
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2008, Vol.37, No.2

TAXONOMY OF THE FUNDAMENTAL CONCEPTS OF
METAPROGRAMMING

Robertas Damaševičius, Vytautas Štuikys
Software Engineering Department, Kaunas University of Technology

Studentų St. 50, LT-51368 Kaunas, Lithuania

Abstract. Although widely used in software engineering, metaprogramming is often misunderstood. The
researchers often disagree what concepts characterize metaprogramming. The concepts of metaprogramming are often
used without acknowledging the usage of metaprogramming itself. We overview the examples and definitions of
metaprogramming in computer science, identify, describe and discuss the fundamental concepts of metaprogramming
(code generation, transformation, reflection, generalization, metaprogram, metadata, level of abstraction and separation
of concerns). We analyze their relationship and present taxonomy, based on a study of sources on metaprogramming.

Keywords: metaprogramming concepts, taxonomy.

1. Introduction

Metaprogramming deals with the methods and
processes of writing higher-level programs (metaprog-
rams), which create other programs. Though meta-
programming [3, 11, 12, 19, 29, 48, 52, 53] is known
for long and has been widely used in several areas of
computer science [2, 27, 28, 37, 39], the term itself is
often misunderstood. In many cases, the term 'meta-
programming' is used to denote different though im-
plicitly related software engineering concepts. The
concepts of metaprogramming are often used without
acknowledging the usage of metaprogramming [4, 6,
7, 8, 33, 49, 50, 55]. This miscommunication between
researchers and practitioners and misunderstanding of
metaprogramming can be related to the fact the con-
cepts of metaprogramming has not been extensively
analyzed and categorized so far. Furthermore, meta-
programming is a much more loose approach than,
e.g., object-oriented programming, which also exacer-
bates the difficulties of understanding, adoption and
systematic application of metaprogramming.

Metaprogramming is widely used in the software
development cycle, where it plays an essential role in
program processors, interpreters, or compilers. Meta-
programming as a conceptual approach continues to
evolve, and its principles are adapted to the ever-
higher levels of abstraction. Examples include: meta-
modeling [1], metadesign [20, 16], model-driven engi-
neering (MDE) [38] and metaengineering [34]. As the
pursuit for increased productivity in software enginee-
ring continues, the role of metaprogramming is only
destined to increase. However, metaprogramming is
almost never consciously and explicitly integrated in

the software development processes. Gaining aware-
ness of its role is required to achieve progress in this
domain. Understanding what concepts characterize
metaprogramming is important to both practitioners,
who are aiming to adopt novel design methods, as
well as researchers.

2. Metaprogramming in computer science
2.1. Metaprogramming applications

Metaprogramming was known and used for a
long time, especially in formal logic programming
[39]. Now the scope of the application of the meta-
programming techniques is much wider such as
programming language implementation, including
compiler generation [49], application and software ge-
nerators [5], product lines [6], generic component
design [7], program transformations [29], program
evaluation and specialization [23], generative reuse
[8], software maintenance, evolution and configura-
tion [13], middleware applications [12], XML-based
web applications [28]. Applications of metaprogram-
ming include compiler construction, BNF (Backus-
Naur Form) used in compiler generators such as Lex
and Yacc [26], macros, code analyzers (parsers),
higher-order functions in logic metaprogramming [39,
52, 53], recursion, reflection [2, 30] including intro-
spection and intercession [14], meta-classes [24], me-
ta-object protocols [9], template metaprogramming
[51], anticipatory optimization [8], mixin-based prog-
ramming [40], design patterns [19], scripting [33],
partial evaluation [23], web component deployment
[28], and markup languages.

124

Taxonomy of the Fundamental Concepts of Metaprogramming

Many, if not all of the presented cases, can be sum-
marized as multi-stage programming [47], i.e.,
developing programs in several different stages. Other
approaches such as parameterized programming [22],
generative programming [14], generic programming
[17, 31], reflection-oriented programming [41] are
very similar or use the same concepts as metaprog-
ramming. Furthermore, metaprogramming techniques
closely relate to novel software development techno-
logies such as aspect-oriented programming [25].

2.2. Definitions of metaprogramming

There are many viewpoints, metaprogramming can
be analyzed from, such as abstraction, languages,
tools, programming techniques. Perhaps, the most po-
pular is the abstraction-based view explained below.

Software systems typically consist of several
levels of abstraction such as machine (or object) code,
assembly code, algorithmic or object-oriented lan-
guage code, pre-processor directives, etc. From the
perspective of the abstraction level, metaprogramming
means programming at a higher level of abstraction.
Cordy and Shukla [11], for example, give the follow-
ing definition. Metaprogramming is ‘the technique of
specifying generic software source templates from
which classes of software components, or parts there-
of, can be automatically instantiated to produce new
software components’. A metalanguage, which is a
mechanism for introducing a higher-level of abstract-
tion, does not appear in this definition. It is assumed
that source templates (such as C++ templates) are
higher-level generic abstractions of the source (or
domain) language itself.

