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SIMULIATION OF THE OPEN MESSAGE SWITCHING SYSTEM

Saulius Minkeviéius

Vilnius Gediminas Technical University
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Abstract. The modern queueing theory is one of the powerful tools for a quantitative and qualitative analysis of
communication systems, computer networks, transportation systems, and many other technical systems. The paper is
designated to the analysis of queueing systems arising in the network theory and communications theory (called open
queueing network). We present a theorem on the law of the iterated logarithm (LIL) for the virtual waiting time of a
customer in an open queueing network and its application to the mathematical model of the open message switching
system.
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1. Statement of the Problem and after service they are randomly routed to either
another station in the network, or out of the network
entirely. Service times and routing decisions form
mutually independent sequences of independent iden-
tically distributed random variables.

The basic components of the queueing network
are arrival processes, service processes, and routing
processes. In particular, there are mutually indepen-

At first the author focused on the research in
gueueing theory on the LIL in queueing systems and
present a theorem for the virtual waiting time of a
customer in an open queueing network. Note that the
research of the LIL in more general systems than
the classical queueing systewi /G/1 or multiphase

queueing systems and open queueing network has : . ) .
just started (see (Whitt 2002)). In (Minkéitis 1995: dent sequences of independent identically distributed

i (4) (4)
1997), the LIL has proved in heavy traffic for the fandom vanable{zn] = 1}’ {S"j = 1} and
queue length of customers, waiting time of a cus- {q,glj)’n > 1} for j = 1,2,...,k defined on
tomer, and a virtual waiting time of a customer in __ ) y
a multiphase queueing system. In (Sakalauskas andth(e) probab|.||ty space. Rando(rr_; variable§ anq
MinkeviGius 2000), the authors also gave the proof of S’ are strictly positive, andp;’’ have support in

the theorem on the LIL under the conditions of heavy (0 1 2 ... k}. We definey; = (M [Séj)}>_1 >
traffic for a virtual waiting time of a customer in the ) i
open Jackson network. 0, oj =D (S,(B)) > 0, )\ = (M [Z’(L])D >

In this paper, we investigated an open queueing j ) .
network model in heavy traffic. We preent the LIL O,and a; = D (=) > 0, j = _1’_2""’k; with
for the virtual waiting time of a customer in an open &l Of these terms assumed to be finite. Dengfe=
queueing network. The main tool for the analysis of P (<I>5§) = j) >0, j=1,2,...,k. Inthe context of
these queueing systems in heavy traffic is a functional
LIL for the renewal process (the proof can be found
in (Strassen 1964) and (Iglehart 1971)).

the queueing network, the random variabigld func-
tion as interarrival times (from outside the network) at

The service discipline is “first come, first served” the statiory, while 5;” is thenth service time at the

(FCFS). We consider open queueing networks with Stations, and®;/” is a routing indicator for theith

the FCFS service discipline at each station and gen- Customer served at the statignif ®{’ = j (which

eral distributions of interarrival and service times. We occurs with probabilityp;;), then thenth customer
study the queueing network withsingle server sta- served at the stationis routed to the statiofn. When
tions, each of which has an associated infinite capac- @\’ = 0, the associated customer leaves the network.
ity waiting room. Every station has an arrival stream The matrix P is called a routing matrix.

from outside the network, and the arrival streams are Observe that this system is quite general, en-
assumed to be mutually independent renewal pro- compassing the tandem system, acyclic networks of
cesses. Customers are served in the order of arrivalGI/G/1 queues, networks a&1/G/1 queues with
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feedback and an open queueing network.

First, let us definé/;(¢) as the virtual waiting
time of a customer at thgth station of the queueing
network at timet (the time one must wait until a cus-
tomer arrives at thg-th station of the queueing net-

k
Aj 2 Hi Pig

work to be served at timg, 3; = =1

Hj

k 2
150, 6= Y ) ( (1) )

=1

s 2
A O'j—|-(J) ca; | >0,5=1,2,...,k.
Ky

Suppose that the virtual waiting time of a cus-

tomer in each station of the open queueing network

is unlimited. All random variables are defined on one
common probability spacé) F, P).
We assume the following condition is fulfilled:

k

)\j‘i‘ZMi'Pij >, j=1,2,..,k (1)
i=1

Note that this condition quarantees that, with
probability one, there exists a virtual waiting time of
a customer and this virtual waiting time of a customer
is constantly growing.

