
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2008, Vol.37, No.2

GENETIC ALGORITHM BASED INTERNET WORM
PROPAGATION STRATEGY MODELING

Nikolaj Goranin, Antanas Čenys
Information Security Laboratory, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University

Saulėtekio al. 11, SRL-I-415, LT-10223, Vilnius, Lithuania

Abstract. Existing malware propagation models mainly concentrate on malware epidemic consequences modeling,
i.e. forecasting the number of infected computers, and are based only on current malware propagation strategies. In this
article we propose a genetic algorithm based model, which aims at evaluating existing as well as modeling other
potentially dangerous Internet worms’ propagation strategies. The efficiency of strategies is evaluated by applying the
proposed fitness function. Genetic algorithm is selected as a modeling tool taking into consideration the efficiency of
this method while solving optimization and modeling problems with large solution space. The main application of the
proposed model is a countermeasures planning in advance and computer network design optimization.

1. Introduction

According to [17], almost 3/5 of all companies in
the United Kingdom have faced different kinds of
information security breaches in 2006, almost 50% of
which were caused by malware, i.e. viruses, worms,
Trojans, etc, i.e. software that was created with the
aim to harm computer software or to infect it without
the permission and knowledge of a legal user [16]. In
Lithuania according to The Communications Regu-
latory Authority of the Republic of Lithuania [14],
approximately 70% of information security breaches
that affected companies and home users were caused
by malware. In 2006 the total number of new mali-
cious programs was up 41% from 2005 [2] and even
up to 172% according to Corrons research [13]. One
more 2006 year trend marked by Corrons [13] is the
use of worms as a means for propagation of other
malware. Data for year 2007 are incomplete but,
according to [7], prediction at a 60% percent increase
from 2006 in unique malware is expected. There have
not been any new large-scale worms targeting Win-
dows services since 2005. On the other hand, vulner-
abilities found in anti-virus, backup or other applica-
tion software, can result in worms later. Most notable
in 2007 was the worm exploiting the Symantec anti-
virus buffer overflow flaw [20].

Despite the different percent presented by different
antivirus companies [2, 13] and incomplete data for
2007 it is obvious that the rate of malware usage by e-
criminals has the tendency to increase and protection
against it is a crucial task. Worms remain a significant
part of all malware and may be defined as one of the
most potential threats in 2008. Worms are network

viruses, primarily replicating on networks. Usually a
worm will execute itself automatically on a remote
machine without any extra help from a user. However,
there are worms, such as mailer or mass-mailer
worms, that will not always automatically execute
themselves without the help of a user [16]. In this
article we analyze and model Internet worm propaga-
tion strategies, since their replication mechanisms
differ significantly from mailer and mass-mailer
worms. Propagation of most worms is rapid (com-
pared with classical computer viruses) and aggressive.
Worms such as Code Red and Nimda have been per-
sistent for longer than 8 months since their introduce-
tion date. As worms spread through nearly all net-
works, they find nearly all of the weakest hosts
accessible and begin their lifecycle anew on these
systems. This then gives worms a broad base of instal-
lation from which to act [10].

Prior information security analysis techniques are
not effective in evaluating worms. The main issues
faced in worm evaluation include the scale and propa-
gation of the infections [10]. Modeling allows Internet
worm researchers to predict damage for a new worm
threat [4], understand the behavior of malware,
including spreading characteristics [15], understand
the factors affecting the malware spread, determine
the required effectiveness of countermeasures in order
to control the spread and facilitate network designs
that are resilient to malware attacks [12], predict the
failures of the global network infrastructure [8]. Our
proposed model allows evaluating existing and mo-
deling other potentially dangerous Internet worms’
propagation strategies. The main application of a
proposed model is a countermeasures planning in

133

N. Goranin, A. Čenys

advance and computer network design optimization.
Genetic algorithm [9] was selected as a modeling tool
since it simulates natural selection by means of repea-
tedly evolving population of solutions (malware pro-
pagation strategies in our case) and therefore may be
used for predicting and modeling possible future pro-
pagation strategies. Genetic algorithm modeling has
been proved to be effective in many areas such as
business decision making, bioinformatics and other [1,
3, 11, 18].

