
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2008, Vol.37, No.1

PARALLEL MULTIDIMENSIONAL SCALING USING GRID
COMPUTING: ASSESSMENT OF PERFORMANCE

Audrius Varoneckas1, Antanas Žilinskas2, Julius Žilinskas2,3

1Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania
2Institute of Mathematics and Informatics, Akademijos 4, LT-08663 Vilnius, Lithuania

3Institute of Psychophysiology and Rehabilitation, Vydūno 4, Palanga LT-00135, Lithuania

Abstract. Multidimensional scaling is a technique for visualization and exploratory analysis of multidimensional
data aiming to discover a structure of sets of objects using information on similarities/dissimilarities between those
objects. A difficult global optimization problem should be solved to minimize the error of visualization. A hybrid
optimization algorithm has been constructed combining evolutionary global search with efficient local descent. A
parallel version of the proposed optimization algorithm is implemented to enable solution of large scale problems in
acceptable time. In the present paper we investigated the efficiency of the parallel version of the algorithm on PC
clusters and computational grids.

Keywords: grid computing, multidimensional scaling, evolutionary algorithm.

1. Introduction

Multidimensional scaling (MDS) is an exploratory
technique for data analysis [1, 3], widely usable in
different applications, e.g. psychometrics, market ana-
lysis, data mining, visualization of general multidi-
mensional data, visualization of observation points in
interactive global optimization.

The points xi=(xi1,...,xim), i=1,...,n representing n
objects in m-dimensional embedding space should be
found fitting pairwise distances of points to given
pairwise dissimilarities of the objects (δij, i,j=1,...,n). It
is supposed that dissimilarities are symmetric (δij=δji)
and (δii=0).

The implementation of a MDS method is reduced
to minimization of a fitness criterion, e.g. the so called
STRESS function:

()(∑
<

−=
n

ji
ijjidS 2,)(δxxx) , (1)

where x=(x1,...,xn) is a vector aggregating coordinates
of points xi=(xi1,...,xim), d(xi,xj) denotes the distance
between the points xi and xj.

The distances may be estimated using different
norms in IRm. Most often a Minkowski distance is
used:

() rm

k

r

jkikji xxd

1

1
, 








−= ∑

=

xx . (2)

The formula (2) defines Euclidean distances when
r=2, and city-block distances when r=1. The points xi

defined by means of minimization of (1), but using
different distances in the embedding space, can be
interpreted as different nonlinear projections of the
objects from the original space to the embedding
space. When objects of problem are defined by multi-
dimensional points, dissimilarities can be found
estimating pairwise distances of points in the original
multidimensional space.

MDS is a difficult global optimization problem.
Although STRESS is defined by an analytical formula,
which seems rather simple, its minimization is diffi-
cult. The function normally has many local minima.
When city-block distances are used, STRESS can be
non differentiable even at the minimum point [10].
The minimization problem is high dimensional (num-
ber of variables is N = n × m) global optimization
problem.

When computing power of usual computers is not
sufficient to solve a problem, the high performance
parallel computers, clusters of computers and compu-
tational grids may be helpful. An algorithm is more
applicable in case its parallel implementation is avail-
able, because larger practical problems may be solved
by means of parallel computation. Because of this,
implementation of parallel algorithms and investiga-
tion of their efficiency on PC clusters and computa-
tional grids are considered.

52

Parallel Multidimensional Scaling Using Grid Computing: Assessment of Performance

2. Evolutionary Algorithm for
Multidimensional Scaling

As it was shown in [6, 7, 8], the hybrid algorithm
combining evolutionary global search with efficient
local descent is the most reliable though the most time
consuming method for MDS with Euclidean distances.
Therefore a similar hybrid algorithm has been const-
ructed.

The idea is to maintain a population of best (with
respect to STRESS value) solutions whose crossover
can generate better solutions. The size of population p
is a parameter of the algorithm. An initial population
is generated by performing local searches from p
starting points that are the best (with respect to
STRESS value) from a sample of Ninit randomly gene-
rated points. The population evolves generating off-
spring of two randomly selected parents. Two point
crossover is used. Adaptation of the offspring to envi-
ronment is modelled by local search. The fitness of the
offspring is defined by the locally optimal value found
by local descent. Elitist survival is performed: if the
offspring is better fitted than the worst individual of
the current population then the later is replaced by the
offspring. Minimization terminates after predetermi-
ned computing time tc.

