
Abstract. The graph coloring problem consists in assigning colors to the vertices of a given graph G such that no two
adjacent vertices receive the same color and the number of used colors is as small as possible. In this paper, we investigate the
graph coloring polytope P (G) defined as the convex hull of feasible solutions to the binary programming formulation of the
problem. We remark that P (G) coincides with the stable set polytope of a graph constructed from the complement Ḡ of G.
We derive facet-defining inequalities for P (G) from independent sets, odd holes, odd anti-holes and odd wheels in Ḡ.
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1. Introduction

Given a simple graph G = (V,E) with vertex
set V and edge set E, a vertex coloring is an assign-
ment of colors to the vertices so that no two adjacent
vertices receive the same color. The graph coloring
problem is to find a vertex coloring with the number
of used colors as small as possible. This minimum
number χ(G) of colors is called the chromatic num-
ber of the graph G.

There exist many approaches for the graph col-
oring problem. These approaches include both exact
[2, 4, 10, 16] and heuristic [1, 7, 8, 9] solution meth-
ods. In the development of algorithms for graph color-
ing, various integer programming formulations of the
problem could be used. Several such formulations,
each involving binary variables, have been proposed:
independent set formulation [10], an integer program
with a variable for each possible color and vertex [5,
11], a model relating acyclic orientations of a graph to
its chromatic number [6], a model with vertices rep-
resenting colors [3], and a formulation based on star
partitioning of the complement of a given graph [14].

Let Ḡ = (V, Ē) denote the complement of the
graph G = (V,E) of order n = |V |. Assume (which
is not restrictive) that each connected component of
Ḡ has order greater than two. Letting V be a set
of integers treated as unique identifiers assigned to
the vertices of G, we define T = {(i, j, k) | i <
min{j, k} and {i, j, k} forms a triangle in Ḡ} and
Π = {(i, j, k) | (i, j), (j, k) ∈ Ē, (i, k) 6∈ Ē}. The
formulation proposed in [14] is as follows:

χ(G) = min (n−
∑

(i,j)∈Ē

xij) (1)

s.t. xij +xjk 6 1 for all (i, j, k) ∈ T ∪Π (2)

xij ∈ {0, 1} for all (i, j) ∈ Ē. (3)

In [14], it is shown that

χ(G) + α(HG) = n, (4)

where α(HG) is the independence number of the
graph HG = (VH , EH) with vertices tij ∈ VH cor-
responding to (i, j) ∈ Ē and edges (tij , tjk) ∈ EH

corresponding to (i, j), (j, k) ∈ Ē such that either
(i, j, k) ∈ Π or (i, j, k) ∈ T . From equation (4), it is
evident that, using (1)–(3), the graph coloring prob-
lem can be reduced to that of finding a maximum
independent set in a graph. In the current paper, we
exploit this relationship between these two problems.

Given a graphG, we define the polytope P (G) =
conv {x = (xij), (i, j) ∈ Ē | x satisfies (2) and
(3) }. When dealing with polytopes, one of the main
problems is to identify large classes of inequalities
that are facet-defining for them. In the next section,
we study the facetial structure of P (G) and derive
such inequalities from independent sets, odd holes,
odd anti-holes and odd wheels in Ḡ.

We end the introduction with a few basic defi-
nitions and notations. A star is a tree S with vertex
set V = {v1, . . . , vl}, l > 1, and edge set E =
{(v1, vi) | i = 2, . . . , l} if l > 1 and E = ∅ if l = 1.
The vertex v1 is called a centre vertex of the star and is
denoted by c(S). Given a graph G = (V,E), we de-
note by Ni(G), i ∈ V (or just Ni) the set of vertices
adjacent to i. The subgraph of G induced by a ver-
tex set V ′ ⊂ V is denoted by G(V ′). The stable set
polytope Pstable(G) of a graphG is the convex hull of
the incidence vectors of the independent (stable) sets
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in G. The basic concepts of polyhedral theory can be
found, for example, in [15].