2. Current worm propagation strategies

We define the Internet worms propagation strategy
as a combination of methods and techniques, used by
the worm to achieve tasks assigned to it by the worm
creator. So the strategy suitable to achieve one specific
task (e.g., creating the botnet [22]) may be not useful
for another (e.g., disrupting Internet functioning).
Modern worms are usually created on a modular basis
and may contain all or some of the following parts
[10]: a reconnaissance module, that scans the Internet
for vulnerable hosts; an attack module, that may
exploit from one to many known vulnerabilities at
potentially vulnerable host; a communication module
that allows worms to communicate between them-
selves or to transfer information to the worm manage-
ment center; a command module, that allows to accept
commands; and an intelligence module, that insures
functioning of the communication module, since it
contains information how to find a neighbor worm for
communication. Specific methods used in each of the
modules are called patterns and a strategy can be also
defined as a combination of patterns. A strategy is also
dependent on worm introduction techniques, i.e. me-
thod used to release worm to the wild, connection
protocol used (e.g. TCP or UDP), etc. Since the
number of existing and historic worms is high, we will
describe only two propagation strategies used by
CodeRed and Ramen, since they represent two differ-
rent attitudes in complexity, vulnerable platform and
functionality and can provide an understanding of
strategies used in the wild.

On June 18th 2001 a serious Windows IIS vulner-
ability was discovered. On July 13th 2001 Code Red
worm version 1 that exploited this single vulnerability
was released. Due to a code error in its random
number generator, it did not propagate well. 10:00
UTC of July 19th Code Red version 2 was released
with the corrected random generator. It generated 100
threads. Each of the first 99 threads randomly chose
one IP address and tried to set up connection on port
80 with the target machine (if the system was an
English Windows 2000 system, the 100th worm thread
would deface the infected system’s web site, otherwise
the thread was used to infect other systems, too) [4].
The worm was programmed to scan hosts in /8 with a
50% probability, /16 – with 37.5% probability and
with 12.5% probability it would scan a totally random
network [10]. Subnetworks 127.0.0.0/8, loopback,

224.0.0.0/8, multicast were excluded [8]. If the
connection was successful, the worm would send a
copy of itself to the victim web server to compromise
it and continue to find another web server. If the
victim was not a web server or the connection could
not be setup, the worm thread would randomly gene-
rate another IP address to probe. The timeout of the
Code Red connection request was programmed to be
21 seconds. Netcraft web server survey showed that
there were about 6 million Windows IIS web servers
at the end of June 2001 [4]. More than 350.000 of
them were infected in several hours [19].

The Ramen worm appeared in January 2001.
Ramen attacked RedHat Linux 6.0, 6.1, 6.2, and 7.0
installations, taking advantage of the default instal-
lation and three known vulnerabilities: FTPd string
format exploits against wu-ftpd 2.6.0, RPC.statd Li-
nux unformatted strings exploits, and LPR string
format attacks. This vulnerable software could be
installed on any Linux system, meaning the Ramen
worm can affect other Linux systems, as well. The
worm acted in the following way: defaced any Web
sites it found; disabled anonymous FTP access to the
system; disabled and removed the vulnerable rpc.statd
and lpd daemons, and ensured the worm would be
unable to attack the host again; installed a Web server
on TCP port 27374, used to pass the worm payload to
the child infections; removed any host access re-
strictions and ensured that the worm software would
start at boot time; notified the owner (worm creator) of
two e-mail accounts of the presence of the worm
infection. Worm then began scanning for new victim
hosts by generating random class B (/16) address
blocks (scans were restricted from 128/8 to 224/8, the
most heavily used section of the Internet). Web server
acted as a small command interface with a very
limited set of possible actions. The mailboxes served
as the intelligence database, containing information
about the nodes on the network. This allowed the
owners of the database to be able to contact infected
systems and operate them as needed [10].