Another definition introduces a concept of a meta-
language explicitly: ‘any language or symbolic system
used to discuss, describe, or analyze another language
or symbolic system is a metalanguage’ [14]. A prog-
ram written in a metalanguage is a metaprogram.
According to [6], a metaprogram is ‘a program that
generates the source of the application ... by com-
posing pre-written code fragments’. Examples of
metaprograms are application generators, and building
application generators such as parser generators.
Metaprogramming then can be defined as ‘creating
application programs by writing programs that pro-
duce programs’ [27].

Sheard [39] emphasizes the role of metaprogram-
ming in program generation explicitly. He says that in
a metaprogramming system, ‘metaprograms manipu-
late object-programs’. A metaprogram is a program,
which ‘may construct object-programs, combine ob-
ject-program fragments into larger object-programs,
observe the structure and other properties of object-
programs’. A similar definition is given by F. Rideau:
‘Metaprogramming, the art of programming programs
that read, transform, or write other programs’ [37],
and J. Bartlett: ‘Metaprogramming is writing prog-
rams that themselves write code’ [3].

2.3. The usage of metaprogramming

A common usage of metaprogramming is to
provide mechanisms for writing generic code, i.e.
explicitly implementing generalization in the domain.
Domain language implements commonalities in a do-
main, while a metalanguage enables developers to
specify variations to be implemented in the domain
system, and to synthesize customized implementations
by composing the domain code fragments.

The genericity is usually achieved by the para-
meterization of differences in different program repre-
sentations, which enables representing components
with many commonalities in a compact way. This
simple feature of metaprogramming enables reus-
ability to be substantially improved by providing para-
meterized components, which can be instantiated into
target programs for different choices of parameters.

The basis of metaprogramming is a separation of
the domain artefacts from the knowledge of how to
customize and glue them together. The higher-level
program (metaprogram) uses pieces of lower level
constructs as data. This enables generalization and
automatic creation of the customized programs.

Metaprogramming can be implemented in several
ways. At the abstraction level, we need to analyze the
capabilities of the language and separate the concerns,
which relate to implementing the basic functionality,
from those which allow expressing generic solutions
and customized specifications. This separation may be
accomplished, for example, implicitly using only the
internal capabilities of a given domain language, or
explicitly either introducing some extensions to the
domain language or using an external metalanguage.

The product of metaprogramming is a metaprog-
ram (or metaspecification), which describes a family
of the related (generic) functionality in a narrow well-
defined domain. Thus, a metaprogram together with
its environment is a domain program generator. For-
mally, the goal of metaprogramming is to create a
metaprogram for a given domain of application. Sum-
marizing, metaprogramming is a higher-order prog-
ramming technique that is used for achieving generali-
zation via manipulation with other program structures.

3. Analysis of metaprogramming sources

A wide variety of sources (books, journals, confe-
rence proceedings), selected from IEEE Xplore online
database, published from 1965 to 2007 and related to
metaprogramming (i.e., had such keywords as ‘meta-
programming’ or ‘meta-level programming’), were re-
viewed from different viewpoints (computer science,
information systems, software engineering).

The analysis consisted of reviewing each source
document for the identification of specific concepts as
metaprogramming concepts. The concepts from 41
sources were recorded. There were 35 concepts men-
tioned as belonging to the metaprogramming approach

125

R. Damaševičius, V. Štuikys

(such as manipulation, code generation, etc.). Table 1
presents the numerical frequency of the concepts in
the analyzed literature sources (note that our analysis
is by no means exhaustive). Since many different yet
equivalent terms are used, we had to group the
concepts with the similar meaning into groups or clas-
ses. Of the 35 concepts, 8 concept classes were
identified by the majority (73%) of the sources:
transformation (including manipulation and other
synonymous terms), code generation, reflection, gene-
ralization, metaprogram (including generic compo-
nent, template, macro etc.), metadata, level of abstrac-
tion (including various aspects of representation) and
separation of concerns. We analyze these concepts,
which we consider as fundamental to metaprog-
ramming, in Section 4.

Table 1. Concepts related with metaprogramming

Concept
class Concept No. Total

no.
Percent

age
Manipulation 11

Transformation 7
Modification 5
Adaptation 4
Translation 1

Transforma
tion

Preprocessing 1

29 70%

Code generation 14
Instantiation 2 Generation

Weaving 1
17 41%

Template 6
Generic

component
5

Macro 2
Metaprogram 2

Metaprogra
m

Metaspecification 1

16 39%

Representation 6
Abstraction 4 Levels of

abstraction
Encapsulation 1

11 27%

Construction 5
Generalization 2 Generalizati

on
Parameterization 1

8 20%

Analysis 5
Separation
of concerns Concern

separation
3

8 20%

Reflection 6
Reflection

Introspection 1
7 17%

Metadata 3
Metadata

Parameters 2
5 12%

Metaobject
protocol

2

Traits 2
Theorem proving 1
Partial evaluation 1

Inspection 1
Specialization 1

Runtime execution 1
Optimization 1

Other
concepts

Interpretation 1

11 27%

4. Fundamental concepts of
metaprogramming

4.1. Transformation

Program transformation can be defined as ‘the
derivation of programs from formal specifications,
and the derivation of new program versions from old
program versions’ [36]. Program transformation can
be described using a higher-level language such as
BNF used in compiler generators [49], or Open
PROMOL [44], or any other metalanguage. It is used
for the derivation of programs from high-level spe-
cifications or older program versions in a semantics
preserving way.