2. Facets of the polytope

In this section, we exhibit a few classes of facet-
defining inequalities for P (G). We start by point-
ing out a one-to-one correspondence between color-
ings of G and admissible star partitions of Ḡ. By a
star partition we understand a collection s of stars
Si = (Vi, Ei), i = 1, . . . , l, in Ḡ such that Vi∩Vj = ∅
for each pair i, j, i 6= j, ∪l

i=1Vi = V , and Vi for
each i ∈ {1, . . . , l} induces a clique in Ḡ. We will
write E(s) = ∪l

i=1Ei. We say that a star partition s
is admissible if, for each Si ∈ s, the centre vertex
c(Si) = minj∈Vi

j. We denote the set of all admissi-
ble star partitions of Ḡ by Ψ(Ḡ). For s ∈ Ψ(Ḡ), let
x(s) = (xij(s) | (i, j) ∈ Ē) be the incidence vector
of s, that is, 0−1 vector with xij(s) = 1 if and only if
(i, j) ∈ Ek for some star Sk in s. In [14], it is proved
that the incidence vectors of star partitions in Ψ(Ḡ)
are the only integer points in P (G).

In the rest of this section, we use the following
fact, which, in particular, implies that P (G) is full-
dimensional (dimP (G) = |Ē|).

Proposition 1. P (G) = Pstable(HG).

The above equation easily follows from (1)–(4)
and the definition of P (G). The next assertion is ob-
vious as well.

Proposition 2. For each (i, j) ∈ Ē, the inequality
xij > 0 defines a facet of P (G).

In order to present the first class of nontrivial
facet-defining inequalities we need some additional
notations. Let Ēi, i ∈ V , denote the set of edges of
Ḡ incident to i. Define Ē′i = {(i, j) ∈ Ēi | j < i},
Ē′′i = Ēi \ Ē′i, N ′′i = {j ∈ Ni | (i, j) ∈ Ē′′i }. Let I
be an inclusion-wise maximal independent set in the
graph Ḡ(N ′′i ) and Ei(I) = {(i, j) ∈ Ē′′i | j ∈ I}.
We are interested in the following inequality∑

(i,j)∈Ē′i∪Ei(I)

xij 6 1. (5)

Theorem 1. For a non-isolated vertex i ∈ V and
any maximal independent set I in the graph Ḡ(N ′′i ),
the inequality (5) is valid for P (G). In the case where
Ḡ has no connected component of order two, (5) de-
fines a facet of P (G) if and only if |Ē′i ∪Ei(I)| > 2.

Proof. It is easy to see that the edges of Ē′i ∪
Ei(I) define a clique K in the graph HG. There-
fore, (5) is valid for P (G). Consider the case where
|Ē′i∪Ei(I)| > 2. Assume thatK is not maximal. This

means that there exists a vertex tik ∈ VH adjacent to
all vertices in K. Clearly, (i, k) ∈ Ē′′i . The maximal-
ity of I implies the existence of a vertex j ∈ I such
that (j, k) ∈ Ē. However, (i, j, k) ∈ T and hence
(tij , tik) 6∈ EH , a contradiction to the above assump-
tion. As proved in [13], the inequality

∑
i∈V ′ xi 6 1

for the vertex set V ′ of an inclusion-wise maximal
clique in a graph G defines a facet of Pstable(G). Ap-
plying this result to HG and using Proposition 1, we
conclude that (5) is facet-defining for P (G).

If Ē′i ∪Ei(I) = {(i, j)}, then, since i belongs to
a component of order greater than two, it follows that
tij in HG is adjacent to at least one other vertex and,
therefore, (5) does not define a facet of P (G). �

Notice that (5) can be viewed as a generalization
of (2). Indeed, the latter coincides with (5) and thus
is facet-defining for P (G) only in the most simple
cases. More specifically, (2) for (i, j, k) ∈ T defines
a facet of P (G) if and only if either Nj = {i, k} or
Ē′j = {(j, i)} and (k, l) ∈ Ē for each l ∈ N ′′j \ {k}.
For (i, j, k) ∈ Π, (2) defines a facet of P (G) if and
only if either the same condition as for (i, j, k) ∈ T
is satisfied or Ē′j = ∅ and {i, k} is a maximal inde-
pendent set in Ḡ(Nj).

We will now display three classes of inequal-
ities for P (G) with the right-hand side coefficient
greater than one. Perhaps, the most simple such in-
equalities are derived from odd holes, that is, graphs
C = (VC , EC) having vertex set VC = {v1, . . . , vh}
of odd cardinality h > 5 and edge set EC =
{(vi, vi+1) | i = 1, . . . , h− 1} ∪{(v1, vh)}.