3. Prior and related work

The Random Constant Spread (RCS) model [19]
was developed by Staniford et al. using empirical data
derived from the outbreak of the CodeRed worm. It
assumes that the worm has a good random number
generator that is properly seeded. The model assumes
that a machine cannot be compromised multiple times
and operates several variables: K is the constant ave-
rage compromise rate, which is dependant on worm
processor speed, network bandwidth and location of
the infected host; a(t) is the proportion of vulnerable
machines which have been compromised at the instant
t, Na(t) is the number of infected hosts, each of which
scans other vulnerable machines at a rate K per unit of
time. But since a portion a(t) of the vulnerable ma-
chines is already infected, only K·(1-a(t)) new infec-
tions will be generated by each infected host, per unit

134

Genetic Algorithm Based Internet Worm Propagation Strategy Modeling

of time. The number n of machines that will be
compromised in the interval of time dt (in which a is
assumed to be constant) is thus given by:

.)1()(dtaKNan −⋅= (1)

N is assumed to be a large constant address space
so the chance that the worm would hit the already
infected host is negligible. From this hypothesis,
n=d(Na)=Nda. It is also possible to write

.)1()(dtaKNaNda −⋅= (2)

From this we have

)1(aKa
dt
da

−= , (3)

where

.
1)(

)(

TtK

TtK

e
ea −

−

+
= (4)

So the model can predict the number of infected
hosts at time t if K is known. The higher is K, the
quicker the satiation phase will be achieved by worm.
As [10] states, although more complicated models can
be derived, most network worms will follow this
trend. So in our article we will use this model to
obtain a measure of the growth rate of the worm
which uses a specific strategy.

Chen, Gao and Kwiat [23] propose the AAWP
discrete time model, in the hope to better capture the
discrete time behavior of a worm. However, according
to [8], continuous model is appropriate for large scale
models, and the epidemiological literature is clear in
this direction. The assumptions on which the AAWP
model is based are not completely correct, but it is
enough to note that the benefits of using a discrete
time model seem to be very limited.

On the other hand, Zanero et al in [8] propose a
sophisticated compartment based model, which treats
Internet as the interconnection of autonomous sys-
tems, i.e. subnetworks. Interconnections are a so-
called “bottlenecks”. The model assumes that inside a
single autonomous system (or inside a densely con-
nected region of an AS) the worm propagates unhin-
dered, following the RCS model. The authors motivate
the necessity of their model via the fact that the
network limited worm Slammer, which was using
UDP protocol for propagation ,was following the RCS
model till the “bottlenecks” were flooded by its scans.

Zou et al in [4] propose a two-factor propagation
model, which is more precise in modeling the satiation
phase taking into attention the human countermea-
sures and the decreased scan and infection rate due to
the large amount of scan-traffic. The same authors
have also published an article on modeling worm pro-
pagation under dynamic quarantine defense [6] and
evaluated the effectiveness of several existing and
perspective worm propagation strategies [5].

So as described above, all existing Internet worm
propagation models concentrate on epidemic con-
sequences modeling, i.e. forecasting the number of

infected computers at some specified moment of time
after the start of worm propagation, and are based on
the current malware propagation strategies.

4. Propagation strategy modeling
4.1. General assumptions

Applying genetic algorithm to propagation strategy
modeling and prediction seems to be a promising area,
since the algorithm itself simulates the natural evolu-
tion. In the current study, we have chosen to model
strategies for a theoretical Internet worm, which aims
infecting the largest amount of hosts during a fixed
relatively short period of time. The general algorithm
is presented in Figure 1.

Figure 1. Algorithm flow chart

During the initialization stage (Figure 1-1) initial
population of strategies is generated. Each strategy is
represented as a chromosome. At selection stage (Fi-
gure 1-2) strategies are selected through a fitness-
based process and in case termination condition (T.C.,
Figure 1-3) is not met evolutionary mechanisms are
started (Figure 1-4/5). In case termination condition is
reached, algorithm execution is ended (Figure 1-6).

