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Abstract. Existing malware propagation models mainly concentrate on malware epidemic consequences modeling, 
i.e. forecasting the number of infected computers, and are based only on current malware propagation strategies. In this 
article we propose a genetic algorithm based model, which aims at evaluating existing as well as modeling other 
potentially dangerous Internet worms’ propagation strategies. The efficiency of strategies is evaluated by applying the 
proposed fitness function. Genetic algorithm is selected as a modeling tool taking into consideration the efficiency of 
this method while solving optimization and modeling problems with large solution space. The main application of the 
proposed model is a countermeasures planning in advance and computer network design optimization. 

 
 

1. Introduction 

According to [17], almost 3/5 of all companies in 
the United Kingdom have faced different kinds of 
information security breaches in 2006, almost 50% of 
which were caused by malware, i.e. viruses, worms, 
Trojans, etc, i.e. software that was created with the 
aim to harm computer software or to infect it without 
the permission and knowledge of a legal user [16]. In 
Lithuania according to The Communications Regu-
latory Authority of the Republic of Lithuania [14], 
approximately 70% of information security breaches 
that affected companies and home users were caused 
by malware. In 2006 the total number of new mali-
cious programs was up 41% from 2005 [2] and even 
up to 172% according to Corrons research [13]. One 
more 2006 year trend marked by Corrons [13] is the 
use of worms as a means for propagation of other 
malware. Data for year 2007 are incomplete but, 
according to [7], prediction at a 60% percent increase 
from 2006 in unique malware is expected. There have 
not been any new large-scale worms targeting Win-
dows services since 2005. On the other hand, vulner-
abilities found in anti-virus, backup or other applica-
tion software, can result in worms later. Most notable 
in 2007 was the worm exploiting the Symantec anti-
virus buffer overflow flaw [20].  

Despite the different percent presented by different 
antivirus companies [2, 13] and incomplete data for 
2007 it is obvious that the rate of malware usage by e-
criminals has the tendency to increase and protection 
against it is a crucial task. Worms remain a significant 
part of all malware and may be defined as one of the 
most potential threats in 2008. Worms are network 

viruses, primarily replicating on networks. Usually a 
worm will execute itself automatically on a remote 
machine without any extra help from a user. However, 
there are worms, such as mailer or mass-mailer 
worms, that will not always automatically execute 
themselves without the help of a user [16]. In this 
article we analyze and model Internet worm propaga-
tion strategies, since their replication mechanisms 
differ significantly from mailer and mass-mailer 
worms. Propagation of most worms is rapid (com-
pared with classical computer viruses) and aggressive. 
Worms such as Code Red and Nimda have been per-
sistent for longer than 8 months since their introduce-
tion date. As worms spread through nearly all net-
works, they find nearly all of the weakest hosts 
accessible and begin their lifecycle anew on these 
systems. This then gives worms a broad base of instal-
lation from which to act [10].  

Prior information security analysis techniques are 
not effective in evaluating worms. The main issues 
faced in worm evaluation include the scale and propa-
gation of the infections [10]. Modeling allows Internet 
worm researchers to predict damage for a new worm 
threat [4], understand the behavior of malware, 
including spreading characteristics [15], understand 
the factors affecting the malware spread, determine 
the required effectiveness of countermeasures in order 
to control the spread and facilitate network designs 
that are resilient to malware attacks [12], predict the 
failures of the global network infrastructure [8]. Our 
proposed model allows evaluating existing and mo-
deling other potentially dangerous Internet worms’ 
propagation strategies. The main application of a 
proposed model is a countermeasures planning in 
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advance and computer network design optimization. 
Genetic algorithm [9] was selected as a modeling tool 
since it simulates natural selection by means of repea-
tedly evolving population of solutions (malware pro-
pagation strategies in our case) and therefore may be 
used for predicting and modeling possible future pro-
pagation strategies. Genetic algorithm modeling has 
been proved to be effective in many areas such as 
business decision making, bioinformatics and other [1, 
3, 11, 18]. 

