
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2008, Vol.37, No.1 

PARALLEL MULTIDIMENSIONAL SCALING USING GRID 
COMPUTING: ASSESSMENT OF PERFORMANCE 

Audrius Varoneckas1, Antanas Žilinskas2, Julius Žilinskas2,3 

1Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania  
2Institute of Mathematics and Informatics, Akademijos 4, LT-08663 Vilnius, Lithuania  

3Institute of Psychophysiology and Rehabilitation, Vydūno 4, Palanga LT-00135, Lithuania 

Abstract. Multidimensional scaling is a technique for visualization and exploratory analysis of multidimensional 
data aiming to discover a structure of sets of objects using information on similarities/dissimilarities between those 
objects. A difficult global optimization problem should be solved to minimize the error of visualization. A hybrid 
optimization algorithm has been constructed combining evolutionary global search with efficient local descent. A 
parallel version of the proposed optimization algorithm is implemented to enable solution of large scale problems in 
acceptable time. In the present paper we investigated the efficiency of the parallel version of the algorithm on PC 
clusters and computational grids. 
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1. Introduction 

Multidimensional scaling (MDS) is an exploratory 
technique for data analysis [1, 3], widely usable in 
different applications, e.g. psychometrics, market ana-
lysis, data mining, visualization of general multidi-
mensional data, visualization of observation points in 
interactive global optimization.  

The points xi=(xi1,...,xim), i=1,...,n representing n 
objects in m-dimensional embedding space should be 
found fitting pairwise distances of points to given 
pairwise dissimilarities of the objects (δij, i,j=1,...,n). It 
is supposed that dissimilarities are symmetric (δij=δji) 
and (δii=0). 

The implementation of a MDS method is reduced 
to minimization of a fitness criterion, e.g. the so called 
STRESS function: 

( )(∑
<

−=
n

ji
ijjidS 2,)( δxxx ) , (1) 

where x=(x1,...,xn) is a vector aggregating coordinates 
of points xi=(xi1,...,xim), d(xi,xj) denotes the distance 
between the points xi and xj. 

The distances may be estimated using different 
norms in IRm. Most often a Minkowski distance is 
used: 
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The formula (2) defines Euclidean distances when 
r=2, and city-block distances when r=1. The points xi 

defined by means of minimization of (1), but using 
different distances in the embedding space, can be 
interpreted as different nonlinear projections of the 
objects from the original space to the embedding 
space. When objects of problem are defined by multi-
dimensional points, dissimilarities can be found 
estimating pairwise distances of points in the original 
multidimensional space. 

MDS is a difficult global optimization problem. 
Although STRESS is defined by an analytical formula, 
which seems rather simple, its minimization is diffi-
cult. The function normally has many local minima. 
When city-block distances are used, STRESS can be 
non differentiable even at the minimum point [10]. 
The minimization problem is high dimensional (num-
ber of variables is N = n × m) global optimization 
problem. 

When computing power of usual computers is not 
sufficient to solve a problem, the high performance 
parallel computers, clusters of computers and compu-
tational grids may be helpful. An algorithm is more 
applicable in case its parallel implementation is avail-
able, because larger practical problems may be solved 
by means of parallel computation. Because of this, 
implementation of parallel algorithms and investiga-
tion of their efficiency on PC clusters and computa-
tional grids are considered. 
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2. Evolutionary Algorithm for 
Multidimensional Scaling 

As it was shown in [6, 7, 8], the hybrid algorithm 
combining evolutionary global search with efficient 
local descent is the most reliable though the most time 
consuming method for MDS with Euclidean distances. 
Therefore a similar hybrid algorithm has been const-
ructed. 

The idea is to maintain a population of best (with 
respect to STRESS value) solutions whose crossover 
can generate better solutions. The size of population p 
is a parameter of the algorithm. An initial population 
is generated by performing local searches from p 
starting points that are the best (with respect to 
STRESS value) from a sample of Ninit randomly gene-
rated points. The population evolves generating off-
spring of two randomly selected parents. Two point 
crossover is used. Adaptation of the offspring to envi-
ronment is modelled by local search. The fitness of the 
offspring is defined by the locally optimal value found 
by local descent. Elitist survival is performed: if the 
offspring is better fitted than the worst individual of 
the current population then the later is replaced by the 
offspring. Minimization terminates after predetermi-
ned computing time tc. 