4.2. Experiment conditions

Initial population is generated on a random basis,
i.e. each individual, representing separate worm pro-
pagation strategy is combined of random genes’
values. Population size N is equal to 50. Population
size remains constant after each new generation. The
combined termination condition was selected. The
algorithm would stop producing new generations in
two cases: either the number of generations have
reached 100, or the fitness evaluation of the fittest
individual in a population remains constant for 10
consecutive generations. The crossover point for each
pair of parents is selected randomly and defines the
gene, after which the crossover operation is perfor-
med. The mutation operator defines the gene of a
newly generated individual that should change value
from current to any other random value from the range
of possible gene values. Mutation operator is activated

135

N. Goranin, A. Čenys

4.3. Strategy representation to each newly generated individual with a 0.005
probability. Fitness proportionate selection was used.
After the assignment of fitness value to an individual
its selection probability is calculated according to (5),
that defines the individual’s probability to be selected
as a parent.

∑
=

= N

j
j

i
i

f

fp

1

, (5)

Each strategy is represented as a chromosome,
which is combined of genes, i.e. combination of
techniques and methods. Genes are divided into com-
pulsory (vitally necessary for worm to propagate, e.g.
scanning gene, exploit gene or controlling non-com-
pulsory genes) and non compulsory (i.e. giving a
worm some functionality, that may or may not result
in additional worm efficiency, e.g. remote adminis-
tration function). Compulsory genes are active in all
chromosomes. Genes that are not compulsory have an
additional activation gene. Such an assumption allows
modeling any combination of methods and techniques
and insures the fixed length of the chromosome.
Chromosome structure is described in Table 1.

where pi is the probability and fi is the fitness of
individual i in the population consisting of N (50 in
our case) individuals. In such a way more individuals
with higher fitness value get the higher chance to
leave the offspring than those with the lower one.

Table 1. Chromosome structure

No., Gene code (Aa /NC)
Gene description

Range of values or sample values Comments

1 / IP_GEN (A)
Defines potential victim’s IP
address generation
algorithm.

…
Random;
Random, excluding 127.0.0.0/8, loopback,
224.0.0.0/8, multicast;
Random, excluding 127.0.0.0/8, loopback,
224.0.0.0/8, multicast and LAN addresses;
Differentiated random: /8 with X%
probability, /16 - with Y% probability, Z% -
fully random;
Random /16 addresses in range from 128/8
to 224/8;
Random addresses from networks reserved
for home user networks (DSL, etc.);
…

X%, Y%, Z% - are generated randomly at initial
population generation phase, in case a differentiated
random algorithm was selected for generating individual
representing propagation strategy.
Since it is not possible to present all IP generation
algorithms used in the experiment, only a short
representative selection was presented in “Range of
values” column of IP_GEN gene.
In a chromosome representing propagation strategy only a
reference number to the IP generation algorithm, stored in
an external array, is provided.

2 / OS_PLATF(A)
Defines the OS platform the
worm can function on.

DOS, *nix (Unix, Solaris, Linux), Win 9x,
Win NT (NT, 2000, XP, Vista), Apple OS.

The proposed list of values is not exhaustive. It only
represents values that were used for the experiments.

3 / TRANSF (A)
Defines worm’s body
transfer mechanism

Connectionless (also called “Fire and
forget”)
Connection oriented

Connectionless mechanism uses UDP protocol for worm
body transfer. Assumption is done, that worm can fit in
one datagram.
Connection oriented mechanism uses TCP protocol for
worm transfer to the target host.
For simplicity reasons, we make an assumption that worm
can be transferred in both methods, as for example
attacking DNS (53/TCP,UDP) server. Without such an
assumption additional check would be necessary.

4 / EXPL_1 (A)
Defines the first exploit to be
included in worm’s body.
The first exploit is
compulsory, since at least
one exploit is necessary for
worm’s propagation.

Random exploit from the array of exploits
for the selected OS platform, for example
exploit based on CVE-2004-0297

Array of exploits for each platform consists of 20 exploits
with “remote” exploitation feature and is based on a list of
Common Vulnerabilities and Exposures (CVE) [21]. Each
exploit is assigned with a random percent number (due to
the lack of statistical information), which defines the part
of potentially vulnerable hosts (i.e. hosts running this
software type) among all hosts running this OS platform.