Generally, program transformation is a manipu-
lation of its representation resulting in the change of
the form (syntax) of the program. Its semantics may
be changed or not in the process. A step-wise manipu-
lation, which (1) is defined on a programming lan-
guage domain, (2) uses a formal model to support the
refinement, and (3) simultaneously preserves the se-
mantics, is known as a formal program transformation
[36]. The general case of program transformation,
however, does not require the definition of a formal
model, as well as has no restrictions on the changes of
semantics.

Conventional programming is oriented at develo-
ping tools for manipulating data, i.e. data processing,
representation, visualization, communication, etc. The
inputs to a program are data structures. The output is
the resulting data produced by the program in the
variety of forms dependant upon a given application.
The produced result is used then as-is by other
programs or the user. Metaprogramming, on the other
hand, is oriented at developing tools for manipulating
with lower-level programs, i.e., automatic analysis
(parsing), automatic adaptation (modification) of a
program to the context of usage, generation of instan-
ces, etc., which all can be summarized as transforma-
tion.

Our definition of program transformation is as
follows. Program transformation is the process of
changing one form of a program (source code, speci-
fication or model) into another, as well as a formal or
abstract description of an algorithm that implements
this transformation [46]. The role of transformation in
metaprogramming is that the transformation algorithm
describes generation of a particular instance depen-
ding upon values of the generic parameters. The trans-
formation algorithm ranges from simple metaconst-
ructs such as meta-if (conditional generation) and
meta-for (repetitive generation) to the sophisticated
application-specific metapatterns, which are composed
of the nested combinations of the simpler meta-
constructs.

4.2. Generation

Software generation is an automated process of
creation of a target system from a high-level

126

Taxonomy of the Fundamental Concepts of Metaprogramming

specification [50], such as a metaprogram. Code gene-
ration is the process by which a code generator con-
verts a syntactically-correct high-level program into a
series of lower-level instructions. The input to the
code generator stage typically consists of a parse tree,
abstract syntax tree, or intermediate language code.
Since the target machine may be a physical machine
such as a microprocessor, or an abstract machine such
as a virtual machine or an intermediate language, the
output of code generator could be in any language.

In a more general sense, code generation is used to
produce programs in some automatic manner, thus
reducing the need for programmers to write code
manually. Code generation can be done either at run-
time, including load-time (e.g., just-in-time compilers
that produce native code from byte-code), or compile-
time (e.g., a compiler-compilers such as yacc [49]). A
pre-processor is an example of the simplest code
generator, which produces target code from the source
code by replacing predefined keywords.

The role of code generation in metaprogramming
is centred on the development of program generators,
i.e. higher-level programs that generate other prog-
rams adapted for specific applications. The metalan-
guage processor manipulates with program instances
or some parts of instances as well as with data struc-
tures. In general, the output is a family of the related
program instances, or only one instance from the
family.

4.3. Metaprogram

Metaprograms are described using generic const-
ructs of high-level languages (such as templates in
C++) or a different language (macro language, meta-
language). Other terms synonymous to ‘metaprogram’
such as metacomponent, metaspecification, etc. are
also used. Metaprograms usually are generic and have
a number of parameters; hence the name ‘generic
component’ also is used (note that in this paper we do
not distinguish between generic and generative
component). A generic component can be defined as a
software module allowing choosing its properties to a
certain degree without necessarily having to write or
change code manually [7].

Conceptually, a generic component abstractly and
concisely represents a set of closely related (“look-
alike”) software components with slightly different
properties. Since it is sensible to integrate such com-
ponents that share a considerable amount of common
code in a generic component, generic components can
be considered as a component family [39].

Generic components are not specific code frag-
ments or common domain programs. Each generic
component contains formal parameters and structures
that allow it to be systematically modified to become
any of a set of specific components (instances) [4].
Generic parameters together with their respective
range of supported values are usually identified at the
generic component's interface. Instantiating generic

component means to choose actual values for the
supplied generic parameters, and let the appropriate
generator(s) to perform the necessary modifications.

Metaprogram is a generic component implemented
using a metalanguage. Metaprogram represents a
family of similar component instances and contains
different functionality (variations) that can be instant-
tiated through parameterization in order to create a
specific component instance. The role of a metaprog-
ram in metaprogramming is the same as, e.g., of a
class in the OO programming, i.e., it is a basic unit of
abstraction for composing larger metaprogramming
systems.

4.4. Levels of abstraction

Abstraction is the fundamental way of organizing
knowledge and grouping similar facts together [43].
Abstraction hides unimportant details of implementa-
tion and emphasizes the information that is important
for a developer or end-user. There are multiple levels
(or layers) of abstraction in software, where each level
represents a different model of the same information
and processes, but uses a different semantic system of
expression (or grammar) to express the content of a
particular domain. Each higher (relatively abstract)
level is built on a lower (relatively concrete) level.

What is usually common to all cases of metaprog-
ramming is that there are two (or more) levels of abst-
raction. Each level of abstraction uses a different
semantic system. The lower level of abstraction is
usually domain-oriented and is used to describe com-
mon domain functionality using a domain language.
The higher level of abstraction (generic or meta) is
used for expressing variability in a domain and de-
scribing manipulations with the syntactic units of the
lower level of abstraction using a specific metalan-
guage.