2. The Main Result

One of the results of the paper is the following
theorem on the LIL for the virtual waiting time of a
customer in an open queueing network.

Theorem 1. If conditions (1) are fulfilled, then

P mwzl
t=oo G- aft)

p<hmw_)_1,

t—o0 Uj'a(t)
j=1,2,...,kanda(t) = vV2tInlnt.

Proof. This theorem is proved under the condi-
tions \; > p;, j = 1,2,...,k (see, for exam-
ple, (Sakalauskas, Minkesius 2000)). Applying the
methods of Minkewius, Kulvietis (2007), we can

prove that this theorem is true under more general

conditions (1).
The proof of the theorem is completed.
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3. On the Model of the Open Message Switching
Facility

In this section, we present an application of the
proved theorem - a mathematical model of an open
message switching system. As noted in the introduc-
tion, open network queueing systems are of special
interest both in theory and in practical applications.
Such systems consist of several service nodes, and
each arriving customer is served in the order of arrival
and after service they are randomly routed to either
another station in the network, or out of the network
entirely. A typical example is provided by queueing
systems with identical service. Such systems are very
important in applications, especially to open message
switching systems. In fact, in many comunication sys-
tems the transmission times of customers do not vary
in the delivery process.

So, we investigate a message switching system
which consists ofk service nodes and in which
S,(ﬁ) = S., J =1, 2,..., k (the service process
is identical at the nodes of the system).

Next, denotey = (M[S,])"" > 0, 3, =

k
Aj+pe (;p”)

k
150, 8= ) (2
I i=1
i B .
1 D(S,) 4 A - (u (2 D(zﬁz))) S0, j=
1,2,... .,k

We assume that the following conditions are ful-
filled:
B;>0,7=1,2,...,k. 2

Similarly as in the proof of Theorem 2.1, we
present the following theorem and corollary on the
LIL for the virtual waiting time of messages in open
message switching systems.

Theorem 2. If conditions (2) are fulfilled, then

P(limyj(f)_ﬁj'tzl)
t=ee G- alt)

:P<mﬂVj<t)—ﬁj't:_1):L

t—o0 &]'a(t)
i=12,...,kand a(t) = vV2tInlnt.

Corollary 1. If conditions (2) are fulfilled, then for
fixede > 0 there existg(e) such that for every >

t(e),
I—g)-g;-a(t)+0;-t<V;(t) <

(1+e)-G;-at)+B;-t, j=1,2,... .k
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with probability one. Theorem 3. If conditions (3) are fulfilled, then

4. On the Model of the Nack Type Switching Fa- p( Tim Vi) = 0 -t — 1) -
cility n—oo  0j-a(n)
Consider a switching facility that transmits mes- . Vit)—B; -t
sages to a required destination. A NACK (Negative P( nl%lo W = *1) =1,

ACKnowledgement) is sent by the destination when
a packet has not been properly transmitted. If so, the j = 1,2,...,k, anda(n) = v2nInlnn.
packet in error is retransmitted as soon as the NACK

is received.

Now we present the investigation of a separate
case of Theorem 3.1 (the case of the NACK type
message swiching system). We now assume that the

switching facility is composed of nodes in series,
each modeled as &/GI/1 queue with the com-
mon service rate:. In other words, we now have an
open Jackson network withG /GI/1 queues where
Aj = 0fori = 2,3,...,k (no external arrivals
at nodes2,3,....k), u; = pfori = 2,3,... .k,
piiy1 = 1fori =1,2,...,k—1, pro = pand
Pr1=1-—p.

So, we investigate a NACK type switching sys-
tem which consists ok service nodes and in which
Sﬁf) = S,, j = 1,2,... k (the service process is
identical in the phases of the system).

Next, denoteV/; () as the virtual waiting time of
messages in thg-th phase of the NACK type mes-
sage switching system at the time moment; =
1,2,...,kandt > 0.

