructs for Enterprise Modelling. Revision of ENV
12204, CEN/TC 310/WG1, 2002.

[6] W. Froidevaux. An approach to MDA using MOF
modeling and lessons learned. OMG Meeting‘2002.
Helsinki. Document number: ad/2002-09-20, 2002.

[7] S. Gudas, A. Lopata, T. Skersys. Approach to Enter-
prise Modelling for Information Systems Engineering.
INFORMATICA, Vol.16, No.2. Institute of Mathema-
tics and Informatics, Vilnius, 2005,175-192.

[8] S. Gudas, A. Lopata. Workflow models based acqui-
sition of enterprise knowledge. Information technolo-
gy and control, Vol.36, No.1A, Kaunas University of
Technology, Kaunas, 2007, 103-109.

[9] S. Gudas, T. Skersys, A. Lopata. Framework for
Knowledge-based IS Engineering. Advances in
Information Systems (ADVIS‘2004). Lecture Notes in
Computer Science Vol. 3261, Springer-Verlag, Izmir,
2004, 512-522.

[10] S. Gudas. A framework for research of information
processing hierarchy in enterprise. Mathematics and
Computers in Simulation, Vol.33, No.4. North Hol-
land, 1991, 281–285.

[11] S. Hendryx. Response to the OMG BRWG Business
Rules in Models RFI. Object Management Group
Home Page, 2002. Interactive, last visited 2007 06 16,
www.omg.org/docs/ad/02-11-02.pdf.

[12] D. Liu, K. Subramaniam, A. Eberlein, B.H. Far.
Automating Transition from Use-Cases to Class Mo-
del. IEEE Canadian Conference on Electrical and
Computer Engineering (CCECE’03), Calgary, 2003,
831-834.

[13] D. Liu. Automating Transition from Use Cases to
Class Model. Thesis, University of Calgary, 2003.

[14] A. Lopata. Enterprise Model Based Computerized
Specification Method of User Functional Require-
ments. Thesis, Kaunas University of Technology, Kau-
nas, Lithuania, 2004.

[15] S.J. Mellor, S. Kendall, A. Uhl, D. Weise. MDA
Distilled: Principles of Model-driven Architecture,
Addison-Wesley Pub Co., 2004.

152

Business Knowledge-Based Generation of the System Class Model

[16] L.C. Niba. The NIBA Workflow: From textual requi-
rements specification to UML-schemata. International
Conference on Software & Systems Engineering and
their Applications (ICSSEA’02), Paris, 2002.

[17] Object Management Group (OMG): MDA Guide
v.1.0.1. Object Management Group. Document num-
ber: omg/2003-06-01, 2003.

[18] Object Management Group (OMG): Production Rule
Representation. Object Management Group, Request
for Proposals. Document number: br/2003-09-03,
2003.

[19] D. Rosenberg, K. Scott. Applying Use Case Driven
Object Modeling with UML: An Annotated e-Com-
merce Example. Addison-Wesley, 2001.

[20] J. Schekkerman. How to Survive in the Jungle of
Enterprise Architecture Frameworks. Trafford, Cana-
da, 2003.

[21] T. Skersys, S. Gudas. Business rules integration in
information systems engineering. Proceedings of the
13th International Conference on Information Systems
Development: Advances in Theory, Practice and
Education (ISD‘2004), Technika, Vilnius, 2004, 253-
263.

[22] T. Skersys, S. Gudas. The Enhancement of Class
Model Development Using Business Rules. Lecture
Notes in Computer Science: The Tenth Pan-Hellenic
Conference on Informatics (PCI’2005), Springer, Ber-
lin, 2005, 480-490.

[23] T. Skersys. Computer-aided information systems de-
velopment method based on the business rules-
extended enterprise model. Thesis, Kaunas University
of Technology, Kaunas, 2006.

[24] T. Skersys, S. Gudas. Class model development using
business rules. Advances in Information Systems Deve-
lopment: Bridging the Gap between Academia and
Industry (ISD’2005), New York, 2006, 203-215.

[25] D. Thomas. UML – Unified or Universal Modeling
Language? Journal of Object Technology, Vol.2, No.1,
2003.

[26] K. Weidenhaupt, K. Pohl, M. Jarke, P. Haumer.
Scenario Usage in System Development: A Report on
Current Practice. IEEE Conference on Requirements
Engineering (ICRE'98), Colorado Springs, 1998, 33-
45.

Received February 2008.