The levels of abstraction are semantic systems that
are grouped together to represent different aspects of
design in metaprogramming systems [45]. The role of
levels of abstraction in metaprogramming is centred at
the construction of a metaprogram. Metaprograms em-
body different (usually orthogonal) aspects of domain
systems. Such aspects are implemented and composed
by structuring domain programs in terms of modules
or layers, which use different semantic systems and
enable various functionalities to be added.

4.5. Generalization

Generalization provides a form of knowledge re-
presentation. A higher, more generalized (meta-level)
of domain knowledge encapsulates an understanding
of the general properties and behaviour possessed by a
subset of its domain entities. Introduction of generali-
zation means a transition to the higher level of abstrac-
tion, where domain knowledge can be represented and
explained more comprehensibly and effectively.

127

R. Damaševičius, V. Štuikys

In computer science, generalization is usually
understood as a technique of widening of an object
(component, system) in order to encompass a larger
domain of objects (systems, applications) of the same
or different type [16]. Generalization identifies com-
monalities and variability (variations) among a set of
domain entities. The commonality may refer to essen-
tial features of a domain entity such as attributes or
behaviour, or may concern only the similarity in syn-
tactic description, while variability refers to the speci-
fic features pertaining to a specific domain component
or program.

Therefore, generalization can be understood as a
transformation of a specific domain component into a
generic component (metaprogram) that is more widely
usable and reusable than the original one. The role of
generalization in metaprogramming is the develop-
ment of a metaprogram using some specific domain
program (component) as a basis, and involves captu-
ring of the domain commonalities, while expressing
the domain variations at a higher level of abstraction.

4.6. Separation of concerns

The term ‘separation of concerns’ was first intro-
duced by E.W. Dijkstra in 1974 [18]. Separation of
concerns at the conceptual level is generally conside-
red as a primary means to manage domain complexity.
The program parts related to the separated concerns
are implemented separately, and integrated back to
form a complete design. The principle of separation of
concerns can be applied in various ways and is
actually one of the key principles in software enginee-
ring [21]. This principle states that a given problem
involves different kinds of concerns, which should be
identified and separated to cope with complexity, and
to achieve the required engineering quality factors
such as flexibility, dependability, maintainability, and
reusability.

Separation of concerns is the process of breaking a
design problem into distinct tasks that are orthogonal
and are implemented separately. Metaprogramming
widely exploits the principle of separation of con-
cerns, which is used to separate variable parts of the
domain program from the fixed (common) parts. A
metalanguage also should allow to separate clearly the
computational (algorithmic, behavioural) aspects (i.e.,
the ones dealing with domain functionality) and com-
positional aspects (i.e., the ones dealing with com-
ponent integration, interoperability, etc.), thus
achieving a great deal of flexibility and reusability.

4.7. Reflection

Reflection is the ability of a program to manipulate
with the state of the program (e.g., its semantics) as
data during its own execution, or the ability to de-
scribe inside a language the semantics of generated
programs [2]. Reflection is the ability of a program to
observe and possibly modify its structure and beha-
viour [30]. Usually reflection refers to run-time or

dynamic reflection, though some programming lan-
guages support compile-time (static) reflection. E.g.,
during compilation of source code, information about
the structure of a program is usually lost. If a system
supports reflection, the structure of a program may be
preserved as metadata embedded with the compiled
code. In this context, metaprogramming is a reflective
activity, because it allows developing programs that
can create other programs.

4.8. Metadata

Metadata are structured, encoded data that describe
characteristics of information-bearing entities to aid in
the identification, discovery, assessment, and manage-
ment of the described entities [10]. Since their intro-
duction in the 1970s, metadata have been the object of
systematic research in such areas as data warehouse
managing and the Web. Metadata can range from
finite-state-machine models of a component to plain
documentation. In fact, any software engineering arte-
fact can be a metadatum for a given component, as
long as (1) the component developer is involved in its
production, (2) it is packaged with the component in a
standard way, and (3) it is processed by automated
development tools [32].

Often, metadata are shortly defined as a descrip-
tion of data [42]. In the context of metaprogramming,
metadata are the descriptions of the properties or con-
cerns of a specific layer of abstraction in a metaprog-
ramming system. The role of metadata in metaprog-
ramming is to describe and represent additional
information about the meta level of abstraction in a
metaprogram. Examples of metadata include descrip-
tions of generic parameters in generic components, or
the description of domain language syntax in compiler
generators, or the structure of generated documents.

5. Taxonomy of the metaprogramming
concepts

In addition to a lack of consensus on the funda-
mental concepts, the software engineers lack an under-
standing of how metaprogramming concepts can be
classified to characterize the metaprogramming ap-
proach. There are few works on metaprogramming
taxonomy. Several authors do summarize the basic
concepts of metaprogramming, however, this is usual-
ly limited to one sentence. For example, ‘metaprog-
ramming involves analyzing, generating, and trans-
forming object programs’ [55]. Only two taxonomies
given in the literature are comprehensive (see Table
2).