 5, 6, 7, 8, 9, 10, 11 /
EN_EXPL_N (N=2-8) (A)
Exploit EXPL_N activation
gene.

True/False Enables EXPL_N gene, if gene value is True.
The maximum number of exploits (including compulsory)
is limited to 8 for simplicity reasons.

12, 13, 14, 15, 16, 17, 18 /
EXPL_N (N=2-8) (AE)
See EXPL_1 for description

See EXPL_1 for description. See EXPL_1 for description.

19 / EN_MEM (A)
MEM activation gene.

True/False Enables MEM gene, if gene value is True.

20 / MEM (NC)
Defines type of memory the
worm uses.

RAM, file, DB Memory module is used to store information about
communication paths.
Additional information may also be stored.

136

Genetic Algorithm Based Internet Worm Propagation Strategy Modeling

No., Gene code (Aa /NC)
Gene description

Range of values or sample values Comments

21 / EN_HIER (A)
HIER activation gene.

True/False Enables HIER gene, if gene value is True

22 / HIER (AE)
Defines worm network
hierarchy

Autonomous
Centralized hierarchy;
Decentralized hierarchy.

Autonomous – each infected host can act as a
management source;
Centralized hierarchy – there exists only one management
center;
Decentralized hierarchy – several management centers
exist on a network.

23 / EN_COM (A)
COM activation gene.

True/False Enables COM gene, if gene value is True

24/ COM (AE)
Defines worms‘
communication algorithm.

Communicate via child/parent chain;
Communicate via direct connection between
infected and management hosts.

In a child/parent chain each individual worm knows only
the connection to its parent, i.e. the host from which it was
infected and parent knows only these hosts that were
infected by him. This mechanism may be used in
autonomous, centralized and decentralized hierarchies.
Direct communication assumes that each infected host
stores information, that is used to achieve management
host (in case of centralized h.), some or part of
management hosts (in case of decentralized h.)

25 / EN_EXEC (A)
EXEC activation gene.

True/False Enables EXEC gene, if gene value is True

26 / EXEC (AE)
Defines remote worm
management features.

Standard functionality
Update functionality
Standard + Update functionality

Standard functionality – supports remote execution of
functions, included in the worm’s body or functions of a
compromised host’s OS;
Update functionality – supports update or change of any
worm module.
Standard + Update – combined functionality of the two
previous techniques.

27 / EN_ADD (A)
ADD activation gene.

True/False Enables ADD gene if gene value is True.

28 / ADD (AE)
Defines additional worm
functionality features.

Deface local host; write to MBR to remain
after reboot; DDoS support; or any
combination of these techniques.

Assumption is done, that additional functionality is
performed prior to begging of IP generation and exploit
transfer.

29 / EN_EVOL (A)
EVOL activation gene.

True/False Enables EVOL gene if gene value is True.

30 / EVOL (A)
Defines worm’s evolution.

…
If only one exploit is used, then after 100
generations enable EXEC gene with Update
functionality, enable additional exploits,
update the worm’s body with additional
exploits.
…

Evolutionary gene allows the change of worm’s
propagation strategy after defined number of worm
generations or according to propagation conditions
analysis (propagation slow-down).
Since in our experiment we model worm’s propagation in
the initial stage, evolutionary genes do not play an
important role.

a – A – always active gene, AE – active if enabled by activation gene.

As it can be seen from the table, many genes are
related, for example, disabling memory gene will
effect in making hierarchy and communication genes
ineffective even if they were enabled. Despite this, the
proposed propagation strategy representation remains
universal even in case such gene combinations are
created in the initial population generation phase due
to the nature of genetic algorithms, since lifeless
combinations will be eliminated depending on the
fitness function evaluation criteria during the
evolutionary process and only the most fittest will
survive.