The structure of the hybrid algorithm with para-
meters (p, Ninit, tc):
Generate the initial population:

Generate Ninit random points.
Perform search for local minima

starting from the best p points.
Form the initial population from the

found local minimizers.
while not time limit tc exceeded

Select two uniformly random parents
from the current population.

Produce an offspring by means of 2-
point crossover and local
minimization.

if it is better than the worst
individual of the current
population,

then replace the offspring with the
latter.

The upper level genetic algorithm ensures globa-
lity of search while at the lower level local descent
ensures efficient search for local minima. Well known
direction set algorithm by Powell has been used for
local search for MDS problems with Euclidean dis-
tances. In the case of city-block distances STRESS is a
piecewise quadratic (over simply defined polyhedra)
function of x [10]; a special local search method has
been proposed taking into account the latter property.
It has been shown experimentally that these local
search strategies perform best in MDS with Euclidean
and city-block metrics.

Parallel version of genetic algorithm with multiple
populations [2] has been developed. Communications
between processors have been kept to minimum to

enable implementation of the algorithm on clusters of
personal computers and computational grids. Each
processor runs the same genetic algorithm with diffe-
rent sequences of random numbers. This is ensured by
initializing different seeds for random number genera-
tors in each processor. The results of different proces-
sors are collected when search is finished after
predefined time. To make parallel implementation as
much portable as possible the general message-pas-
sing paradigm of parallel programming has been
chosen. A standardized message-passing communica-
tion protocol MPI is used for communication between
parallel processors.

3. Experimental investigation in grid
environment

Grid computing [4] is emerging as new paradigm
for distributed problem solving for a wide range of
application domains. Supercomputers, high perfor-
mance computing clusters, clusters of personal com-
puters are distributed and independent but, on the
other hand, form a large scale dynamic grid environ-
ment.

When assigning tasks onto the grid computing
resources, users can perform manual look-up and
select resources or let the central scheduler select
available resources. Since grid environment is often
dynamic, the same computational conditions will
never occur.

3.1. Test bed

We have used standard C++ and MPI library to
implement the parallel algorithm for multidimensional
scaling. The algorithm is available under BalticGrid
Special Interest Groups portal (http://sig.balticgrid.
org).

Test bed, used in our experiments, is a heteroge-
neous cluster environment. It contains eight high-
performance clusters. Their configuration is shown in
Table 1. gLite middleware [5] is installed on each
cluster.

3.2. Experimental investigation

To exclude the impact of number of objects and of
used metric, a relative error

∑
<

= n

ji
ij

S
f

2

)(
)(

δ

x
x ,

is used for comparison. Performance of the global
optimization algorithm for multidimensional scaling is
measured using the best estimate of the global
minimum f* in 100 runs, and the reliability is
measured as percentage of runs (perc) when the
estimate of the global minimum differs from f* by less
than 10-4.

53

A. Varoneckas, A. Žilinskas, J. Žilinskas

54

Table 1. Summary of the grid environment considered for
experimental investigation of the algorithm for multidimen-
sional scaling

3.4. Results

For experiments a parallel version of the hybrid
algorithm was used with parameters chosen according
to the results of [9]. The experimental data obtained in
the grid environment are presented in Table 2, where
proc denotes the number of processors. Performance
improvement is significant, especially comparing
single processor results with ten processors results.
Dimensionality of the original spaces essentially
influences the complexity of the corresponding global
optimization problem.

Cluster Number of
CPU(s)

CPU Type Memory

KTU-BG-
GLITE

41 Intel PIII
700MHz

5.24Gb

KTU-ELEN-
LCG2

10 Intel P4
3GHz

3Gb

SU-GRID 15 Intel P4
1.7GHz

7.68Gb

VU-MIF-LCG2
(grid6)

112 AMD
Opteron
2.4GHz

224Gb

CYFRONET-
LCG2

264 Intel Xeon
2.8GHz

264Gb

VDU-IF-LCG2 22 Intel P4 3
GHz

12Gb

VU-MIF-LCG2
(grid5)

25 Intel PIII
1GHz

25Gb

RTUETF 20 AMD
Opteron
2GHz

20Gb

The experimental results show variable perfor-
mance depending on the cluster used. However one
may expect more variable performance: the perfor-
mance of the algorithm on a cluster of PCs with Intel
P4 3GHz CPUs (KTU-ELEN-LCG2, VDU-IF-LCG2)
is just a bit better than that on a cluster of PCs with
Intel PIII 700MHz-1GHz CPUs (VU-MIF-LCG2
(grid5), KTU-BG-GLITE).