The metaprogramming taxonomies presented by
Sheard [39] and Pasalic [35] overlap considerably,
though there are some differences. The most serious
objection against these taxonomies is that these are not
as much the taxonomies of metaprogramming con-
cepts, as taxonomies of metaprogramming systems
(generators) and tools (metalanguages). There are

128

Taxonomy of the Fundamental Concepts of Metaprogramming

multiple issues addressed in these taxonomies, such as
the number of languages used in a metaprogramming
system (homogenous metaprogramming – a metalan-
guage and a domain language are the same languages;
heterogeneous metaprogramming – the ones are ac-
tually different languages), time of usage during
software development cycle (static – before compila-
tion / execution, run-time – during execution), depen-
dence of a metalanguage upon domain language
(closed – dependant, open – independent), separation
of static and dynamic parts of a metaprogram (ma-
nual, automatic). Therefore, the classification of con-
cepts in these taxonomies is opaque, many of impor-
tant concepts such as abstraction or reflection are left
out, while other issues that are not directly related to
metaprogramming (such as open source code) are
overemphasized.

Table 2. Known taxonomies of metaprogramming

Sheard’s taxonomy [39] Pasalic’s taxonomy [35]
Program
generator

Program
generator Kind of

metaprogram Program
analyzer

Kind of
metaprogram Program

analyzer
Homogeneous Homogeneous Separation of

languages Heterogeneous
Separation of
languages Heterogeneous

Static Open
Use time

Run-time
Type of
metalanguage Closed

Manual Separation of
static and
dynamic code
of
metaprogram

Automatic

A new taxonomy of the metaprogramming con-
cepts is proposed in Table 3. This taxonomy is more
consistent and wider than known taxonomies (see
Table 2). Some parts of known taxonomies can be also
found in our taxonomy, e.g., types of metaprograms,
use time, separation of concerns, usage of metadata.
The novelty of the proposed taxonomy is that a hie-
rarchy of concepts is introduced. All concepts are
categorized either as structural concepts or process
concepts. The identification of a relationship between
structural and process concepts of metaprogramming
is a complex task as it is summarized in Figure 1.

The structural concepts describe the basic abstrac-
tions (metaprogram, metadata) and principles of con-
struction (separation of concerns, levels of abstraction)
used while developing metaprogramming artefacts.
Their properties are: 1) static (structure and capabi-
lities are defined by the designer), 2) construction-
time (used during construction of the metaprogram-
ming systems and artefacts), and 3) tool-dependant
(depend upon specific selection of a metalanguage,
etc.). The process concepts describe basic operations
and processes that are performed by a designer of the
metaprogramming artefacts. They are: 1) dynamic
(describe some method or process rather than a speci-
fic tool or abstraction), 2) domain-independent (can be
implemented using different meta and domain

abstractions and tools). Transformation, generation,
reflection are used in compile-time or run-time, i.e.,
during processing or execution of a metaprogram,
while generalization is used during creation of meta-
programming artefacts.

Table 3. Taxonomy of the fundamental concepts of
metaprogramming

Con-
cept
class

Concept
Equivalent

terms used in
the literature

Definition

Metaprogram

Meta-component,
meta-
specification,
metafunction,
template, generic
component,
parameterized
component

A generic component
implemented using a
metalanguage that
represents a family of
similar component
instances and contains
different functionality
(variations)

Levels of
abstraction

Layers of
abstraction

Semantic systems that
are grouped together to
represent different
aspects of design in
metaprogramming
systems

Separation of
concerns

Separation of
aspects,
orthogonalization
,
‘divide-and-
conquer’

The process of breaking
a design problem into
distinct tasks that are
orthogonal and are
implemented separately

St
ru

ct
ur

e

Metadata Annotations

The description of the
properties or concerns
of a specific layer of
abstraction in a meta-
programming system

Transforma-
tion

Manipulation,
modification,
adaptation

The process of changing
one form of a program
into another

Generation Program/code
generation

The creation of a target
system from a high-
level specification

Reflection Introspection,
intercession

Ability of a program to
observe and modify its
structure and behavior Pr

oc
es

s

Generaliza-
tion Parameterization

Transformation of a
specific domain
component into a
generic component that
is wider usable and
reusable than the
original one

Another interesting question is how structural con-
cepts depend upon process concepts and vice versa.
Starting from the construction of the metaprogram-
ming artefacts, the designer analyzes the domain,
gathers the available domain artefacts and require-
ments, and applies generalization. As a result, com-
mon and variable concerns of the domain are separa-
ted, the levels of abstraction are identified, metadata
and metaprograms are created. These structural con-
cepts are further used by other metaprogramming
processes as follows. Transformation involves mani-
pulation of domain language code using metaprog-
rams, where manipulation algorithms are implemented
at a higher level of abstraction and depend upon

129

R. Damaševičius, V. Štuikys

metaparameters described as metadata. Generation
means instantiation of a metaprogram and generation
of domain code using specific values of the metapa-
rameters. Reflection means the analysis of the domain
level of abstraction, metadata extraction and passing
to the metalevel of abstraction.