The structure of the hybrid algorithm with para-
meters (p, Ninit, tc): 
Generate the initial population: 

Generate Ninit random points. 
Perform search for local minima 

starting from the best p points. 
Form the initial population from the 

found local minimizers. 
while not time limit tc exceeded 

Select two uniformly random parents 
from the current population. 

Produce an offspring by means of 2-
point crossover and local 
minimization. 

if it is better than the worst 
individual of the current 
population, 

then replace the offspring with the 
latter. 

The upper level genetic algorithm ensures globa-
lity of search while at the lower level local descent 
ensures efficient search for local minima. Well known 
direction set algorithm by Powell has been used for 
local search for MDS problems with Euclidean dis-
tances. In the case of city-block distances STRESS is a 
piecewise quadratic (over simply defined polyhedra) 
function of x [10]; a special local search method has 
been proposed taking into account the latter property. 
It has been shown experimentally that these local 
search strategies perform best in MDS with Euclidean 
and city-block metrics. 

Parallel version of genetic algorithm with multiple 
populations [2] has been developed. Communications 
between processors have been kept to minimum to 

enable implementation of the algorithm on clusters of 
personal computers and computational grids. Each 
processor runs the same genetic algorithm with diffe-
rent sequences of random numbers. This is ensured by 
initializing different seeds for random number genera-
tors in each processor. The results of different proces-
sors are collected when search is finished after 
predefined time. To make parallel implementation as 
much portable as possible the general message-pas-
sing paradigm of parallel programming has been 
chosen. A standardized message-passing communica-
tion protocol MPI is used for communication between 
parallel processors. 

3. Experimental investigation in grid 
environment 

Grid computing [4] is emerging as new paradigm 
for distributed problem solving for a wide range of 
application domains. Supercomputers, high perfor-
mance computing clusters, clusters of personal com-
puters are distributed and independent but, on the 
other hand, form a large scale dynamic grid environ-
ment.  

When assigning tasks onto the grid computing 
resources, users can perform manual look-up and 
select resources or let the central scheduler select 
available resources. Since grid environment is often 
dynamic, the same computational conditions will 
never occur. 

3.1. Test bed 

We have used standard C++ and MPI library to 
implement the parallel algorithm for multidimensional 
scaling. The algorithm is available under BalticGrid 
Special Interest Groups portal (http://sig.balticgrid. 
org). 

Test bed, used in our experiments, is a heteroge-
neous cluster environment. It contains eight high-
performance clusters. Their configuration is shown in 
Table 1. gLite middleware [5] is installed on each 
cluster.  

3.2. Experimental investigation 

To exclude the impact of number of objects and of 
used metric, a relative error 
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is used for comparison. Performance of the global 
optimization algorithm for multidimensional scaling is 
measured using the best estimate of the global 
minimum f* in 100 runs, and the reliability is 
measured as percentage of runs (perc) when the 
estimate of the global minimum differs from f* by less 
than 10-4. 
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Table 1. Summary of the grid environment considered for 
experimental investigation of the algorithm for multidimen-
sional scaling 

3.4. Results 

For experiments a parallel version of the hybrid 
algorithm was used with parameters chosen according 
to the results of [9]. The experimental data obtained in 
the grid environment are presented in Table 2, where 
proc denotes the number of processors. Performance 
improvement is significant, especially comparing 
single processor results with ten processors results. 
Dimensionality of the original spaces essentially 
influences the complexity of the corresponding global 
optimization problem.  

