
26

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2008, Vol.37, No.1

ICOMPONENT: SOFTWARE WITH FLEXIBLE ARCHITECTURE
FOR DEVELOPING PLUG-IN MODULES FOR EYE TRACKERS

Oleg Špakov
Department of Computer Sciences, University of Tampere

FIN-33014 Tampere, Finland

Darius Miniotas
Department of Electronic Systems, Vilnius Gediminas Technical University

LT-03227 Vilnius, Lithuania

Abstract. iComponent is a software tool we have developed to facilitate basic research on eye movements as well
as applications of eye gaze for computer input. Despite the variety of eye trackers and gaze-data analysis tools avail-
able today, there is still a gap between what researchers need and what products are available on the market to suit their
needs. Also, researchers are confronted with many difficulties due to complexity of the technology of eye tracking de-
vices. We approached the need to standardize the input process by proposing a generic data format and making the
software architecture flexible. This is achieved by inserting an intermediate software layer (API converter) between
the core of iComponent and the API of the device attached.

Keywords: eye tracking, gaze-data analysis, gaze-path visualization, input device API converter, standardization.

1. Introduction

The growing number of publications that address
human-computer interaction using eye movements
highlights the increasing need for tools to investigate
and analyze the behavior of human eyes [2, 3, 4, 6].
The first such tools were developed at roughly the
same time as the first eye trackers became available,
and they were designed according to the structure of
the data produced by the eye trackers, with each tool
supporting only one particular eye tracker. This fact
hampered progress in moving toward use of newer
devices, and a great deal of effort is required to port
the functionality of the tools developed to newer plat-
forms.

Today, many commercial and academic products
are available for researchers in this field and the qua-
lity and accuracy of eye tracking devices are cons-
tantly increasing. Several researchers have made at-
tempts to develop tools supporting analysis of data
gathered by different eye trackers. At the same time,
eye movement analysis tools are becoming more intel-
ligent and advanced, and some manufacturers of eye
tracking devices made a great shift to satisfy the re-
quirements of the developers of the tools.

Nevertheless, there is still a lack of effective tools
to allow recording and on-line usage of eye movement
data from many eye trackers. Usable tools to support

analysis and visualization of gaze paths by using the
majority of methods already known are also scarce
[7].

To address this problem, we developed the iCom-
ponent software having a highly flexible architecture
to allow easy development of dynamic plug-in mo-
dules for eye tracking devices and experimental soft-
ware.

2. Architecture

The iComponent software runs under the Win-
dows 2000/XP operating system. It consists of the
core (main window, dialogs, and panels), plug-in de-
vice programming interface converters, experiment
plug-in modules, and a library of visualizations.
iComponent may be in one of three states: recording
eye movement (probably running some ‘experiment’ –
see below), visualizing gaze path from a single re-
cording, or comparing recordings made during the
same study (i.e., using the same experiment module
with the same set-up).

Each device programming interface converter cor-
responds to a particular eye tracker. The converters
utilize device APIs provided by manufacturers to
receive data and eye movement events as well as to
control the eye trackers. All converters have the same
functions (interface) available from the iComponent

iComponent: Software with Flexible Architecture for Developing Plug-in Modules for Eye Trackers

27

core. In other words, the converters are dynamic lib-
raries with different input interfaces but the same
output interface. One module of the core uses the
same converter attached to it during the experimental
set-up and then during the data recording session that
follows. Figure 1 shows a diagram of the connections
between eye trackers and iComponent.

Figure 1. Device API interface converters

A device plug-in is a module providing a common
interface for managing eye tracker and recording data
to a file – here, referred to as an ‘eye tracker driver
API converter’, or simply an API converter. There is
one additional converter to allow simulation of gaze
data using a conventional mouse. The ability to simu-
late input by gaze facilitates development of the
iComponent core as well as functionality tests of the
experiment modules on a standard computer. A con-
verter is active only in the recording mode.

Another set of plug-in modules serves running
experiments. In the terminology of iComponent, these
modules are called ‘experiments’. When an experi-
ment is loaded, it receives all the eye tracker data and
events. Moreover, an experiment can send its own
events to control iComponent and query its current
status, data capture and recording settings.