2. Current worm propagation strategies 

We define the Internet worms propagation strategy 
as a combination of methods and techniques, used by 
the worm to achieve tasks assigned to it by the worm 
creator. So the strategy suitable to achieve one specific 
task (e.g., creating the botnet [22]) may be not useful 
for another (e.g., disrupting Internet functioning). 
Modern worms are usually created on a modular basis 
and may contain all or some of the following parts 
[10]: a reconnaissance module, that scans the Internet 
for vulnerable hosts; an attack module, that may 
exploit from one to many known vulnerabilities at 
potentially vulnerable host; a communication module 
that allows worms to communicate between them-
selves or to transfer information to the worm manage-
ment center; a command module, that allows to accept 
commands; and an intelligence module, that insures 
functioning of the communication module, since it 
contains information how to find a neighbor worm for 
communication. Specific methods used in each of the 
modules are called patterns and a strategy can be also 
defined as a combination of patterns. A strategy is also 
dependent on worm introduction techniques, i.e. me-
thod used to release worm to the wild, connection 
protocol used (e.g. TCP or UDP), etc. Since the 
number of existing and historic worms is high, we will 
describe only two propagation strategies used by 
CodeRed and Ramen, since they represent two differ-
rent attitudes in complexity, vulnerable platform and 
functionality and can provide an understanding of 
strategies used in the wild.  

On June 18th 2001 a serious Windows IIS vulner-
ability was discovered. On July 13th 2001 Code Red 
worm version 1 that exploited this single vulnerability 
was released. Due to a code error in its random 
number generator, it did not propagate well. 10:00 
UTC of July 19th Code Red version 2 was released 
with the corrected random generator. It generated 100 
threads. Each of the first 99 threads randomly chose 
one IP address and tried to set up connection on port 
80 with the target machine (if the system was an 
English Windows 2000 system, the 100th worm thread 
would deface the infected system’s web site, otherwise 
the thread was used to infect other systems, too) [4]. 
The worm was programmed to scan hosts in /8 with a 
50% probability, /16 – with 37.5% probability and 
with 12.5% probability it would scan a totally random 
network [10]. Subnetworks 127.0.0.0/8, loopback, 

224.0.0.0/8, multicast were excluded [8]. If the 
connection was successful, the worm would send a 
copy of itself to the victim web server to compromise 
it and continue to find another web server. If the 
victim was not a web server or the connection could 
not be setup, the worm thread would randomly gene-
rate another IP address to probe. The timeout of the 
Code Red connection request was programmed to be 
21 seconds. Netcraft web server survey showed that 
there were about 6 million Windows IIS web servers 
at the end of June 2001 [4]. More than 350.000 of 
them were infected in several hours [19]. 

The Ramen worm appeared in January 2001. 
Ramen attacked RedHat Linux 6.0, 6.1, 6.2, and 7.0 
installations, taking advantage of the default instal-
lation and three known vulnerabilities: FTPd string 
format exploits against wu-ftpd 2.6.0, RPC.statd Li-
nux unformatted strings exploits, and LPR string 
format attacks. This vulnerable software could be 
installed on any Linux system, meaning the Ramen 
worm can affect other Linux systems, as well. The 
worm acted in the following way: defaced any Web 
sites it found; disabled anonymous FTP access to the 
system; disabled and removed the vulnerable rpc.statd 
and lpd daemons, and ensured the worm would be 
unable to attack the host again; installed a Web server 
on TCP port 27374, used to pass the worm payload to 
the child infections; removed any host access re-
strictions and ensured that the worm software would 
start at boot time; notified the owner (worm creator) of 
two e-mail accounts of the presence of the worm 
infection. Worm then began scanning for new victim 
hosts by generating random class B (/16) address 
blocks (scans were restricted from 128/8 to 224/8, the 
most heavily used section of the Internet). Web server 
acted as a small command interface with a very 
limited set of possible actions. The mailboxes served 
as the intelligence database, containing information 
about the nodes on the network. This allowed the 
owners of the database to be able to contact infected 
systems and operate them as needed [10]. 