4.4. Fitness function

By definition the fitness function is a particular
type of objective function that quantifies the optima-
lity of a solution (i.e. an individual in a population) so

that the particular individual may be ranked against all
the other individuals. The task of our experiment is to
create a worm’s propagation strategy that aims infec-
ting the largest amount of computers in a limited
period of time. From [19] we can say that the propa-
gation strategy efficiency can be evaluated by value K,
i.e. the number of computers the first worm individual
in the wild can infect in a fixed time period. That
means that the higher is K, the higher is the fitness of
a propagations strategy. Our K calculations by fitness
function are based on combined statistical or empirical
evaluation of time expenditures of strategy’s function-
nality and probabilistic evaluation of strategy’s func-
tionality efficiency. The fitness function we used is the
following:

∑
=

⋅⋅⋅=
30

4
321)(

i
ippppkSF , (6)

137

N. Goranin, A. Čenys

where: S – evaluated strategy; p1 – probability that the
generated IP address exists and alive, p2 – probability
that host is running the OS platform that the worm
supports, p3 – probability that worm will be success-
fully transferred to the potential victim, pi – prob-
ability that the ith gene will result in an infected host,
i=4..30; k – the number of cycles the worm, using the
evaluated strategy, can perform in one second time
interval. k is calculated according to the following
expression

∑
=

= 30

1

1

j
jt

k , (7)

where tj are time expenditures needed for jth gene
functionality, j=1..30.

So the fitness function can be read as: “Strategy S
can perform k cycles per second. During each cycle
the worm, using this strategy, will infect a host in case
the generated IP address exists, the host is up and
running the OS platform the worm supports, worm is
successfully transferred to the target and any other
gene results in host infection. The calculated value of
the evaluated strategy is its K value.” In case the ith
gene is not active, p and t are equal to 0. p and t for
activation genes are always equal to 0. Simplification
is done while evaluating exploits’ probabilities: prob-
abilities are assumed to be rather low, i.e. less than
0.05; probabilities of all exploits are independent, i.e.
host can be infected only by one of the exploits. It is
also obvious that genes i=19..30 do not provide
additional probability to host infection (i.e. p=0) and
differ only in time consumption. Inclusion of these

genes in the model is done in order to provide a wide
model framework, which enables evaluation of propa-
gation strategy features, different from propagation
speed, such as survivability, visibility, manageability,
etc.

Since the presentation of all time expenditures and
probabilistic values for all possible strategy techniques
listed or referenced in Table 1 is out of topic of this
article we present a sample calculation of K value for
a random propagation strategy, generated during the
initial population generation phase. Probabilistic and
time expenditure values for the sample strategy are
presented in Table 2.

Si=(IP_GEN="Random, excluding 127.0.0.0/8,
loopback, 224.0.0.0/8, multicast"; OS_PLATF="Apple
OS"; TRANSF="Connection oriented"; EXPL_1="
CVE-2007-3876"*; EN_EXPL_2="False";
EN_EXPL_3="False"; EN_EXPL_4="False";
EN_EXPL_5="True"; EN_EXPL_6="False";
EN_EXPL_7="False"; EN_EXPL_8="False";
EXPL_2="-"; EXPL_3="-"; EXPL_4="-"; EXPL_5="
CVE-2004-0485"**; EXPL_6="-"; EXPL_7="-";
EXPL_8="-"; EN_MEM="False"; MEM="-";
EN_HIER="True"; HIER="Autonomous";
EN_COM="False"; COM="-"; EN_EXEC="True";
EXEC="Update functionality"; EN_ADD="True";
ADD="Write to MBR to remain after reboot";
EN_EVOL="False"; EVOL="-")
* – Apple Mac OS X SMB Vulnerability
** – Apple Mac OS X URI Handler Arbitrary Code
Execution Vulnerability.