Theorem 2. For an odd hole C in Ḡ, the inequal-
ity ∑

(i,j)∈EC

xij 6 (h− 1)/2 (6)

defines a facet of P (G).
Proof. The vertices tv1vh

, tvivi+1 , i = 1, . . . , h−
1, induce an odd hole C ′ = (VC′ , EC′) in the graph
HG. It is well-known [13] that the odd hole inequality∑

tij∈VC′

xtij 6 (h− 1)/2 (7)

defines a facet of the stable set polytope Pstable(C ′).
It remains to show that this inequality is facet-
defining for the polytopePstable(HG) too. Let (vi, vj)
be any edge of Ē\EC . Suppose that vi ∈ VC and vj 6∈
VC . Assume for simplicity that i ∈ {2, . . . , h − 1}.
Then the vertex tvivj is adjacent to at most two ver-
tices of C ′, namely, tvi−1vi

and tvivi+1 . We form an
independent set U by taking (h − 1)/2 vertices on
the path obtained by removing vertices tvi−1vi and
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tvivi+1 from C ′. If vi, vj 6∈ VC , then U is any in-
dependent set of size (h− 1)/2 in C ′. The incidence
vector of the set U ∪ {tvivj

} satisfies (7) with equal-
ity. Considering each (vi, vj) ∈ Ē \ EC , we obtain a
collection of such vectors, which, obviously, are lin-
early independent. Consequently, (7) defines a facet
of Pstable(HG). Hence, due to Proposition 1, (6) de-
fines a facet of P (G). �

Let W = (VW , EW ) denote an odd wheel – a
graph consisting of an odd hole, called the rim, and a
vertex connected to all vertices of the rim, called the
hub. The latter is denoted by c. The complement of
an odd hole is called an odd anti-hole.

Theorem 3. For an odd wheel W in Ḡ with c =
minv∈VW

v, the inequality∑
i∈Nc(W )

xci 6 2 (8)

is valid for P (G). Furthermore, it is facet-defining if
the following two conditions are satisfied:
(a) Ē′c = ∅, that is, i > c for each (i, c) ∈ Ēc;

(b) for each i 6∈ VW adjacent to c, there exists a pair
of vertices j, k ∈ Nc(W ) such that (j, k) ∈ EW

and (i, j), (i, k) ∈ Ē.
Proof. Since, for an edge (i, j) of the rim, i, j

and c induce a triangle, it follows that the vertices tci

and tcj are not adjacent in HG. On the other hand,
the vertex tci, i ∈ Nc(W ), is connected by an edge to
each vertex tck, k ∈ Nc(W ), (i, k) 6∈ EW . Therefore,
the subgraph of HG induced by the vertices tci, i ∈
Nc(W ), is an odd anti-hole A = (VA, EA). For its
vertex set VA, the inequality∑

tci∈VA

xtci
6 2 (9)

defines a facet of the stable set polytope Pstable(A)
[12]. This fact establishes the validity of (8).

Now suppose that the stated conditions hold for
W . Similarly to the proof of Theorem 2, we con-
struct the required collection of linearly independent
incidence vectors. If (i, j) is an edge of the rim,
we include in this collection the incidence vector
of the independent set U = {tij , tck, tcl}, where
{k, l} ∩ {i, j} = ∅, k, l ∈ Nc(W ) and (k, l) ∈ EW .
If (i, c) ∈ Ē, i 6∈ VW , then the conditions (a) and
(b) allow us to argue that the set U = {tci, tcj , tck}
is independent in HG and we can use it to represent
(i, c); here the meaning of j and k is as in (b). Fi-
nally, if (i, j) ∈ Ē, i 6∈ VW , j 6= c, then we can take
the set U = {tij , tck, tcl}, where k and l are adjacent
vertices of the rim and both k and l differ from j if

j ∈ Nc(W ). Since the incidence vectors of the se-
lected sets are linearly independent, it follows that (9)
defines a facet of the polytope Pstable(HG). By virtue
of Proposition 1, (8) is facet-defining for P (G). �

A result similar to the above theorems can also
be stated for the odd anti-holeA = (VA, EA), |VA| =
h > 5.