Metaprogram

Levels of
abstraction

Separation of
concerns

Metadata

Transformation

Generation

Reflection

Generalization

Structural Process

is used by

Figure 1. Relationship between structural and process

concepts of metaprogramming

 $
"Gate function" {AND, OR, XOR, NAND, NOR} f := AND;
"Number of gate inputs" {2..8} inp := 2;
"Width of data path" {1, 8, 16, 32} width := 8;
$
ENTITY gate IS
 PORT(
 @gen[inp, {, }, {x}] :

IN BIT@if[width>1, {_VECTOR(0 TO @sub[width-1])}];
 y : OUT BIT@if[width>1, {_VECTOR(0 TO @sub[width-1])}]
);
END;

ARCHITECTURE behaviour OF gate IS
BEGIN
 y <= @gen[inp, { @sub[f] }, {x}];
END behaviour;

ENTITY gate IS
 PORT(
 x1, x2 : IN BIT_VECTOR(0 TO 7);
 y : OUT BIT_VECTOR(0 TO 7)
);
END;

ARCHITECTURE behaviour OF gate IS
BEGIN
 y <= x1 AND x2;
END behaviour;

(a)

(b)

Figure 2. Example of the concepts of metaprogramming

See Figure 2 for an illustration of the structural
concepts of metaprogramming using Open PROMOL
[44] as a metalanguage and VHDL as a domain lan-
guage. Figure 2a presents a metaprogram, which en-
capsulates a family of logic gates that have similar
structure and functionality. The metaprogram has three
different levels of abstraction: 1) metainterface (bet-
ween ‘$’ symbols), where metaparameters of the
metaprogram are described, 2) domain language
layer, which describes basic domain functionality that
is common to all logic gates (described in VHDL),
and 3) metalanguage layer, which describes the
variability of the logic gate family (described in Open
PROMOL).

Separation of concerns is illustrated in several
ways: the interface of the metaprogram is separated
from its implementation, the domain language layer is
separated from the metalanguage layer, and each
aspect of generalization is implemented using a sepa-
rate metaparameter. Metadata concept is illustrated by
the component’s interface, where each metaparameter
is annotated with its description.

The process class of metaprogramming concepts
also can be seen in Figure 2a and 2b. Generalization is
introduced via metaparameters in the metainterface of
the metaprogram. Transformation (modification) is
achieved via a set of Open PROMOL functions. The
@sub function returns the value of a parameter. The
@if function performs conditional generation. The
@gen function generates look-alike strings. The result
of code generation can be seen in Figure 2b, where an
instance of logic gate family is shown. This instance is
one of 140 different instances that can be generated
from the metaprogram given in Figure 2a.

Reflection is a more difficult concept that requires
parsing and analysis of source code. An example of
reflection was demonstrated in [16], where parser
automatically parses VHDL code and extracts
component interface information that is further used to
generate component wrappers for specific domain
applications.

6. Evaluation and conclusion

Metaprogramming is a very powerful software
engineering method that requires a systematic appli-
cation to use properly, rather than to resort to its use at
every opportunity. Ad hoc application of metaprog-
ramming tends to make programs harder to under-
stand, validate and maintain [54]. The major benefits
of metaprogramming are software reuse and auto-
mated program development. A major stumbling block
to achieving the benefits is the understanding and
learning of the metaprogramming approach. One
reason is that software designers do not thoroughly
understand yet the fundamental concepts that define
metaprogramming.

Programming requires that programmers under-
stand fully the syntax, semantics, capabilities, and
limitations of the languages that they program with.
As metaprogramming usually means using two (or
more) languages – domain language and metalan-
guage – in one specification or system at multiple
levels of abstraction, the designer must learn at least
twice as much of information. The metaprogrammer
faces difficulties in understanding, programming in
two languages simultaneously, and reading such multi-
language specifications [15]. The metaprogrammer
not only needs to know the details of how to program
in domain-specific languages and metalanguages, but
also the details of how they are implemented, how to
communicate between them, and what sort of impe-
ding mismatches there are between them.

130

Taxonomy of the Fundamental Concepts of Metaprogramming

The metaprogrammers and metadesigners should
be domain experts that have extensive and thorough
knowledge of domain content as well as metaprog-
ramming methods and tools. Therefore, there is a need
for thorough domain analysis, construction of domain
vocabularies, taxonomies and development of domain
knowledge ontologies for the metaprogramming do-
main. This study is a first step towards building onto-
logy for the metaprogramming domain systematically.
The study presents a taxonomy of the fundamental
metaprogramming concepts that were identified from
a sample of sources from the metaprogramming lite-
rature and organized into two groups: structural and
process concepts. The identification of a relationship
between these two sets of concepts is a complex task
and covers the construction and usage of the meta-
programming artefacts. The results of this study
should help software engineering researchers and
practitioners to better understand, adopt and apply the
methods of metaprogramming.

Future work will focus on the development of the
comprehensive ontology of the metaprogramming do-
main. The construction of such ontology will allow
providing a shared and common understanding of the
metaprogramming domain, and will facilitate know-
ledge sharing between metaprogrammers.

References
 [1] C. Atkinson, T. Kuhne. The role of meta-modeling in

MDA. In J. Bezivin, R. France (eds.), Workshop in
Software Model Engineering, 2002.

 [2] G. Attardi, A. Cisternino. Reflection support by
means of template metaprogramming. Proc. of Third
Int. Conf. on Generative and Component-Based
Software Engineering GCSE01, LNCS, Vol.2186,
Springer-Verlag, Berlin, 2001, 118-127.

