
1. Statement of the Problem

At first the author focused on the research in
queueing theory on the LIL in queueing systems and
present a theorem for the virtual waiting time of a
customer in an open queueing network. Note that the
research of the LIL in more general systems than
the classical queueing systemGI/G/1 or multiphase
queueing systems and open queueing network has
just started (see (Whitt 2002)). In (Minkevičius 1995;
1997), the LIL has proved in heavy traffic for the
queue length of customers, waiting time of a cus-
tomer, and a virtual waiting time of a customer in
a multiphase queueing system. In (Sakalauskas and
Minkevičius 2000), the authors also gave the proof of
the theorem on the LIL under the conditions of heavy
traffic for a virtual waiting time of a customer in the
open Jackson network.

In this paper, we investigated an open queueing
network model in heavy traffic. We preent the LIL
for the virtual waiting time of a customer in an open
queueing network. The main tool for the analysis of
these queueing systems in heavy traffic is a functional
LIL for the renewal process (the proof can be found
in (Strassen 1964) and (Iglehart 1971)).

The service discipline is “first come, first served”
(FCFS). We consider open queueing networks with
the FCFS service discipline at each station and gen-
eral distributions of interarrival and service times. We
study the queueing network withk single server sta-
tions, each of which has an associated infinite capac-
ity waiting room. Every station has an arrival stream
from outside the network, and the arrival streams are
assumed to be mutually independent renewal pro-
cesses. Customers are served in the order of arrival

and after service they are randomly routed to either
another station in the network, or out of the network
entirely. Service times and routing decisions form
mutually independent sequences of independent iden-
tically distributed random variables.

The basic components of the queueing network
are arrival processes, service processes, and routing
processes. In particular, there are mutually indepen-
dent sequences of independent identically distributed

random variables
{

z
(j)
n , n ≥ 1

}
,
{

S
(j)
n , n ≥ 1

}
and{

Φ(j)
n , n ≥ 1

}
for j = 1, 2, . . . , k; defined on

the probability space. Random variablesz
(j)
n and

S
(j)
n are strictly positive, andΦ(j)

n have support in

{0, 1, 2, . . . , k}. We defineµj =
(
M

[
S

(j)
n

])−1

>

0, σj = D
(
S

(j)
n

)
> 0, λj =

(
M

[
z
(j)
n

])−1

>

0, and aj = D
(
z
(j)
n

)
> 0, j = 1, 2, ..., k; with

all of these terms assumed to be finite. Denotepij =

P
(
Φ(i)

n = j
)

> 0, j = 1, 2, . . . , k. In the context of

the queueing network, the random variablesz
(j)
n func-

tion as interarrival times (from outside the network) at
the stationj, while S

(j)
n is thenth service time at the

stationj, andΦ(j)
n is a routing indicator for thenth

customer served at the stationj. If Φ(i)
n = j (which

occurs with probabilitypij), then thenth customer
served at the stationi is routed to the stationj. When
Φ(i)

n = 0, the associated customer leaves the network.
The matrix P is called a routing matrix.

Observe that this system is quite general, en-
compassing the tandem system, acyclic networks of
GI/G/1 queues, networks ofGI/G/1 queues with
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feedback and an open queueing network.
First, let us defineV̂j(t) as the virtual waiting

time of a customer at thej-th station of the queueing
network at timet (the time one must wait until a cus-
tomer arrives at thej-th station of the queueing net-

work to be served at timet), β̂j =
λj +

k∑
i=1

µi · pi,j

µj

−1 > 0, σ̂2
j =

k∑

i=1

(pi,j)2 · µi

(
σj +

(
µi

µj

)2

· σi

)

+λj ·
(

σj +
(

λj

µj

)2

· aj

)
> 0, j = 1, 2, . . . , k.

Suppose that the virtual waiting time of a cus-
tomer in each station of the open queueing network
is unlimited. All random variables are defined on one
common probability space (Ω,F ,P).

We assume the following condition is fulfilled:

λj +
k∑

i=1

µi · pij > µj , j = 1, 2, . . . , k. (1)

Note that this condition quarantees that, with
probability one, there exists a virtual waiting time of
a customer and this virtual waiting time of a customer
is constantly growing.

2. The Main Result

One of the results of the paper is the following
theorem on the LIL for the virtual waiting time of a
customer in an open queueing network.

Theorem 1. If conditions (1) are fulfilled, then

P

(
lim

t→∞
V̂j(t)− β̂j · t

σ̂j · a(t)
= 1

)

= P

(
lim

t→∞
V̂j(t)− β̂j · t

σ̂j · a(t)
= −1

)
= 1,

j = 1, 2, . . . , k anda(t) =
√

2t ln ln t.

Proof. This theorem is proved under the condi-
tions λj > µj , j = 1, 2, . . . , k (see, for exam-
ple, (Sakalauskas, Minkevičius 2000)). Applying the
methods of Minkevǐcius, Kulvietis (2007), we can
prove that this theorem is true under more general
conditions (1).

The proof of the theorem is completed.