Although improvement of reliability using parallel
computation is significant, it is difficult to judge about
the efficiency of parallelization. The efficiency of
parallelization of the algorithm is investigated by
comparing the performance when total computing
time is the same for all cluster configurations:
tc=10s/(number of processors).

3.3. Data sets

Several sets of multidimensional points correspon-
ding to well understand geometric objects were used
for the experimental investigation. We want to choose
difficult test problems, i.e. difficult to visualize geo-
metric objects. The data with desired properties cor-
respond to the multidimensional objects equally
extending in all dimensions of the original space, e.g.
sets of vertices of multidimensional cubes and simp-
lices. Dissimilarity between vertices is measured by
the distance in the original vector space defined by its
metric. Global optimization problems of different
difficulty can be constructed by defining dimensio-
nality of the original spaces. Below we use shorthand
‘cube’ and ‘simplex’ for sets of their vertices.

Such results on supercomputer of grid environ-
ment are presented in Table 3. The percentage of runs
finding the best known solution (perc) when total
computing time of the algorithm is tc = 10s/(number of
processors) decreases a bit or remains approximately
the same when the number of processors is increased.

4. Conclusions

The considered algorithm combining evolutionary
global search with properly chosen local minimization
is well scalable with respect to parallelization.

Performance improvement using parallel version
of the algorithm is significant for all considered prob-
lems comparing with the performance on single pro-
cessor.

The number of vertices of multidimensional cube
is n=2dim, and the dimensionality of global mini-
mization problem is N=2dim+1. The coordinates of i-th
vertex of a dim-dimensional cube are equal either to 0
or to 1, and they are defined by binary code of i = 1,
..., n.

Performance of the parallel algorithm depends on
the computer cluster used. Therefore it is not always
good to rely on the central scheduler of grid resources.
When assigning tasks onto the grid computing re-
sources users can perform manual look-up and selec-
tion.

Vertices of multidimensional simplex can be
defined by

.dim,...,1,1dim,...,1
,,0
,1,1

=+=


 +=

=

ji
otherwise

jiif
vij

Acknowledgements
Dimensionality of this global minimization prob-

lem is N = 2 × (dim + 1).
The research is supported by Lithuanian State

Science and Studies Foundation, LitGRID programme
and the NATO Reintegration grant CBP.EAP.RIG.
981300.

Parallel Multidimensional Scaling Using Grid Computing: Assessment of Performance

55

Table 2. Performance of the parallel algorithm for multidimensional scaling on grid clusters. City-block distances, data sets of
multidimensional cubes are used. Algorithm parameters: p = 60, Ninit = 6000, tc = 10, number of algorithm execution = 100

dim f* 1proc 2proc 3proc 4proc 5proc 6proc 7proc 8proc 9proc 10proc

3 0.224472 100 100 100 100 100 100 100 100 100 100
4 0.296531 100 100 100 100 100 100 100 100 100 100
5 0.331341 30 48 60 78 85 87 92 93 94 97

K
TU

-B
G

-
G

LI
TE

6 0.351327 7 7 11 16 16 23 27 29 33 38

3 0.224472 100 100 100 100 100 100 100 100 100 100
4 0.296531 100 100 100 100 100 100 100 100 100 100
5 0.331337 74 47 56 70 91 99 100 100 91 95

K
TU

-E
LE

N
-

LC
G

2

6 0.351388 16 7 7 10 51 53 63 68 27 34

3 0.224472 100 100 100 100 100 100 100 100 100 100
4 0.296531 100 100 100 100 100 100 100 100 100 100
5 0.331334 62 73 85 86 93 98 99 99 100 100

SU
-G

R
ID

6 0.351401 14 13 21 32 35 49 52 59 59 62

3 0.224472 100 100 100 100 100 100 100 100 100 100
4 0.296531 100 100 100 100 100 100 100 100 100 100
5 0.331335 82 95 100 100 100 100 100 100 100 100

V
U

-M
IF

-L
C

G
2

(g
rid

6)

6 0.351366 18 21 31 42 52 63 68 75 84 85

3 0.224472 100 100 100 100 100 100 100 100 100 100
4 0.296531 100 100 100 100 100 100 100 100 100 100
5 0.331337 60 88 92 98 100 100 100 100 100 100

C
Y

FR
O

N
ET

-
LC

G
2

6 0.351375 13 22 32 44 52 60 62 69 75 77

3 0.224472 100 100 100 100 100 100 100 100 100 100
4 0.296531 100 100 100 100 100 100 100 100 100 100
5 0.331334 59 77 76 92 90 97 94 97 99 90