3. Prior and related work 

The Random Constant Spread (RCS) model [19] 
was developed by Staniford et al. using empirical data 
derived from the outbreak of the CodeRed worm. It 
assumes that the worm has a good random number 
generator that is properly seeded. The model assumes 
that a machine cannot be compromised multiple times 
and operates several variables: K is the constant ave-
rage compromise rate, which is dependant on worm 
processor speed, network bandwidth and location of 
the infected host; a(t) is the proportion of vulnerable 
machines which have been compromised at the instant 
t, Na(t) is the number of infected hosts, each of which 
scans other vulnerable machines at a rate K per unit of 
time. But since a portion a(t) of the vulnerable ma-
chines is already infected, only K·(1-a(t)) new infec-
tions will be generated by each infected host, per unit 
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of time. The number n of machines that will be 
compromised in the interval of time dt (in which a is 
assumed to be constant) is thus given by:  

.)1()( dtaKNan −⋅=  (1) 

N is assumed to be a large constant address space 
so the chance that the worm would hit the already 
infected host is negligible. From this hypothesis, 
n=d(Na)=Nda. It is also possible to write  

.)1()( dtaKNaNda −⋅=  (2) 

From this we have 
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So the model can predict the number of infected 
hosts at time t if K is known. The higher is K, the 
quicker the satiation phase will be achieved by worm. 
As [10] states, although more complicated models can 
be derived, most network worms will follow this 
trend. So in our article we will use this model to 
obtain a measure of the growth rate of the worm 
which uses a specific strategy. 

Chen, Gao and Kwiat [23] propose the AAWP 
discrete time model, in the hope to better capture the 
discrete time behavior of a worm. However, according 
to [8], continuous model is appropriate for large scale 
models, and the epidemiological literature is clear in 
this direction. The assumptions on which the AAWP 
model is based are not completely correct, but it is 
enough to note that the benefits of using a discrete 
time model seem to be very limited.  

On the other hand, Zanero et al in [8] propose a 
sophisticated compartment based model, which treats 
Internet as the interconnection of autonomous sys-
tems, i.e. subnetworks. Interconnections are a so-
called “bottlenecks”. The model assumes that inside a 
single autonomous system (or inside a densely con-
nected region of an AS) the worm propagates unhin-
dered, following the RCS model. The authors motivate 
the necessity of their model via the fact that the 
network limited worm Slammer, which was using 
UDP protocol for propagation ,was following the RCS 
model till the “bottlenecks” were flooded by its scans.  

Zou et al in [4] propose a two-factor propagation 
model, which is more precise in modeling the satiation 
phase taking into attention the human countermea-
sures and the decreased scan and infection rate due to 
the large amount of scan-traffic. The same authors 
have also published an article on modeling worm pro-
pagation under dynamic quarantine defense [6] and 
evaluated the effectiveness of several existing and 
perspective worm propagation strategies [5]. 

So as described above, all existing Internet worm 
propagation models concentrate on epidemic con-
sequences modeling, i.e. forecasting the number of 

infected computers at some specified moment of time 
after the start of worm propagation, and are based on 
the current malware propagation strategies. 

4. Propagation strategy modeling 
4.1. General assumptions 

Applying genetic algorithm to propagation strategy 
modeling and prediction seems to be a promising area, 
since the algorithm itself simulates the natural evolu-
tion. In the current study, we have chosen to model 
strategies for a theoretical Internet worm, which aims 
infecting the largest amount of hosts during a fixed 
relatively short period of time. The general algorithm 
is presented in Figure 1. 

 
Figure 1. Algorithm flow chart 

During the initialization stage (Figure 1-1) initial 
population of strategies is generated. Each strategy is 
represented as a chromosome. At selection stage (Fi-
gure 1-2) strategies are selected through a fitness-
based process and in case termination condition (T.C., 
Figure 1-3) is not met evolutionary mechanisms are 
started (Figure 1-4/5). In case termination condition is 
reached, algorithm execution is ended (Figure 1-6). 

4.2. Experiment conditions 

Initial population is generated on a random basis, 
i.e. each individual, representing separate worm pro-
pagation strategy is combined of random genes’ 
values. Population size N is equal to 50. Population 
size remains constant after each new generation. The 
combined termination condition was selected. The 
algorithm would stop producing new generations in 
two cases: either the number of generations have 
reached 100, or the fitness evaluation of the fittest 
individual in a population remains constant for 10 
consecutive generations. The crossover point for each 
pair of parents is selected randomly and defines the 
gene, after which the crossover operation is perfor-
med. The mutation operator defines the gene of a 
newly generated individual that should change value 
from current to any other random value from the range 
of possible gene values. Mutation operator is activated 
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4.3. Strategy representation to each newly generated individual with a 0.005 
probability. Fitness proportionate selection was used. 
After the assignment of fitness value to an individual 
its selection probability is calculated according to (5), 
that defines the individual’s probability to be selected 
as a parent.  