3. On the Model of the Open Message Switching
Facility

In this section, we present an application of the
proved theorem - a mathematical model of an open
message switching system. As noted in the introduc-
tion, open network queueing systems are of special
interest both in theory and in practical applications.
Such systems consist of several service nodes, and
each arriving customer is served in the order of arrival
and after service they are randomly routed to either
another station in the network, or out of the network
entirely. A typical example is provided by queueing
systems with identical service. Such systems are very
important in applications, especially to open message
switching systems. In fact, in many comunication sys-
tems the transmission times of customers do not vary
in the delivery process.

So, we investigate a message switching system
which consists ofk service nodes and in which
S

(j)
n = Sn, j = 1, 2, . . . , k (the service process

is identical at the nodes of the system).
Next, denoteµ = (M [Sn])−1

> 0, βj =

λj + µ · (
k∑

i=1

pi,j)

µ
− 1 > 0, σ̃2

j =
k∑

i=1

(pi,j)2 · (2 ·

µ ·D(Sn)) + λj ·
(

µ + (
λj

µ
)2 ·D(z(j)

n )
)

> 0, j =

1, 2, . . . , k.
We assume that the following conditions are ful-

filled:
βj > 0, j = 1, 2, . . . , k. (2)

Similarly as in the proof of Theorem 2.1, we
present the following theorem and corollary on the
LIL for the virtual waiting time of messages in open
message switching systems.

Theorem 2. If conditions (2) are fulfilled, then

P

(
lim

t→∞
Vj(t)− βj · t

σ̃j · a(t)
= 1

)

= P

(
lim

t→∞
Vj(t)− βj · t

σ̃j · a(t)
= −1

)
= 1,

j = 1, 2, . . . , k and a(t) =
√

2t ln ln t.

Corollary 1. If conditions (2) are fulfilled, then for
fixedε > 0 there existst(ε) such that for everyt ≥
t(ε),

(1− ε) · σ̃j · a(t) + βj · t ≤ Vj(t) ≤

(1 + ε) · σ̃j · a(t) + βj · t, j = 1, 2, . . . , k,
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with probability one.

4. On the Model of the Nack Type Switching Fa-
cility

Consider a switching facility that transmits mes-
sages to a required destination. A NACK (Negative
ACKnowledgement) is sent by the destination when
a packet has not been properly transmitted. If so, the
packet in error is retransmitted as soon as the NACK
is received.

Now we present the investigation of a separate
case of Theorem 3.1 (the case of the NACK type
message swiching system). We now assume that the
switching facility is composed ofk nodes in series,
each modeled as aG/GI/1 queue with the com-
mon service rateµ. In other words, we now have an
open Jackson network withk G/GI/1 queues where
λj = 0 for i = 2, 3, . . . , k (no external arrivals
at nodes2, 3, . . . , k), µi = µ for i = 2, 3, . . . , k,
pi,i+1 = 1 for i = 1, 2, . . . , k − 1, pk,0 = p and
pk,1 = 1− p.

So, we investigate a NACK type switching sys-
tem which consists ofk service nodes and in which
S

(j)
n = Sn, j = 1, 2, . . . , k (the service process is

identical in the phases of the system).
Next, denotēVj(t) as the virtual waiting time of

messages in thej-th phase of the NACK type mes-
sage switching system at the time momentt; j =
1, 2, . . . , k andt > 0.

Let us definēβ1 =
λ1 + µ · p1,2

µ
−1 =

λ1 + µ

µ
−

1 =
λ1

µ
, σ̄2

1 = (p1,2)2 · (2 · µD(Sn)) + λ1 · (µ +

(
λ1

µ
)2 ·D(z(1)

n )) = (2 ·µ ·D(Sn))+λ1 · (µ+(
λ1

µ
) ·

D(z(1)
n )) > 0, β̄j =

µ · (pj,j+1)
µ

− 1 = pj,j+1− 1 =

0, σ̄2
j = (pj,j+1)2 · (2 ·µ ·D(Sn)) = 2 ·µ ·D(Sn) >

0, j = 2, 3, . . . , k − 1, β̄k =
λ1 + µ · pk,1

µ
− 1 =

λ1 + µ · (1− p)
µ

− 1 =
λ1

µ
− p, σ̄2

k = (pk,1)2 · (2 ·
µD(Sn)) = (1− p)2 · (2 · µD(Sn)) > 0.

We assume that the following conditions are ful-
filled:

β̄1 > 0, β̄k > 0, β̄j = 0, j = 2, 3, . . . , k − 1. (3)

Applying Theorem 3.1, we present a theorem and
corollary about the virtual waiting time of messages
in the NACK type message switching system.

Theorem 3. If conditions (3) are fulfilled, then

P
(

lim
n→∞

V̄j(t)− β̄j · t
σ̄j · a(n)

= 1
)

=

P
(

lim
n→∞

V̄j(t)− β̄j · t
σ̄j · a(n)

= −1
)

= 1,

j = 1, 2, . . . , k, anda(n) =
√

2n ln ln n.