Table 2. Parameter values used in fitness calculation of the sample strategy Si

Gene Nr. 1 2 3 4 5 6 7 8 9 10
p 0.6 0.04 0.95 0.04 0 0 0 0 0 0
t 0.01 0.005 0.15 0.005 0 0 0 0 0 0
Gene Nr. 11 12 13 14 15 16 17 18 19 20
p 0 0 0 0 0.01 0 0 0 0 0
t 0 0 0 0 0.005 0 0 0 0 0
Gene Nr. 21 22 23 24 25 26 27 28 29 30
p 0 0 0 0 0 0 0 0 0 0
t 0 0.01 0 0 0 0.005 0 0.005 0 0

k=5.13; F(Si)=0.0058

For comparison, the obtained K value for CodeRed
v.2 worm in case it would use only one thread instead
of 100 is much higher and is equal to 0.015. In case of
100 threads, K would reach 1.5, which is rather similar
to the observed CodeRed v.2 K value of 1.6 [8].
Differences between calculated and observed values
of K can be explained by inaccuracies in estimations
of time consumption.

4.5. Experiment results, discussion and future work

While modeling the evolution of propagation stra-
tegies, that aim infecting the maximum number of

hosts in a limited period of time, 10 algorithm runs
were performed. The highest K value obtained was
equal to 1.18 (equivalent to 118 in case of 100
threads) and corresponded to the rather simple strategy
that got use of Windows platform (p=0.9), random
(excluding 127.0.0.0/8, loopback, 224.0.0.0/8, multi-
cast) IP generation mechanism, connectionless UDP
based transfer mechanism (p=0.8, t=0.01) and 4
exploits with rather high to high probabilities (0.05;
0.05; 0.045; 0.035). All other genes were disabled.
The change in the fitness of the whole population and
the fitness of the best individual in case when the
highest K value was obtained, can be seen on Figure 2.

138

Genetic Algorithm Based Internet Worm Propagation Strategy Modeling

Figure 2. Change in fitness of the whole population and the
best individual

Although we cannot claim that the found solution
is optimal, the strategy of using simple “fire and
forget” mechanism on a popular platform and a
combination of several exploits with high probability
seems to be very effective and challenging for coun-
termeasure planning. Partially the proof of this con-
cept was provided by the creators of the Slammer
worm, which used only one exploit but still was much
quicker than connection oriented CodeRed v.2 (Slam-
mer doubling time was 8.5 sec. compared to CodeRed
v.2 37 min. [8])

The proposed model provides a general framework
for evaluating different worms’ propagation strategy
parameters (speed, survivability, manageability, etc.).
The performed tests have shown the model’s applica-
bility. Still some improvements should be made in
order to make its use more practical. In case of pro-
pagation rate at initial propagation stage evaluation,
discussed in this article, conditional probabilities
should be introduced for exploits in order to evaluate
the cases when single host can be infected by two or
more different exploits, more precise statistical eva-
luation of time consumption by different worm me-
chanisms should be made, check of genes’ relations
should be included into fitness function (e.g. if the
specific exploit can be transferred via UDP or TCP
protocol). We also plan extending the model for coun-
termeasures planning. In that case, two co-evolving
populations of propagation strategies and counter-
measure application strategies will be used and the
efficiency of each strategy will be evaluated against
the array of opposing strategies (i.e. countermeasure
application strategy’s efficiency would be evaluated in
measure of propagation strategy decrease rate and vice
versa). But even in the current state the model can be
used for predicting potential propagation strategies.

5. Conclusions

In this article the genetic algorithm based model
for Internet worm’s propagation strategy evolution
modeling at initial propagation phase was proposed.
The model consists of a propagation strategy represen-
tation structure, genetic algorithm acting under speci-
fied conditions and a fitness function, which evaluates
the strategy’s infection rate at the initial propagation
phase, leaning on probability and time consumption
estimations of strategy’s used methods.

The proposed model was tested on existing worms’
propagation strategies with known infection probabi-
lities. The tests have proved the effectiveness of the
model in evaluating propagation rates. The modeling
of perspective propagation strategies aiming to infect
the highest number of computers in a limited period of
time has shown that these strategies tend to evolve to
rather simple solutions, making use of a popular OS
platform, quick connectionless UDP based transfer
mechanisms and a combination of several (4-5)
exploits with high infection probability.