Cluster Number of 
CPU(s) 

CPU Type Memory 

KTU-BG-
GLITE 

41 Intel PIII 
700MHz 

5.24Gb 

KTU-ELEN-
LCG2 

10 Intel P4 
3GHz 

3Gb 

SU-GRID 15 Intel P4 
1.7GHz 

7.68Gb 

VU-MIF-LCG2 
(grid6) 

112 AMD 
Opteron 
2.4GHz 

224Gb 

CYFRONET-
LCG2 

264 Intel Xeon 
2.8GHz 

264Gb 

VDU-IF-LCG2 22 Intel P4 3 
GHz 

12Gb 

VU-MIF-LCG2 
(grid5) 

25 Intel PIII 
1GHz 

25Gb 

RTUETF 20 AMD 
Opteron 
2GHz 

20Gb 

The experimental results show variable perfor-
mance depending on the cluster used. However one 
may expect more variable performance: the perfor-
mance of the algorithm on a cluster of PCs with Intel 
P4 3GHz CPUs (KTU-ELEN-LCG2, VDU-IF-LCG2) 
is just a bit better than that on a cluster of PCs with 
Intel PIII 700MHz-1GHz CPUs (VU-MIF-LCG2 
(grid5), KTU-BG-GLITE). 

Although improvement of reliability using parallel 
computation is significant, it is difficult to judge about 
the efficiency of parallelization. The efficiency of 
parallelization of the algorithm is investigated by 
comparing the performance when total computing 
time is the same for all cluster configurations: 
tc=10s/(number of processors). 

3.3. Data sets 

Several sets of multidimensional points correspon-
ding to well understand geometric objects were used 
for the experimental investigation. We want to choose 
difficult test problems, i.e. difficult to visualize geo-
metric objects. The data with desired properties cor-
respond to the multidimensional objects equally 
extending in all dimensions of the original space, e.g. 
sets of vertices of multidimensional cubes and simp-
lices. Dissimilarity between vertices is measured by 
the distance in the original vector space defined by its 
metric. Global optimization problems of different 
difficulty can be constructed by defining dimensio-
nality of the original spaces. Below we use shorthand 
‘cube’ and ‘simplex’ for sets of their vertices. 

Such results on supercomputer of grid environ-
ment are presented in Table 3. The percentage of runs 
finding the best known solution (perc) when total 
computing time of the algorithm is tc = 10s/(number of 
processors) decreases a bit or remains approximately 
the same when the number of processors is increased.  

4. Conclusions 

The considered algorithm combining evolutionary 
global search with properly chosen local minimization 
is well scalable with respect to parallelization.  

Performance improvement using parallel version 
of the algorithm is significant for all considered prob-
lems comparing with the performance on single pro-
cessor.  

The number of vertices of multidimensional cube 
is n=2dim, and the dimensionality of global mini-
mization problem is N=2dim+1. The coordinates of i-th 
vertex of a dim-dimensional cube are equal either to 0 
or to 1, and they are defined by binary code of i = 1, 
..., n.  

Performance of the parallel algorithm depends on 
the computer cluster used. Therefore it is not always 
good to rely on the central scheduler of grid resources. 
When assigning tasks onto the grid computing re-
sources users can perform manual look-up and selec-
tion. 

Vertices of multidimensional simplex can be 
defined by  

.dim,...,1,1dim,...,1
,,0
,1,1
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Table 2. Performance of the parallel algorithm for multidimensional scaling on grid clusters. City-block distances, data sets of 
multidimensional cubes are used. Algorithm parameters: p = 60, Ninit = 6000, tc = 10, number of algorithm execution = 100 

dim f* 1proc 2proc 3proc 4proc 5proc 6proc 7proc 8proc 9proc 10proc 
    
3 0.224472 100 100 100 100 100 100 100 100 100 100 
4 0.296531 100 100 100 100 100 100 100 100 100 100 
5 0.331341 30 48 60 78 85 87 92 93 94 97 

K
TU

-B
G

-
G

LI
TE

 

6 0.351327 7 7 11 16 16 23 27 29 33 38 

    
3 0.224472 100 100 100 100 100 100 100 100 100 100 
4 0.296531 100 100 100 100 100 100 100 100 100 100 
5 0.331337 74 47 56 70 91 99 100 100 91 95 