Theorem 4. For an odd anti-hole A in Ḡ, the in-
equality ∑

(i,j)∈EA

xij 6 h− 3 (10)

defines a facet of P (G).
Proof. The validity of (10) for P (G) is obvious.

We can assume that h > 7 because if h = 5, then
A coincides with its complement – the odd hole C.
Let aTx 6 a0 denote the inequality (10) and let
bTx 6 b0 be a facet-defining inequality for P (G)
such that Fa := {x ∈ P (G) | aTx = a0} ⊆
Fb := {x ∈ P (G) | bTx = b0}. For u ∈ VA, let
u, v1, w1, v2, w2, . . . , vq, wq , q = (h − 1)/2, be the
list of vertices of A ordered in such a manner that
(u, v1), (u,wq), (vi, wi), i = 1, . . . , q, (wi, vi+1),
i = 1, . . . , q− 1, are the edges of C (or, equivalently,
non-edges of A). We consider cliques in A defined
by the vertex sets of the form Kr = {u} ∪ {wi |
i = 1, . . . , r − 1} ∪ {vi | i = r + 1, . . . , q},
where r ∈ {1, . . . , q}. We define K̄ ′r = VA \
(Kr ∪ {vr}), K̄ ′′r = VA \ (Kr ∪ {wr}). We de-
note by S(Kr) = (Kr, E(Kr)), r ∈ {1, . . . , q}
(similarly, S(K̄ ′r), S(K̄ ′′r )) the star with the vertex
set Kr and centre vertex cr = minv∈Kr

v. Suppose
(vr, j) ∈ Ē \ EA and vr ∈ VA. For star parti-
tion s with E(s) = E(Kr) ∪ E(K̄ ′r) and star par-
tition s′ with E(s′) = E(s) ∪ {(vr, j)}, we have
that x(s), x(s′) ∈ Fa and hence x(s), x(s′) ∈ Fb

implying bvrj = 0. Similarly, bij = 0 for an edge
(i, j) ∈ Ē, i, j 6∈ VA.

Therefore, it remains to evaluate bij only for the
edges (i, j) ∈ EA. Our goal is to show for each z ∈
VA that

bzi = bzj for each pair i, j ∈ Nz(A). (11)

For u ∈ VA, define Ē(u) = {(u, i) | i ∈
Nu(A)}. Given u ∈ VA, we construct a graph Gu

with vertices tui corresponding to edges in Ē(u) and
with edges added during a process to be described be-
low. An edge (tui, tuj) appears in Gu upon establish-
ing the fact that bui = buj . Throughout this process,
all edges will belong to only one connected compo-
nent of Gu. We denote it by G∗u. Upon termination of
the process,Gu will appear to be connected. This fact
will imply (11) for z = u.
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To show (11) for all vertices in VA, we use math-
ematical induction. We can assume w.l.o.g. that VA =
{1, . . . , h}. First consider a vertex u for which cr 6=
u, r = 1, . . . , q (at least vertices h, h−1, . . . , h−q+2
are of such type). The fact that Gu is connected will
be established again by applying induction. We itera-
tively examine vertex sets Kr, r = 1, . . . , q. We de-
note by V ∗u (r), u ∈ VA, r ∈ {1, . . . , q}, the vertex set
of G∗u upon termination of the first r iterations. The
statement to be proved inductively is the following:
for r ∈ {1, . . . , q}, the vertices tuci , i = 1, . . . , r,
tuvi

, i = 2, . . . , r, tuwi
, i = 1, . . . , r − 1, and, if

r < q, also tuwr
belong to V ∗u (r).

In the first iteration, we consider K1. Clearly,
c1 ∈ {vi | i = 2, . . . , q}. Comparing E(s) =
E(K1) ∪ E(K̄ ′′1 ) and E(s) ∪ {(u,w1)} \ {(u, c1)}
we find that buc1 = buw1 . The edge (tuc1 , tuw1) de-
fines initial G∗u.