∑
=

= N

j
j

i
i

f

fp

1

, (5) 

Each strategy is represented as a chromosome, 
which is combined of genes, i.e. combination of 
techniques and methods. Genes are divided into com-
pulsory (vitally necessary for worm to propagate, e.g. 
scanning gene, exploit gene or controlling non-com-
pulsory genes) and non compulsory (i.e. giving a 
worm some functionality, that may or may not result 
in additional worm efficiency, e.g. remote adminis-
tration function). Compulsory genes are active in all 
chromosomes. Genes that are not compulsory have an 
additional activation gene. Such an assumption allows 
modeling any combination of methods and techniques 
and insures the fixed length of the chromosome. 
Chromosome structure is described in Table 1. 

where pi is the probability and fi is the fitness of 
individual i in the population consisting of N (50 in 
our case) individuals. In such a way more individuals 
with higher fitness value get the higher chance to 
leave the offspring than those with the lower one. 

Table 1. Chromosome structure 

No., Gene code (Aa /NC) 
Gene description 

Range of values or sample values Comments 

1 / IP_GEN (A) 
Defines potential victim’s IP 
address generation 
algorithm. 

… 
Random; 
Random, excluding 127.0.0.0/8, loopback, 
224.0.0.0/8, multicast; 
Random, excluding 127.0.0.0/8, loopback, 
224.0.0.0/8, multicast and LAN addresses; 
Differentiated random: /8 with X% 
probability, /16 - with Y% probability, Z% - 
fully random; 
Random /16 addresses in range from 128/8 
to 224/8; 
Random addresses from networks reserved 
for home user networks (DSL, etc.);  
… 

X%, Y%, Z% - are generated randomly at initial 
population generation phase, in case a differentiated 
random algorithm was selected for generating individual 
representing propagation strategy. 
Since it is not possible to present all IP generation 
algorithms used in the experiment, only a short 
representative selection was presented in “Range of 
values” column of IP_GEN gene. 
In a chromosome representing propagation strategy only a 
reference number to the IP generation algorithm, stored in 
an external array, is provided. 

2 / OS_PLATF(A) 
Defines the OS platform the 
worm can function on. 

DOS, *nix (Unix, Solaris, Linux), Win 9x, 
Win NT (NT, 2000, XP, Vista), Apple OS. 

The proposed list of values is not exhaustive. It only 
represents values that were used for the experiments.  

3 / TRANSF (A) 
Defines worm’s body 
transfer mechanism 

Connectionless (also  called “Fire and 
forget”) 
Connection oriented 

Connectionless mechanism uses UDP protocol for worm 
body transfer. Assumption is done, that worm can fit in 
one datagram. 
Connection oriented mechanism uses TCP protocol for 
worm transfer to the target host. 
For simplicity reasons, we make an assumption that worm 
can be transferred in both methods, as for example 
attacking DNS (53/TCP,UDP) server. Without such an 
assumption additional check would be necessary. 

4 / EXPL_1 (A) 
Defines the first exploit to be 
included in worm’s body.   
The first exploit is 
compulsory, since at least 
one exploit is necessary for 
worm’s propagation. 

Random exploit from the array of exploits 
for the selected OS platform, for example 
exploit based on CVE-2004-0297 

Array of exploits for each platform consists of 20 exploits 
with “remote” exploitation feature and is based on a list of 
Common Vulnerabilities and Exposures (CVE) [21]. Each 
exploit is assigned with a random percent number (due to 
the lack of statistical information), which defines the part 
of potentially vulnerable hosts (i.e. hosts running this 
software type) among all hosts running this OS platform.  

 5, 6, 7, 8, 9, 10, 11 / 
EN_EXPL_N (N=2-8) (A) 
Exploit EXPL_N activation 
gene. 