The experiment modules have a unique interface,
organized in the same way as the interface of the
converter modules (Figure 2). The modules can be ac-
tivated in all iComponent modes (one at a time).
Evident examples of experiments are on-screen key-
boards for text entry via gaze (see, e.g., [5]).

Figure 2. Experiment modules

Currently, the gaze-path visualization modules are
built-in, as opposed to DLLs in the case of converters
and experiments. However, future versions of iCom-
ponent could be implemented with dynamically link-
able visualization modules.

Only one visualization scene can be rendered at
a time. Visualizations are supported by a set of tools:
zooming, navigation, selection, clustering, and replay.
These are parts of the iComponent UI. Along with
these, there are also a fixation detector and extractor.
The detector detects fixations via a selected algorithm
with user-adjustable settings and saves them in the
fixations file, whereas the extractor prints single
fixations one by one to an image file. These additional
tools are DLL plug-ins as well.

Overall, the architecture of iComponent leans
towards becoming independent of the core functions.
Dynamically attachable modules have common
interfaces, which makes their implementation easier.
Moreover, this helps to avoid recompilation of the
executable file.

The full diagram of the iComponent architecture is
presented in Figure 3. Besides the converters, expe-
riments, and visualization modules mentioned, a set of
managers serve users in reaching their goals. The
Quick-Start wizard guides a user through all the steps
necessary to complete a task. Study Manager provides
functionality for planning and executing experiments:
a user may supply experiment settings for use during a
recording, and see all the recorded files grouped for
further visualization. All the settings and data are pro-
filed. Profile Manager is the first dialog to appear
when the application starts. Users may create their
own accounts, or choose an existing one for login.
Profiles are password-protected.

After installation, iComponent keeps all the related
files (API converters and experiment plug-ins, user-
related settings and the data recorded) in separate
subfolders. The iComponent installation package also
includes the devices’ API libraries provided by manu-
facturers.

3. Interfaces
3.1. Device Driver API Converters

The API converters of iComponent are modules
(the DLLs residing in the same folder) between the
iComponent core and device drivers. Upon starting,
iComponent creates a list of supported devices. The
user is to verify that the driver to be used by iCom-
ponent matches the hardware attached.

There is a template available for an API converter
written in C++ to facilitate development of converters
for other eye trackers. The converter’s API interface
consists of the following 15 functions:

typedef void (__stdcall FAR*
FiETUDOnSync)(long*, long*);

__stdcall bool Create (HWND
aDataHandler, char* aCallerFolder);
__stdcall void Destroy (VOID);
__stdcall void GetName (char* aName);
__stdcall void ShowOptions (VOID);
__stdcall bool Connect (VOID);

O. Špakov, D. Miniotas

28

__stdcall void Disconnect (VOID);
__stdcall bool Calibrate (VOID);
__stdcall bool StopCalibration (VOID);
__stdcall bool CorrectDrift (VOID);
__stdcall bool Start (VOID);
__stdcall void Stop (VOID);

__stdcall void GetDeviceState
(SiETUDDeviceState* aState);
__stdcall void SetDeviceState
(SiETUDDeviceState* aState);
__stdcall void SetOnSyncEvent
(FiETUDOnSync aCallbackFunc);
__stdcall void PassValue (VOID* aData,
long aType);

Figure 3. Architecture of iComponent (EyeLink and iViewX are trademarks of SensoMotoric Instruments GmbH; Tobii 1750,

T60, and T120 are trademarks of Tobii Technology AB)

Besides creation and destruction of a converter’s
instance, the API allows setting call-back functions
that are executed when new gaze data become avail-
able. One API function shows a dialog with settings
specific to the device, whereas other two return its
name and main parameters. The remaining functions
are used to control the eye tracker for these operations:
• connecting to a device and making other prepa-

rations so that the device is ready to be calibrated

and track an eye (some eye trackers are ready for
detecting gaze position as soon as the PC is
turned on – then, the function does nothing);