Letus defing?; = MAppz g Mtp

Iz jz
A1

1= ;a 5’% = (p172)2 : (2 : ,UD(Sn)) + Ar- (.U +

(%)2 D(z{7)) = (2- - D(Sn)) + A1+ (n+ (%%

D(M)) > 0,8 = i (Pige1) l=pjj+1—1=

I
0, 37 = (pjj+1)° - (2-p-D(Sn)) = 2- - D(S,) >
_ A )
0,j =28, k-1, B = LM PRl _

A+ p-(1— A _
W(p)—1=u1—p70;§=(pk,1)2-(2-

o
uD(Sn)) = (1 —p)*- (2 pD(Sn)) > 0.
We assume that the following conditions are ful-
filled:

B >0, B >0, 3=07=23,...,k—1 (3)

Applying Theorem 3.1, we present a theorem and

corollary about the virtual waiting time of messages
in the NACK type message switching system.
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Corollary 2. If conditions (3) are fulfilled, then for
fixede > 0 there existg(e) such that for every >

t(e)
(1-€)-0;-a(t)+5;t < Vj(t) < (1+¢)-5;-a(t)+f;t,
j=1,2,... k,with probability one.

5. Computing Example

We see that Corollary 4.1 implies that for fixed
¢ > 0 there existg(e) such that for every > ¢(e),

(1—e)-0;-a(t)+B;t < V;(t) < (14e)-55-a(t)+5;t,

(2-0-D(Sp) >0, j=2,3,....k—1; B = 2 —

p, 6 =(1—p)*-(2--D(S,)) >0, >0, t>0.
From this we can obtain

(1—¢)-aj-a(t)+0;t < MV;(t) < (14€)-6;-a(t)+5;-t
IM(Vi(t)=B;-t)—{(1—¢)-5;-a(t)}| < 2-¢-5;-a(t)

‘M(W>(15) <2e j=1,2,... k

aj- a(t)
(4)
Thus, it follows from (4) that
MV;(t) ~ Bj-t+(1—¢)-aj-a(t), 1 =1,2,... k.
)

MV;(t) is the average virtual waiting time of
messages in the NACK type message switching sys-
tem at the time momernt j =1,2,...,k andt > 0.

We see from (5) thad/ V;(t) consists of the lin-
ear function3; - t and a nonlinear slowly increasing
function(1—¢)-5;-a(t), j=1,2,...,kandt > 0.

Now we present a technical example from the
computer network practice. Assume that messages ar-
rive at the computer at the rate\; of 21 per hour
during business hours. These messages are served at
the ratep of 20 per hour in the computér;.



After service in the computev; messages arrive at
the second computéf,. Also note that the messages
are served at the rafe of 20 per hour in the com-
puter V. So, messages are served in the computers
Vi, Va, ..., Vi, and after they are served in the com-
puter V4, with the probabilityp = 0.9 (probability
that a message is received correctly), they leave the
computer network and are sent to the compufter
with probabilityl — p = 0.1.

Sof = M = 2L s
"

20

D(S,)) + A1 (4 ( ;>2 -D(2M)) = 422.01, 5, =

205428, B; =0, o; =2-pu-D(S,) =2, 5;
_ A

141, j =23,....k—1, B !

) — — D
i
0.15, 6 = (1—p)*-(2-uD(S,)) = 0.045, &1 =

0.2121, ¢ =0.001, ¢ > 100.
Thus,

_2
01

2-p-

MVi(t) ~B; - t+ (1 —¢) ;- alt) =

(1.05) - t + (20.5222) - a(t). (6)

From (6) we get

= 1.05 + (20.52) - {/ 2lnt1nt. @)

Similarly as in (7) we can obtain

MV;(t)

MV;(®) _ (1.41) - w/mtlnt, j=23.. . k-1
8)
and
MV, (t 2Inint
Tk() = (0.15) + (0.21) - ntn . (9)
. MV;
Now we present figures fmﬂ, =

1,2,...,k, when100 < ¢ < 1000, ¢ = 0.001 (see
(7) - (9) and Table 1)
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Table 1 Summary of computing results

Fimed | MO | MV®) | M)
t 4 t
j=2,...,k—1

100 || 4.6366 0.24690 0.18702
200 | 3.7000 0.18242 0.17735
300 || 3.2610 0.15220 0.17282
400 | 2.9916 0.13366 0.17004
500 | 2.8043 0.12076 0.16811
600 || 2.6641 0.11111 0.16666
700 || 2.5539, 0.10353 0.16552
800 || 2.4643 0.09735 0.16460
900 || 2.3895 0.09221 0.16382
1000 | 2.3259 0.08783 0.16317

Corollary 3. Whenj; > 0,5 = 1,2,3,...,k, the
average virtual waiting time of messages is small at
all nodes of the open message system.
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