The main model application area is countermea-
sures planning, since the model predicts the propaga-
tion strategy trends. The proposed model can be also
used as a framework for evolution modeling of other
parameters of propagation strategies, such as popula-
tion visibility, manageability, etc., if fitness function
modification is made. Several future model improve-
ments and extensions were discussed.

References
 [1] A. Chittur. Model Generation for an Intrusion

Detection System Using Genetic Algorithms. Internet
link: http://www1.cs.columbia.edu/ids/publications/
gaids-thesis01.pdf, 2001.

 [2] A. Gostev. Kaspersky Security Bulletin 2006: Mal-
ware Evolution. Technical report. Kaspersky Lab,
2007.

 [3] C. Birchenhall, N. Kastrinos, S. Metcalfe. Genetic
algorithms in evolutionary modeling. Journal of Evo-
lutionary Economics, 1997, Vol.7, 375-393.

 [4] C.C. Zou, W. Gong, D. Towsley. Code Red Worm
Propagation Modeling and Analysis. Proceedings of
the 9th ACM conference on Computer and communi-
cations security, 2002, 138-147.

 [5] C.C. Zou, W. Gong, D. Towsley. On the performance
of Internet worm scanning strategies. Performance
Evaluation, 2005, Vol.63, 700-723.

 [6] C.C. Zou, W. Gong, D. Towsley. Worm Propagation
Modeling and Analysis under Dynamic Quarantine
Defense. Proceedings of WORM’03, 2003, 10.

 [7] C. Schmugar. Malware estimation for 2007. McAfee
News. McAfee Avert Labs, 2007.

 [8] G. Serazzi, S. Zanero. Computer Virus Propagation
Models. Lecture Notes in Computer Science.
SPRINGER-VERLAG, 2004, 26-50.

 [9] J. Holland. Adoption in natural and artificial systems.
The MIT press, 1975, 211.

139

N. Goranin, A. Čenys

[10] J. Nazario. Defense and Detection Strategies against
Internet Worms. Artech House, Inc., 2004, 319.

[11] J. Stender, E. Hillebrand, J. Kingdon. Genetic
Algorithms in Optimization, Simulation and modeling.
IOS Press, 1994.

[12] K. Ramachandran, B. Sikdar. Modeling malware
propagation in Gnutella type peer-to-peer networks.
Proceedings of Parallel and Distributed Processing
Symposium 2006. IPDPS, 2006, Vol.20, No.25-29, 8.

[13] L. Corrons. PandaLabs' Annual Report. Technical re-
port. PandaLabs, 2007.

[14] LR Ryšių reguliavimo tarnyba. 2007-ųjų metų tinklų ir
informacijos saugumo būklės Lietuvoje tyrimas, įmo-
nių apklausa. Technical report. LR Ryšių reguliavimo
tarnyba, 2007.

[15] M. Garetto, W. Gong, D. Towsley. Modeling Mal-
ware Spreading Dynamics. Proceedings of
INFOCOM, 2003.

[16] P. Szor. The Art of Computer Virus Research and
Defense. Addison Wesley Professional, 2005, 744.

[17] PricewaterhouseCoopers. Information security brea-
ches survey 2006. Technical report. UK Department
of Trade and Industry, 2006.

[18] R.R. Hill, G.A. McIntyre, S. Narayanan. Genetic
Algorithms for Model Optimization. Proceedings of
Simulation Technology and Training Conference
(SimTechT), 2001.

[19] S. Staniford, V. Paxson, N. Weaver. How to 0wn the
Internet in Your Spare Time. Proceedings of the 11th
USENIX Security Symposium, 2002, 149-167.

[20] SANS Institute. SANS Top-20 2007 security risks.
Technical report. SANS Institute, 2007.

[21] The MITRE Corporation. National Vulnerability
Database, 2007.

[22] TrendMicro Incorporated. Taxonomy of Botnet
Threats. Whitepaper, 2006.

[23] Z. Chen, L. Gao, K. Kwiat. Modeling the Spread of
Active Worms. Proceedings of IEEE INFOCOM
2003, IEEE, 2003, Vol.3, 1890-1900.

Received January 2008.