V
D

U
-I

F-
LC

G
2

6 0.351401 14 12 21 33 23 47 24 56 65 31

3 0.224472 100 100 100 100 100 100 100 100 100 100
4 0.296531 100 100 100 100 100 100 100 100 100 100
5 0.33134 32 61 61 72 83 97 83 98 96 99

V
U

-M
IF

-
LC

G
2

(g
rid

5)

6 0.351449 8 10 7 9 14 23 25 38 36 37

3 0.224472 100 100 100 100 100 100 100 100 100 100
4 0.296531 100 100 100 100 100 100 100 100 100 100
5 0.331337 61 86 95 100 98 99 100 100 100 61

R
TU

ET
F

6 0.351381 13 22 27 41 44 55 62 66 73 13

A. Varoneckas, A. Žilinskas, J. Žilinskas

Table 3. Performance of the parallel algorithm for multidimensional scaling on VU-MIF-LCG2 (grid6) cluster. Algorithm
parameters: p = 60, Ninit = 6000, tc = 10/(number of processors), number of algorithm execution = 100

dim f* 1proc 2proc 4proc 5proc 7proc 8proc 9proc
 Euclidean distances, multidimensional cubes
3 0.243852 100 100 100 100 100 100 100
4 0.300323 100 100 100 100 100 100 100
5 0.332046 100 100 100 100 100 100 100
6 0.350552 86 86 94 89 94 94 97
7 0.362889 48 69 91 93 97 97 97
8 0.382309 47 69 1 1 2 2 2
 city-block distances, multidimensional cubes
3 0.224472 100 100 100 100 100 100 100
4 0.296531 100 100 100 100 100 100 100
5 0.331364 82 78 81 82 74 71 74
6 0.351512 16 12 19 16 23 21 16
 Euclidean distances, multidimensional simplices
16 0.359307 100 100 100 100 100 100 100
17 0.362790 100 100 100 100 100 100 100
18 0.365953 100 100 100 100 100 100 100
19 0.368722 100 100 100 100 100 100 100
20 0.371271 100 100 100 100 100 100 100
31 0.388863 100 100 100 100 100 100 100
 city-block distances, multidimensional simplices
16 0.348424 75 95 100 94 68 69 68
17 0.352688 58 82 47 38 28 28 26
18 0.356216 59 82 26 18 11 17 10
19 0.359641 38 28 4 2 4 4 3
20 0.362490 29 18 3 2 5 4 2
31 0.382309 2 8 10 19 8 8 7

References
 [1] I. Borg, P. Groenen. Modern Multidimensional Sca-

ling. Springer, New York, 2005.
 [2] E. Cantú-Paz. Efficient and Accurate Parallel Genetic

Algorithms. Kluwer Academic Publishers, 2000.
 [3] T. Cox, M. Cox. Multidimensional Scaling. Chapman

and Hall/CRC, Boca Raton, 2001.
 [4] I. Foster, C. Kesselman (Eds.). The Grid: Blueprint

for New Computing Infrastructure. Morgan Kaufman
Publishers, 1999.

 [5] gLite: http://glite.web.cern.ch/glite/
 [6] P. Groenen, R. Mathar, J. Trejos. Global optimiza-

tion methods for MDS applied to mobile commu-
nications. In: W. Gaul, O. Opitz, M. Schander (Eds.)
Data Analysis: Scientific Models and Practical Appli-
cations. Springer, 2000, 459–475.

 [7] R. Mathar. A hybrid global optimization algorithm
for multidimensional scaling. In R. Klar, O. Opitz
(Eds.), Classification and Knowledge Organization.
Springer, Berlin, 1996, 63–71.

 [8] R. Mathar, A. Žilinskas. On global optimization in
two dimensional scaling. Acta Applicandae Mathema-
ticae, 1993, 33, 109–118.

 [9] A. Varoneckas, A. Žilinskas, J. Žilinskas. Multidi-
mensional scaling using parallel genetic algorithm. In:
I.D.L. Bogle, J. Žilinskas (Eds.) Computer Aided Me-
thods in Optimal Design and Operations. Vol.7 of
Series on Computers and Operations Research, World
Scientific, 2006, 129–138.

[10] A. Žilinskas, J. Žilinskas. Two level minimization in
multidimensional scaling. Journal of Global Optimiza-
tion, 2007, 38, 581–596.

Received December 2007.

56