• disconnecting from a device and releasing all the
memory used by the connection function;

• starting the calibration routine (this can be imple-
mented either in the manufacturer’s device driver,
or in its iComponent API converter; in the first
case, the function simply calls a similar function

iComponent: Software with Flexible Architecture for Developing Plug-in Modules for Eye Trackers

29

from the device driver), where the calibration
usually involves following nine or sixteen targets
presented one by one on the screen to form a 3x3
or 4x4 grid;

• starting the drift correction routine (this procedure
can be implemented either in the manufacturer’s
device driver, or in its iComponent API conver-
ter), where the drift correction usually involves a
single target in the centre of the screen used to
make participants hold their gaze on it while the
software detects and compensates the drift;

• starting and stopping detection of gaze position,
and streaming the data to the iComponent core
through the call-back functions mentioned above.

The part of the iComponent core that communi-
cates with device drivers was separated into a stand-
alone COM server so that other developers have an
easy way to build gaze-controlled and gaze-aware de-
vice-independent applications1.

The communication interface and its functions
described here offer a starting point in development of
a standard eye tracking API to allow eye tracking
devices to be plug-and-play. However, standardization
is impossible without agreement between manufac-
turers and, probably, operating system developers on
common protocols, interfaces, and functions to be
used.

3.2. Experiment Plug-Ins

The iComponent ‘experiments’ are DLL modules
having the same functional interface. They reside in
the same folder, just like the converters. iComponent
detects each experiment and places its name in the
‘Experiments’ menu on start-up. Each plug-in
implements only four functions of the communication
with the core interface:

__stdcall long ExpParser(MSG aMsg);
__stdcall void ExpGetName(char*
aName);
__stdcall bool ExpShowOptions(VOID);
__stdcall bool ExpIsReady(VOID);

The function ExpParser plays the most essential
role since it receives all the application, device, and
gaze events from the iComponent core.

Developers of experiment plug-ins are able to ad-
just the recording settings and the state of iCompo-
nent. For example, it is possible to turn recording of
data to file off when not required by the experiment
(e.g., eye typing on a virtual keyboard), or to automa-
tically stop the recording session when needed. This

1 This part, namely “Eye-Tracking Universal Driver”
(shortly, ETU-Driver tool), was implemented as a COM
server that has all the iComponent features related to
communication with eye tracking devices. Development of
this tool, now having more features and functionality than it
had initially being part of iComponent, continues. See
http://www.cs.uta.fi/~oleg/etud.html for a more detailed
description of the tool.

can be achieved by sending a particular Windows-
style message to the iComponent core that includes a
procedure for parsing such messages.

The full list of actions that can be executed in the
iComponent core from an experiment plug-in includes
the following items: starting and stopping data
recording; retrieving and changing recording settings;
performing drift correction; toggling full-screen mode
on and off; and getting device, profile, and study
names.

Other types of messages recognized in the iCom-
ponent core consist of system events (mouse click,
button press, document scrolling, and so on) and expe-
riment events (image or web page display, or start of
video playback) that iComponent saves in the corres-
ponding data file. These events are used later for vi-
sualization along with the gaze data.

A typical experiment module consists of at least
three parts: 1) implementation of the interface descri-
bed above; 2) experiment window that uses all the
client area in the iComponent main window and pre-
sents stimuli during the recording; and 3) dialog with
the settings for this module. The basic features of
these modules are implemented in a template project
written in C++. This template facilitates implemen-
tation of new experiment modules. Other developers
should be able to use it after having studied the
streaming rules for events and data.

3.3. Additional Tools: Fixation Detector

The Fixation Detector tool is the most important
one among the additional tools (those that do not
support visualizations and gathering of gaze data).
This tool is a library for detecting fixations from in-
coming raw gaze position data. It is implemented as a
COM server and thus is easy to embed into any other
application that requires fixation detection from raw
eye movement data.

Before starting detection, the COM server object
must be initialized, to which the application must then
send all recording samples from first to last. Finally,
the client application informs the server about the end
of detection. The server notifies clients during detec-
tion about fixation start, update, and end. Developers
may write handlers for these events to collect fixa-
tions, since the server sends as a parameter the refe-
rence to the pointer to data of the detected fixation.
Client applications can retrieve the detector’s settings
as well as modify them.