True/False Enables EXPL_N gene, if gene value is True. 
The maximum number of exploits (including compulsory) 
is limited to 8 for simplicity reasons. 

12, 13, 14, 15, 16, 17, 18 / 
EXPL_N (N=2-8) (AE) 
See EXPL_1 for description 

See EXPL_1 for description. See EXPL_1 for description. 

19 / EN_MEM (A) 
MEM activation gene. 

True/False Enables MEM gene, if gene value is True.  

20 / MEM (NC) 
Defines type of memory the 
worm uses. 

RAM, file, DB Memory module is used to store information about 
communication paths.  
Additional information may also be stored. 
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No., Gene code (Aa /NC) 
Gene description 

Range of values or sample values Comments 

21 / EN_HIER (A) 
HIER activation gene. 

True/False Enables HIER gene, if gene value is True 

22 / HIER (AE) 
Defines worm network 
hierarchy 

Autonomous 
Centralized hierarchy; 
Decentralized hierarchy. 

Autonomous – each infected host can act as a 
management source; 
Centralized hierarchy – there exists only one management 
center; 
Decentralized hierarchy – several management centers 
exist on a network. 

23 / EN_COM (A) 
COM activation gene. 

True/False Enables COM gene, if gene value is True 

24/ COM (AE) 
Defines worms‘ 
communication algorithm. 

Communicate via child/parent chain;  
Communicate via direct connection between 
infected and management hosts. 

In a child/parent chain each individual worm knows only 
the connection to its parent, i.e. the host from which it was 
infected and parent knows only these hosts that were 
infected by him. This mechanism may be used in 
autonomous, centralized and decentralized hierarchies. 
Direct communication assumes that each infected host 
stores information, that is used to achieve management 
host (in case of centralized h.), some or part of 
management hosts (in case of decentralized h.) 

25 / EN_EXEC (A) 
EXEC activation gene. 

True/False Enables EXEC gene, if gene value is True 

26 / EXEC (AE) 
Defines remote worm 
management features. 

Standard functionality 
Update functionality 
Standard + Update functionality 
 

Standard functionality – supports remote execution of 
functions, included in the worm’s body or functions of a 
compromised host’s OS; 
Update functionality – supports update or change of any 
worm module. 
Standard + Update – combined functionality of the two 
previous techniques.  

27 / EN_ADD (A) 
ADD activation gene. 

True/False Enables ADD gene if gene value is True. 

28 / ADD (AE) 
Defines additional  worm 
functionality  features.  

Deface local host; write to MBR to remain 
after reboot; DDoS support; or any 
combination of these techniques. 

Assumption is done, that additional functionality is 
performed prior to begging of IP generation and exploit 
transfer. 

29 / EN_EVOL (A) 
EVOL activation gene. 

True/False Enables EVOL gene if gene value is True. 

30 / EVOL (A) 
Defines worm’s evolution. 

… 
If only one exploit is used, then after 100 
generations enable EXEC gene with Update 
functionality, enable additional exploits, 
update the worm’s body with additional 
exploits. 
… 

Evolutionary gene allows the change of worm’s 
propagation strategy after defined number of worm 
generations or according to propagation conditions 
analysis (propagation slow-down).  
Since in our experiment we model worm’s propagation in 
the initial stage, evolutionary genes do not play an 
important role.   

a – A – always active gene, AE – active if enabled by activation gene. 

As it can be seen from the table, many genes are 
related, for example, disabling memory gene will 
effect in making hierarchy and communication genes 
ineffective even if they were enabled. Despite this, the 
proposed propagation strategy representation remains 
universal even in case such gene combinations are 
created in the initial population generation phase due 
to the nature of genetic algorithms, since lifeless 
combinations will be eliminated depending on the 
fitness function evaluation criteria during the 
evolutionary process and only the most fittest will 
survive.  