 [3] J. Bartlett. The art of metaprogramming. IBM develo-
perWorks, October 2005, http://www-128.ibm.com
/developerworks/linux/library/l-metaprog1.html?ca=
dgr-lnxw06MetaCoding.

 [4] P. Basset. Framing software reuse: lessons from the
real world. Yourdon Press, Prentice Hall, 1997.

 [5] D. Batory, S. Dasari, B. Geraci, V. Singhal, M. Sir-
kin, J. Thomas. Achieving reuse with software sys-
tem generators. IEEE Software, September 1995, 89-
94.

 [6] D. Batory. Product-line architectures, Invited Presen-
tation. Smalltalk and Java in Industry and Practical
Training, Erfurt, Germany, 1998, 1-12.

 [7] M. Becker. Generic components: a symbiosis of para-
digms. 2nd Int. Symp. on Generative and Component-
Based Software Engineering GCSE 2000, Erfurt,
Germany, October 9-12, 2000, LNCS Vol.2177, Sprin-
ger, 100-113.

 [8] T.J. Biggerstaff. A Perspective of Generative Reuse.
Annals of Software Engineering 5, 1998, 169-226.

 [9] S. Chiba. A Metaobject Protocol for C++. ACM
SIGPLAN Notices 30(10), 1995, 285-299.

[10] Committee on Cataloging Task Force on Metadata.
Summary Report 1999, http://www.libraries.psu.edu
/tas/jca/ccda/tf-meta3.html.

[11] J.R. Cordy, M. Shukla. Practical Metaprogramming.
Proc. of the 1992 IBM Centre for Advanced Studies
Conference, Nov. 1992, 215-224.

[12] J.K. Cross, D.C. Schmidt. Metaprogramming techni-
ques for distributed real-time and embedded systems.
Proc. of 7th IEEE Int. Workshop on Object-Oriented
Real-Time Dependable Systems, January 7-9, 2002,
San Diego, CA, USA, 3-10.

[13] K. Czarnecki, U.W. Eisenecker. Separating the con-
figuration aspect to support architecture evolution.
Proc. of 14th European Conf. on Object-Oriented
Programming (ECOOP’2000), Cannes, France, June
11-12, 2000.

[14] K. Czarnecki, U. Eisenecker. Generative Program-
ming: Methods, Tools and Applications. Addison-
Wesley, 2001.

[15] R. Damaševičius, V. Štuikys. Separation of Concerns
in Multi-language Specifications. INFORMATICA,
Vol.13, No.3, 2002, 255-274.

[16] R. Damaševičius. On the Application of Meta-Design
Techniques in Hardware Design Domain. Internatio-
nal Journal of Computer Science (IJCS), Vol.1, No.1,
2006, 67-77.

[17] J.C. Dehnert, A.A. Stepanov. Fundamentals of Gene-
ric Programming. Report of the Dagstuhl Seminar on
Generic Programming, Schloss Dagstuhl, Germany.
LNCS Vol.1766, 1-11.

[18] E.W. Dijkstra. Selected Writings on Computing: A
Personal Perspective. Springer-Verlag, 1982.

[19] D. von Dincklage. Making Patterns Explicit with
Metaprogramming. Proc. of 2nd Int. Conf.e on Gene-
rative Programming and Component Engineering,
GPCE 2003, Erfurt, Germany, September 22-25,
LNCS Vol. 2830, Springer, Berlin/Heidelberg, 2003,
287-306..

[20] G. Fischer, E. Giaccardi, Y. Ye, A.G. Sutcliffe, N.
Mehandjiev. Meta-design: a manifesto for end-user
development. Commun. ACM 47(9), 2004, 33-37.

[21] C. Ghezzi, M. Jazayeri, D. Mandrioli. Fundamentals
of Software Engineering. Prentice Hall, 2003.

[22] J.A. Goguen. Parameterized programming and soft-
ware architecture. Proc. of 4th Int. Conf. on Software
Reuse, ICSR-4, Orlando, USA, 23–26 April 1996, 2–
11.

[23] N.D. Jones, C.K. Gomard, P. Sestoft. Partial Eva-
luation and Automatic Program Generation. Prentice
Hall International, June 1993.

[24] G. Kiczales, J. des Rivieres, D.G. Bobrow. The Art
of the Metaobject Protocol. MIT Press, 1991.

[25] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira Lopes, J.-M. Loingtier, J. Irwin. Aspect-
oriented programming. Proc. of the European Conf.
on Object-Oriented Programming (ECOOP’1997).
LNCS 1241, Springer-Verlag, 1997, 220-242.

[26] J.R. Levine, T. Mason, D. Brown. Lex and Yacc.
O’Reilly and Associates, Inc., 1992.

[27] L.S. Levy. A metaprogramming method and its eco-
nomic justification. IEEE Transactions on Software
Engineering, 12(2), 1986, 272-277.

[28] W. Löwe, M. Noga. Metaprogramming applied to
web component deployment. Electronic Notes in
Theoretical Computer Science, 2002, 65(4).