The COM interface provides seven algorithm-
independent settings to be adjusted before fixation de-
tection starts: analyzer type, filter type, buffer size
(number of samples to be used in averaging) and
weight value, minimum fixation duration (the value
below which the fixation is treated as part of a sac-
cade), usage of continuing fixation updating events,
and updating interval.

All analysis algorithms can be used for fixation
detection in real time as well as in off-line mode. The

O. Špakov, D. Miniotas

30

library can use one of three analyzers to detect
fixations:
• The Fixation Size analyzer is based on grouping

adjacent samples within a circle of certain radius.
• The Speed analyzer groups adjacent samples

based on speed and acceleration values falling
below particular thresholds.

• The Dispersion analyzer is based on grouping
adjacent samples into a fixation if the dispersion
Di for each sample in the group is less than
certain threshold value:

+−=
−−

))min()(max(
.... iniini

i XXD

))min()(max(
.... iniini

YY
−−

−+ . (1)

A data-smoothing filter may be applied to decrease
noise before parsing the raw data. One kind of such a
filter may be simple averaging over several points:

n

XY
XY

n

i
ik

k

∑
=

−

= 0 , (2)

where n is the buffer size.
A more sophisticated filter uses weighted avera-

ging, with each sample having its own weight. The
last sample (i = 0) has a weight W0 = 1; the next-to-
last sample (i = 1) has a weight W1 that is equal to the
value W defined by the user; the weight of the sample
preceding the next-to-last one (i = 2) is W2 = W2, and
so on.

In general, Wi = Wi. The value of W can be from
0.01 (almost no filtering) to 0.99 (almost as in simple
averaging). The weighted filter can be described by
the following equation:

n

XYXYWXY
XY

n

i
ikk

i
ik

k

∑
=

−− −−+

= 0
)(*)1(

. (3)

To illustrate how this filter modifies the original
values, consider the following three sample points
(n = 3) from raw-data files.

X1 = 106 Y1 = 315
X2 = 109 Y2 = 317
X3 = 111 Y3 = 318

Setting W = 0.8 yields the values of the new posi-
tion of the next-to-last sample as shown in Equa-
tion (4).

=3X

=
−⋅⋅−++−⋅−++

3
))()8.08.01(())()8.01((1312323 XXXXXXX

4.109
3

64.08.056.1 123 =
⋅+⋅+⋅

=
XXX ,

1.317
3

64.08.056.1 1233 =
⋅+⋅+⋅

=
YYYY . (4)

The data of each fixation detected consist of time,
duration, and <x, y> coordinates. Since the analyzers
parse data for a single eye only, two instances of the

analyzer must be used to support binocular data. The
software that sends data to the analyzer receives the
detection result (fixation start, fixation end, and fixa-
tion updating events) and is responsible for correct
fixation eye labeling and saving this to a file.

The Fixation Size analyzer requires a value for
maximum distance from the centre of the current fixa-
tion to the new sample (‘radius of fixation’). The ana-
lyzer can reduce the noise effects and filter out indi-
vidual outlying samples: with the appropriate flag set,
the algorithm does not finish the current fixation even
if the new samples are at a distance greater than the
value of fixation radius. This continues until those
samples can be treated as a new fixation (when its
duration exceeds the threshold value). If a subsequent
sample lies within the current fixation area, all the
outlying samples will be considered belonging to the
current fixation.

The Speed analyzer requires velocity and accele-
ration thresholds (the maximum values valid for a
particular fixation) as well as the buffer size (number
of samples to be used in the velocity and acceleration
computations).

Finally, the Dispersion analyzer requires a disper-
sion threshold (the maximum dispersion among the
fixation’s samples) and buffer size (number of samples
for calculating dispersion).

4. Generic Data Format

The absence of a common data format, coupled
with sophisticated technology (that is not plug-and-
play), requires great effort from developers in dealing
with gaze data gathered by different eye trackers.
Because of lack in standardization, time and money
are wasted, and many difficulties arise when using eye
trackers in the laboratory settings and everyday life.