4.4. Fitness function 

By definition the fitness function is a particular 
type of objective function that quantifies the optima-
lity of a solution (i.e. an individual in a population) so 

that the particular individual may be ranked against all 
the other individuals. The task of our experiment is to 
create a worm’s propagation strategy that aims infec-
ting the largest amount of computers in a limited 
period of time. From [19] we can say that the propa-
gation strategy efficiency can be evaluated by value K, 
i.e. the number of computers the first worm individual 
in the wild can infect in a fixed time period. That 
means that the higher is K, the higher is the fitness of 
a propagations strategy. Our K calculations by fitness 
function are based on combined statistical or empirical 
evaluation of time expenditures of strategy’s function-
nality and probabilistic evaluation of strategy’s func-
tionality efficiency. The fitness function we used is the 
following: 

∑
=

⋅⋅⋅=
30

4
321)(

i
ippppkSF , (6) 

137 



N. Goranin, A. Čenys 

where: S – evaluated strategy; p1 – probability that the 
generated IP address exists and alive, p2 – probability 
that host is running the OS platform that the worm 
supports, p3 – probability that worm will be success-
fully transferred to the potential victim, pi – prob-
ability that the ith gene will result in an infected host, 
i=4..30; k – the number of cycles the worm, using the 
evaluated strategy, can perform in one second time 
interval. k is calculated according to the following 
expression 

∑
=

= 30

1

1

j
jt

k , (7) 

where tj are time expenditures needed for jth gene 
functionality, j=1..30.  

So the fitness function can be read as: “Strategy S 
can perform k cycles per second. During each cycle 
the worm, using this strategy, will infect a host in case 
the generated IP address exists, the host is up and 
running the OS platform the worm supports, worm is 
successfully transferred to the target and any other 
gene results in host infection. The calculated value of 
the evaluated strategy is its K value.” In case the ith 
gene is not active, p and t are equal to 0. p and t for 
activation genes are always equal to 0. Simplification 
is done while evaluating exploits’ probabilities: prob-
abilities are assumed to be rather low, i.e. less than 
0.05; probabilities of all exploits are independent, i.e. 
host can be infected only by one of the exploits. It is 
also obvious that genes i=19..30 do not provide 
additional probability to host infection (i.e. p=0) and 
differ only in time consumption. Inclusion of these 

genes in the model is done in order to provide a wide 
model framework, which enables evaluation of propa-
gation strategy features, different from propagation 
speed, such as survivability, visibility, manageability, 
etc.  

Since the presentation of all time expenditures and 
probabilistic values for all possible strategy techniques 
listed or referenced in Table 1 is out of topic of this 
article we present a sample calculation of K value for 
a random propagation strategy, generated during the 
initial population generation phase. Probabilistic and 
time expenditure values for the sample strategy are 
presented in Table 2.  

Si=( IP_GEN="Random, excluding 127.0.0.0/8, 
loopback, 224.0.0.0/8, multicast"; OS_PLATF="Apple 
OS"; TRANSF="Connection oriented"; EXPL_1=" 
CVE-2007-3876"*; EN_EXPL_2="False"; 
EN_EXPL_3="False"; EN_EXPL_4="False"; 
EN_EXPL_5="True"; EN_EXPL_6="False"; 
EN_EXPL_7="False"; EN_EXPL_8="False"; 
EXPL_2="-"; EXPL_3="-"; EXPL_4="-"; EXPL_5=" 
CVE-2004-0485"**; EXPL_6="-"; EXPL_7="-"; 
EXPL_8="-"; EN_MEM="False"; MEM="-"; 
EN_HIER="True"; HIER="Autonomous"; 
EN_COM="False"; COM="-"; EN_EXEC="True"; 
EXEC="Update functionality"; EN_ADD="True"; 
ADD="Write to MBR to remain after reboot"; 
EN_EVOL="False"; EVOL="-") 
*  – Apple Mac OS X SMB Vulnerability 
**  – Apple Mac OS X URI Handler Arbitrary Code 
Execution Vulnerability. 

Table 2. Parameter values used in fitness calculation of the sample strategy Si

Gene Nr. 1 2 3 4 5 6 7 8 9 10 
p 0.6 0.04 0.95 0.04 0 0 0 0 0 0 
t  0.01 0.005 0.15 0.005 0 0 0 0 0 0 
Gene Nr. 11 12 13 14 15 16 17 18 19 20 
p 0 0 0 0 0.01 0 0 0 0 0 
t 0 0 0 0 0.005 0 0 0 0 0 
Gene Nr. 21 22 23 24 25 26 27 28 29 30 
p 0 0 0 0 0 0 0 0 0 0 
t 0 0.01 0 0 0 0.005 0 0.005 0 0 

k=5.13; F(Si)=0.0058 

For comparison, the obtained K value for CodeRed 
v.2 worm in case it would use only one thread instead 
of 100 is much higher and is equal to 0.015. In case of 
100 threads, K would reach 1.5, which is rather similar 
to the observed CodeRed v.2 K value of 1.6 [8]. 
Differences between calculated and observed values 
of K can be explained by inaccuracies in estimations 
of time consumption.  