131

R. Damaševičius, V. Štuikys

[29] A. Ludwig, D. Heuzerouth. Metaprogramming in the
large. G. Butler and S. Jarzabek (Eds.), Generative
and Component-Based Software Engineering. LNCS
Vol. 2177, Springer, 2001, 178-187.

[30] J. Malenfant, M. Jaques, F.-N. Demers. A tutorial
on behavioral reflection and its implementation. Proc.
of the Reflection 96 Conference, April 1996, San
Francisco, CA, 1-20.

[31] D.R. Musser, A.A. Stepanov. Generic Programming.
Proc. of Int. Symp. on Symbolic and Algebraic
Computation ISSAC'88, Rome, Italy, July 4-8, 1988.
LNCS Vol.358, Springer 1989, 13-25.

[32] A. Orso, M. J. Harrold, D. S. Rosenblum. Compo-
nent metadata for software engineering tasks. Proc. of
2nd Int. Workshop on Engineering Distributed Ob-
jects, EDO 2000, Davis, CA, USA, November 2-3,
2000. LNCS Vol.1999, Springer, 129-144.

[33] J.K. Ousterhout. Scripting: Higher Level Program-
ming for the Century. IEEE Computer 31(3), 1998,
23-30.

[34] K.D. Palmer. Vajra Logic and Mathematical Metamo-
dels for Meta-Systems Engineering: Notes on the
Foundations of Emergent Meta-Systems Theory and
Practice. 12th Annual Int. Symp. of the Int. Council On
Systems Engineering (INCOSE), Las Vegas, NV, USA,
28 July - 1 August 2002.

[35] E. Pasalic. The Role of Type Equality in Meta-Prog-
ramming. PhD thesis, Oregon Health and Sciences
University, 2004.

[36] A. Pettorosi. Future Directions in Program Transfor-
mation. ACM Computing Surveys, Vol.28, No.4, De-
cember 1996, 171-174.

[37] F. Rideau. Metaprogramming and Free Availability of
Sources. Proc. of Autour du Libre Conference,
Bretagne, 1999.

[38] D.C. Schmidt. Model-Driven Engineering. IEEE
Computer 39 (2), 2006, 25-31.

[39] T. Sheard. Accomplishments and research challenges
in metaprogramming. 2nd Int. Workshop on Seman-
tics, Application, and Implementation of Program
Generation (SAIG’2001), Florence, Italy. LNCS Vol.
2196, Springer, 2001, 2-44.

[40] Y. Smaragdakis, D. Batory. Mixin-Based Prog-
ramming in C++. 2nd Int. Symp. on Generative and
Component-Based Software Engineering (GCSE'
2000), Erfurt, Germany, October 9-12, 2000. LNCS
Vol. 2177, Springer, 2000, 163-177.

[41] J.M. Sobel, D.P. Friedman. An Introduction to
Reflection-Oriented Programming. Proc. of Reflection
96, San Francisco, CA, USA, April 1996, 107-126.

[42] D. Soltes. Metadata and Metainformation – Old Con-
cepts and New Challenges. IASSIST QUARTERLY
Vol. 23, 1999, 12-14.

[43] A. Stepanov. Future of Abstraction. A keynote ad-
dress at Joint ACM Java Grande – ISCOPE 2002
Conference, Seattle, Washington, November 3-5,
2002.

[44] V. Štuikys, R. Damaševičius. Scripting Language
Open PROMOL and its Processor. INFORMATICA
Vol.11, No.1, 2000, 71-86.

[45] V. Štuikys, R. Damaševičius. Relationship Model of
Abstractions Used for Developing Domain Gene-
rators. INFORMATICA Vol.13, No.1, 2002, 111-128.

[46] V. Štuikys, R. Damaševičius. Taxonomy of the Prog-
ram Transformation Processes. Information Tech-
nology & Control, No. 1 (22), 2002, 39-52.

[47] W. Taha. Multi-Stage Programming: Its Theory and
Applications. PhD thesis, Oregon Graduate Institute
of Science and Technology, 1999.

[48] J. Templ. Metaprogramming in Oberon. PhD Disser-
tation. ETH Zürich, 1995.

[49] P.D. Terry. Compilers and Compiler Generators: An
Introduction with C++. International Thomson Com-
puter Press, 1997.

[50] S. Thibault, C. Consel. A Framework for Application
Generator Design. ACM SIGSOFT Software
Engineering Notes 22(3), 1997, 131-135.

[51] T.L. Veldhuizen. Using C++ template metaprograms.
C++ Report 7(4), 1995, 36-43.

[52] E. Visser. Metaprogramming with Concrete Object
Syntax. Proc. of Generative Programming and
Component Engineering (GPCE’02). LNCS Vol.
2487, 2002, 299-315.

[53] K. De Volder. Type-Oriented Logic Meta Program-
ming. PhD thesis, Vrije Universiteit, Brussels,
Belgium, 1998.

[54] R.J. Walker. Essential Software Structure through
Implicit Context. Ph.D. dissertation, Department of
Computer Science, University of British Columbia,
2003.

[55] J. van Wijngaarden. Code Generation from a Do-
main Specific Language. Designing and Implementing
Complex Program Transformations. Master's thesis,
Universiteit Utrecht, Utrecht, The Netherlands, 2003.

Received January 2008.

132