To tackle this, we developed a data format that we
believe could serve as a universal approach to format-
ting data in future systems.

4.1. Data Files Topology

The proposed data format was developed after
careful study of on-line data generated by various eye
tracking systems available to date. The number of eye-
movement coordinates provided by eye trackers can
be: one (<x> or <y>), two (<x, y>), or three: (<x, y, z>,
with the latter denoting torsion around the line of
sight). A few systems provide pupil size with each
data sample. Many eye trackers parse data via detec-
tors of fixations, blinks, and other types of eye move-
ment. Some provide head-movement data as well.

To accommodate various eye trackers, it is reason-
able to store the data available on-line in a file’s
header. The file is then populated with raw data accor-
ding to the information contained in the header.

All data reside in four files: the main file, fixations
file, blinks file, and system and experimental events

iComponent: Software with Flexible Architecture for Developing Plug-in Modules for Eye Trackers

31

file. The main file has a header and a body. The header
contains several variables characterizing the recording
– general data (such a date and time), personal user
data (name, age, etc.), and recording-related data
(coordinates recorded by the eye tracker, name of the
captured eye, and availability of pupil-size data).

The body of the main file contains raw data (one
record per sample). Its structure depends on the
information stored in the header including flags to
indicate availability of data for each column. Table 1
illustrates the case where all possible types of data are
available from the eye tracker.

Table 1. Structure of samples file

Eye

Left Right Timestamp

X Y Z Event Pupil size X Y Z Event Pupil size

The fixations file contains records of each fixation.

Each record includes number of the fixation, its start
time (time of the first sample in that fixation), dura-
tion, identity of the performing eye (left/right), and its
coordinates. For binocular tracking, most of the time
fixations appear twice (with the same number, but dif-
ferent values in the column Eye).

The blinks file contains records of data on indivi-
dual blinks. Each record contains number of the blink,
its start time, duration, and the eye involved. For
binocular tracking, blinks usually appear twice, but
have a different value in the column Eye. Sometimes,
however, the eye tracking device or some other
supplementary software recognizes a lost-eye event as
a blink. Such dummy ‘blinks’ can be identified by
missing pairs.

The system and experimental events file contains
both operating-system events and experimental events.
Each record in this file includes timestamp of the
event, data type, and data themselves. The timer gene-
rating timestamps in raw data must be used for times-
tamps of the events as well. The data are stored in a
text format. For instance, in a mouse-click event, a
sample string ‘123,456’ contains the coordinates of
that click. The software then recognizes that this kind
of event has x and y values separated by a comma.

System events are mouse clicks, keystrokes, and
scrolling of stimuli. Experimental events are those re-
lated to execution of the experiment and presentation
of stimuli. The most common stimuli are images, web
pages, and videos. For images and videos, the data
string contains the file path; for a web page, its URL is
stored along with the number of the record.

For a recording to be considered valid, the main
file with raw data suffices, since both the fixations and
blinks files can be generated from raw data via
fixation and blink detectors.

4.2. Data Units
Every record of a sample starts with the time in

milliseconds relative to the start time of the recording.
It is better to use time measured by the device than the
PC clock time that may drift depending on the
machine’s state. However, not all devices provide
timestamps on request, so special software must be

used for correct timing.
Coordinates are real numbers from 0 to 1 for a

gaze landing on the PC screen. The ‘event’ column
contains 32-bit integer values to indicate the type of
eye movement that occurred during sampling of gaze
direction. iComponent currently supports two basic
types of eye movement: fixations and saccades. For
samples belonging to a saccade, the flag is set to 0.
Meanwhile, positive values indicate samples belon-
ging to a fixation.

The current version of the software does not ac-
commodate other types of eye movement (such as
smooth pursuit, nystagmus, or vergence). However,
several of the higher-level bits are reserved for future
use. Moreover, the two highest bits indicate quality of
the sample obtained; large negative values of this flag
purport a sample of poor quality. Data on the validity
of the samples were included to support several newer
eye trackers providing this kind of information.