K
TU

-E
LE

N
-

LC
G

2 

6 0.351388 16 7 7 10 51 53 63 68 27 34 

    
3 0.224472 100 100 100 100 100 100 100 100 100 100 
4 0.296531 100 100 100 100 100 100 100 100 100 100 
5 0.331334 62 73 85 86 93 98 99 99 100 100 

SU
-G

R
ID

 

6 0.351401 14 13 21 32 35 49 52 59 59 62 

    
3 0.224472 100 100 100 100 100 100 100 100 100 100 
4 0.296531 100 100 100 100 100 100 100 100 100 100 
5 0.331335 82 95 100 100 100 100 100 100 100 100 

V
U

-M
IF

-L
C

G
2 

(g
rid

6)
 

6 0.351366 18 21 31 42 52 63 68 75 84 85 

    
3 0.224472 100 100 100 100 100 100 100 100 100 100 
4 0.296531 100 100 100 100 100 100 100 100 100 100 
5 0.331337 60 88 92 98 100 100 100 100 100 100 

C
Y

FR
O

N
ET

-
LC

G
2 

6 0.351375 13 22 32 44 52 60 62 69 75 77 

    
3 0.224472 100 100 100 100 100 100 100 100 100 100 
4 0.296531 100 100 100 100 100 100 100 100 100 100 
5 0.331334 59 77 76 92 90 97 94 97 99 90 

V
D

U
-I

F-
LC

G
2 

6 0.351401 14 12 21 33 23 47 24 56 65 31 

    
3 0.224472 100 100 100 100 100 100 100 100 100 100 
4 0.296531 100 100 100 100 100 100 100 100 100 100 
5 0.33134 32 61 61 72 83 97 83 98 96 99 

V
U

-M
IF

-
LC

G
2 

(g
rid

5)
 

6 0.351449 8 10 7 9 14 23 25 38 36 37 

    
3 0.224472 100 100 100 100 100 100 100 100 100 100 
4 0.296531 100 100 100 100 100 100 100 100 100 100 
5 0.331337 61 86 95 100 98 99 100 100 100 61 

R
TU

ET
F 

6 0.351381 13 22 27 41 44 55 62 66 73 13 
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Table 3. Performance of the parallel algorithm for multidimensional scaling on VU-MIF-LCG2 (grid6) cluster. Algorithm 
parameters: p = 60, Ninit = 6000, tc = 10/(number of processors), number of algorithm execution = 100 

dim f* 1proc 2proc 4proc 5proc 7proc 8proc 9proc 
 Euclidean distances, multidimensional cubes  
3 0.243852 100 100 100 100 100 100 100 
4 0.300323 100 100 100 100 100 100 100 
5 0.332046 100 100 100 100 100 100 100 
6 0.350552 86 86 94 89 94 94 97 
7 0.362889 48 69 91 93 97 97 97 
8 0.382309 47 69 1 1 2 2 2 
 city-block distances, multidimensional cubes  
3 0.224472 100 100 100 100 100 100 100 
4 0.296531 100 100 100 100 100 100 100 
5 0.331364 82 78 81 82 74 71 74 
6 0.351512 16 12 19 16 23 21 16 
 Euclidean distances, multidimensional simplices  
16 0.359307 100 100 100 100 100 100 100 
17 0.362790 100 100 100 100 100 100 100 
18 0.365953 100 100 100 100 100 100 100 
19 0.368722 100 100 100 100 100 100 100 
20 0.371271 100 100 100 100 100 100 100 
31 0.388863 100 100 100 100 100 100 100 
 city-block distances, multidimensional simplices  
16 0.348424 75 95 100 94 68 69 68 
17 0.352688 58 82 47 38 28 28 26 
18 0.356216 59 82 26 18 11 17 10 
19 0.359641 38 28 4 2 4 4 3 
20 0.362490 29 18 3 2 5 4 2 
31 0.382309 2 8 10 19 8 8 7 
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