Suppose that 1 < r 6 q. By the induction hy-
pothesis, at the beginning of the rth iteration,Gu con-
sists of the component induced by V ∗u (r − 1) and
a cloud of vertices. Comparing E(s) = E(Kr) ∪
E(K̄ ′r) and E(s)∪{(u, vr)} \ {(u, cr)} we conclude
that bucr

= buvr
. If r < q, then similarly bucr

=
buwr . We add to Gu the edge (tucr , tuvr ) and, if r <
q, also the edge (tucr

, tuwr
). We can see that (at least)

one of the vertices in V r
u := {tucr

, tuvr
, tuwr

} (V r
u is

without tuwr if r = q) already belongs to V ∗u (r − 1).
Indeed, if cr ∈ {wi | i = 1, . . . , r − 1}, then tucr

∈
V ∗u (r − 1). Suppose cr ∈ {vi | i = r + 1, . . . , q}.
Then cr−1 = cr if vr > cr and cr−1 = vr if vr < cr.
In the first case, tucr

= tucr−1 ∈ V ∗u (r − 1) and,
in the second case, tuvr

∈ V ∗u (r − 1). The fact that
V r

u ∩V ∗u (r−1) is nonempty implies that V r
u ⊆ V ∗u (r).

At the end of the described iterative process, Gu

coincides with G∗u and therefore is connected. Thus
(11) for z = u is proved.

Suppose that (11) holds for z = u + 1, u +
2, . . . , h, and now the vertex u is such that cr = u
for at least one r ∈ {1, . . . , q}. In this case, the
above described process shall be modified. If, for
r ∈ {1, . . . , q}, cr 6= u, then, at the rth iteration,
the same arguments as before are used. So assume
r ∈ {1, . . . , q} is such that cr = u. For vr, the fol-
lowing two cases are possible.

Case 1. vr > u, r > 1. Since cr = u it follows
that wi > u, i = 1, . . . , r − 1, and vj > u, j =
r+ 1, . . . , q. Suppose r > 2. According to the induc-
tion hypothesis, (11) holds for w1 > u and vr > u.
Therefore, bw1u = bw1vr

and bvru = bvrw1 . Conse-
quently, bw1u = bvru and tuvr ∈ V ∗u (r). If r = 2,
then the same conclusion is drawn from the equations
bv3v2 = bv3w1 , bw1u = bw1v3 and bv2u = bv2v3 (v3

exists when h > 7).

Case 2. vr < u, r > 1. Then cr−1 = vr and,
exactly as in the case of u for which ci 6= u, i =
1, . . . , q, we have buvr

= buvr−1 = buwr−1 . Hence
tuvr ∈ V ∗u (r − 1) ⊆ V ∗u (r).

Notice that Case 2 can occur at most once. In-
deed, cr = u implies that vj > u, j = r + 1, . . . , q.

Similarly, for wr, we consider the following two
cases.

Case 1. wr > u, r < q. Suppose r > 1. Then,
applying (11) to w1 > u and wr, we have bw1wr =
bw1u and bwrw1 = bwru. Consequently, bw1u = bwru

and tuwr
∈ V ∗u (r). If r = 1, then V ∗u (1) = {tuw1}.

Case 2. wr < u, r < q. Then cr+1 = wr. By
comparing E(s) = E(Kr+1)∪E(K̄ ′r+1) and E(s)∪
{(u, vr+1)} \ {(u,wr)} we find that buvr+1 = buwr .
Suppose r > 1 (otherwise V ∗u (1) = {tuw1}). Then
w1 > u, vr+1 > u and, analogously as in the above-
considered cases, from (11) it follows that buvr+1 =
buw1 . Thus tuwr

∈ V ∗u (r).
Again, Case 2 can be encountered at most once.

Indeed, for j > r, the requirement wi > u, i =
1, . . . , j − 1, for u to be the centre vertex of the star
S(Kj) cannot be met.

Thus, we have proved that (11) holds for each
z ∈ VA. Since A is connected it follows that bij = λ
for all (i, j) ∈ EA and some λ ∈ R. This means
that bTx 6 b0 is a multiple of (10). Therefore, the
inequality (10) is facet-defining for P (G). �

3. Concluding remarks

In this paper, we presented several classes of
facet-defining inequalities for the graph coloring
polytope. Most of the proofs were based on the fact
that this polytope coincides with the stable set poly-
tope of the graph derived from the complement of
a given graph. This relationship can be used to dis-
cover new classes of valid or even facet-defining in-
equalities. Another possible direction of further work
is to devise efficient separation algorithms for such
inequalities. We are hopeful that the results obtained
will be of value in the development of new graph col-
oring algorithms.
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