Corollary 2. If conditions (3) are fulfilled, then for
fixedε > 0 there existst(ε) such that for everyt ≥
t(ε)

(1−ε)·σ̄j ·a(t)+β̄j ·t ≤ V̄j(t) ≤ (1+ε)·σ̄j ·a(t)+β̄j ·t,

j = 1, 2, . . . , k, with probability one.

5. Computing Example

We see that Corollary 4.1 implies that for fixed
ε > 0 there existst(ε) such that for everyt ≥ t(ε),

(1−ε)·σ̄j ·a(t)+β̄j ·t ≤ V̄j(t) ≤ (1+ε)·σ̄j ·a(t)+β̄j ·t,

wherea(t) =
√

2t ln ln t, β̄1 =
λ1

µ
, σ̄2

1 = (2 · µ ·

D(Sn))+λ1·(µ+(
λ1

µ
)·D(z(1)

n )) > 0, β̄j = 0, σ̄2
j =

(2 ·µ ·D(Sn)) > 0, j = 2, 3, . . . , k−1; β̄k =
λ1

µ
−

p, σ̄2
k = (1−p)2 · (2 ·µ ·D(Sn)) > 0, ε > 0, t > 0.
From this we can obtain

(1−ε)·σ̄j ·a(t)+β̄j ·t ≤ MVj(t) ≤ (1+ε)·σ̄j ·a(t)+β̄j ·t

|M(Vj(t)−β̄j ·t)−{(1−ε)·σ̄j ·a(t)}| ≤ 2·ε·σ̄j ·a(t)
∣∣∣∣M

(
V̄j(t)− β̄j · t)

σ̄j · a(t)

)
−(1−ε)

∣∣∣∣ ≤ 2·ε, j = 1, 2, . . . , k.

(4)
Thus, it follows from (4) that

MV̄j(t) ∼ β̄j · t+(1− ε) · σ̄j ·a(t), j = 1, 2, . . . , k.
(5)

MV̄j(t) is the average virtual waiting time of
messages in the NACK type message switching sys-
tem at the time momentt, j = 1, 2, . . . , k andt > 0.

We see from (5) thatMV̄j(t) consists of the lin-
ear functionβ̄j · t and a nonlinear slowly increasing
function(1− ε) · σ̄j ·a(t), j = 1, 2, . . . , k andt > 0.

Now we present a technical example from the
computer network practice. Assume that messages ar-
rive at the computer V1 at the rateλ1 of 21 per hour
during business hours. These messages are served at
the rateµ of 20 per hour in the computerV1.
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After service in the computerV1 messages arrive at
the second computerV2. Also note that the messages
are served at the rateµ of 20 per hour in the com-
puterV2. So, messages are served in the computers
V1, V2, . . . , Vk, and after they are served in the com-
puterVk, with the probabilityp = 0.9 (probability
that a message is received correctly), they leave the
computer network and are sent to the computerV1

with probability1− p = 0.1.

So, β̄1 =
λ1

µ
=

21
20

= 1.05, σ̄2
1 = (2 · µ ·

D(Sn))+λ1 · (µ+(
λ1

µ
)2 ·D(z(1)

n )) = 422.01, σ̄1 =

20.5428, β̄j = 0, σ̄2
j = 2 · µ ·D(Sn) = 2, σ̄j =

1.41, j = 2, 3, . . . , k − 1, β̄k =
λ1

µ
− p =

0.15, σ̄2
k = (1− p)2 · (2 · µD(Sn)) = 0.045, σ̄k =

0.2121, ε = 0.001, t ≥ 100.
Thus,

MV̄1(t) ∼ β̄j · t + (1− ε) · σ̄j · a(t) =
(1.05) · t + (20.5222) · a(t).

(6)

From (6) we get

MV̄1(t)
t

= 1.05 + (20.52) ·
√

2 ln ln t

t
. (7)

Similarly as in (7) we can obtain

MV̄j(t)
t

= (1.41) ·
√

2 ln ln t

t
, j = 2, 3, . . . , k − 1

(8)
and

MV̄k(t)
t

= (0.15) + (0.21) ·
√

2 ln ln t

t
. (9)

Now we present figures for
MV̄j(t)

t
, j =

1, 2, . . . , k, when100 ≤ t ≤ 1000, ε = 0.001 (see
(7) - (9) and Table 1)

Table 1Summary of computing results

Time t
MV̄1(t)

t

MV̄j(t)
t

,
MV̄k(t)

t
j = 2, . . . , k − 1

100 4.6366 0.24690 0.18702
200 3.7000 0.18242 0.17735
300 3.2610 0.15220 0.17282
400 2.9916 0.13366 0.17004
500 2.8043 0.12076 0.16811
600 2.6641 0.11111 0.16666
700 2.5539, 0.10353 0.16552
800 2.4643 0.09735 0.16460
900 2.3895 0.09221 0.16382

1000 2.3259 0.08783 0.16317

Corollary 3. Whenβ̄j ≥ 0, j = 1, 2, 3, . . . , k, the
average virtual waiting time of messages is small at
all nodes of the open message system.
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