4.5. Experiment results, discussion and future work 

While modeling the evolution of propagation stra-
tegies, that aim infecting the maximum number of 

hosts in a limited period of time, 10 algorithm runs 
were performed. The highest K value obtained was 
equal to 1.18 (equivalent to 118 in case of 100 
threads) and corresponded to the rather simple strategy 
that got use of Windows platform (p=0.9), random 
(excluding 127.0.0.0/8, loopback, 224.0.0.0/8, multi-
cast) IP generation mechanism, connectionless UDP 
based transfer mechanism (p=0.8, t=0.01) and 4 
exploits with rather high to high probabilities (0.05; 
0.05; 0.045; 0.035). All other genes were disabled. 
The change in the fitness of the whole population and 
the fitness of the best individual in case when the 
highest K value was obtained, can be seen on Figure 2. 
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Figure 2. Change in fitness of the whole population and the 
best individual 

Although we cannot claim that the found solution 
is optimal, the strategy of using simple “fire and 
forget” mechanism on a popular platform and a 
combination of several exploits with high probability 
seems to be very effective and challenging for coun-
termeasure planning. Partially the proof of this con-
cept was provided by the creators of the Slammer 
worm, which used only one exploit but still was much 
quicker than connection oriented CodeRed v.2 (Slam-
mer doubling time was 8.5 sec. compared to CodeRed 
v.2 37 min. [8]) 

The proposed model provides a general framework 
for evaluating different worms’ propagation strategy 
parameters (speed, survivability, manageability, etc.). 
The performed tests have shown the model’s applica-
bility. Still some improvements should be made in 
order to make its use more practical. In case of pro-
pagation rate at initial propagation stage evaluation, 
discussed in this article, conditional probabilities 
should be introduced for exploits in order to evaluate 
the cases when single host can be infected by two or 
more different exploits, more precise statistical eva-
luation of time consumption by different worm me-
chanisms should be made, check of genes’ relations 
should be included into fitness function (e.g. if the 
specific exploit can be transferred via UDP or TCP 
protocol). We also plan extending the model for coun-
termeasures planning. In that case, two co-evolving 
populations of propagation strategies and counter-
measure application strategies will be used and the 
efficiency of each strategy will be evaluated against 
the array of opposing strategies (i.e. countermeasure 
application strategy’s efficiency would be evaluated in 
measure of propagation strategy decrease rate and vice 
versa). But even in the current state the model can be 
used for predicting potential propagation strategies. 

5. Conclusions 

In this article the genetic algorithm based model 
for Internet worm’s propagation strategy evolution 
modeling at initial propagation phase was proposed. 
The model consists of a propagation strategy represen-
tation structure, genetic algorithm acting under speci-
fied conditions and a fitness function, which evaluates 
the strategy’s infection rate at the initial propagation 
phase, leaning on probability and time consumption 
estimations of strategy’s used methods.  

The proposed model was tested on existing worms’ 
propagation strategies with known infection probabi-
lities. The tests have proved the effectiveness of the 
model in evaluating propagation rates. The modeling 
of perspective propagation strategies aiming to infect 
the highest number of computers in a limited period of 
time has shown that these strategies tend to evolve to 
rather simple solutions, making use of a popular OS 
platform, quick connectionless UDP based transfer 
mechanisms and a combination of several (4-5) 
exploits with high infection probability. 

The main model application area is countermea-
sures planning, since the model predicts the propaga-
tion strategy trends. The proposed model can be also 
used as a framework for evolution modeling of other 
parameters of propagation strategies, such as popula-
tion visibility, manageability, etc., if fitness function 
modification is made. Several future model improve-
ments and extensions were discussed. 
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