Although the data format proposed supports col-
lection of pupil-size values, these depend on the type
of camera, image processing algorithm, and distance
from the eye. Thus, it may be impossible to convert
them into the actual pupil size (expressed in square
millimeters, for instance). Different eye trackers pro-
vide a very wide range of values (1–100,000) and
report different parameters (the most common para-
meter, however, is the number of pixels covered by the
pupil). Consequently, only analysis of pupil dilation
might be meaningful to researchers.

4.3. Data Example

Suppose that we have a common case where raw
data comes from a VOG-based eye tracker measuring
x and y coordinates as well as pupil size for both eyes.
Then, the main file’s body will be formatted as shown
in Table 2.

In our hypothetical example with sampling rate of
250 Hz, the first four samples belong to a saccade (as
indicated by zeroes in both the event columns) due to
a blink (as revealed by the gap in time and the event’s
value of –1 in the following sample). In addition, a
very large value in column LEvent indicates probable
invalidity of the left eye’s data. Finally, the last three
samples in Table 2 belong to fixation number 1.

O. Špakov, D. Miniotas

32

Table 2. Example of raw data

Time LX LY LEvent LPupil RX RY REvent RPupil
0 170 55 0 1240 190 52 0 1265
4 181 56 0 1245 198 52 0 1265
8 192 58 0 1248 205 53 0 1266
12 211 -1156 1342177280 785 210 40 0 1266
100 219 23 -1 1125 227 20 -1 1178
104 217 25 0 1129 126 21 0 1181
104 217 25 1 1128 127 21 1 1182
108 217 26 1 1127 127 23 1 1183
112 217 26 1 1128 126 23 1 1181

5. Conclusions

Architecture of iComponent allows easy develop-
ment and use of new device-supporting modules and
experiment plug-ins. Some portions of iComponent
are already implemented in separate tools (such as
ETU-Driver and Fixation Detector). Further modulari-
zation of the iComponent core into separate libraries
(e.g., plug-ins for visualizations) should bring yet
more flexibility to the software.

The generic format developed allows storing all
relevant gaze data along with the events related to the
environment, stimuli, and human activity. The current
version of the format does not support all possible
data available from some eye trackers, though. For
example, the resolution of timestamps is only at the
milliseconds level. Therefore, the format suits eye
trackers having sampling frequency of 1000 Hz at
most. However, this limitation should be diminished
in the future.

Hopefully, our work described in this paper will
serve as a starting point for standardization of eye
tracking devices. Moreover, the proposal has been pre-
sented as official recommendations for manufacturers
of eye tracking devices [1].

References
 [1] R. Bates, H. Istance, O. Spakov. D2.2 Requirements

for the Common Format of Eye Movement Data.
Communication by Gaze Interaction (COGAIN), IST-
2003-511598: Deliverable 2.2, 2005. Available at
<http://www.cogain.org/results/reports/COGAIN-
D2.2.pdf>.

 [2] A. Duchowski. A breadth-first survey of eye-tracking
applications. Behavior Research Methods, Instruments
& Computers 34, 2002, 455-470.

 [3] J.P. Hansen, D.W. Hansen, A.S. Johansen. Bringing
gaze-based interaction back to basics. C. Stephanidis
(ed.), Universal Access in HCI, Lawrence Erlbaum
Associates, 2001, 325–328.

 [4] R.J. K. Jacob, K.S. Karn. Eye tracking in human-
computer interaction and usability research: ready to
deliver the promises. J. Hyönä, R. Radach, and H.
Deubel (eds.), The Mind's eye: Cognitive and Applied
Aspects of Eye Movement Research, Elsevier Science,
2003, 573-605.

 [5] D. Miniotas, O. Špakov, G. Evreinov. A comparative
study on two eye-based text entry techniques. Infor-
mation Technology and Control 27, Kaunas, Techno-
logija, 2003, 63-68.

[6] C. Morimoto, M. Mimica. Eye gaze tracking tech-
niques for interactive applications. Computer Vision
and Image Understanding 98, 2005, 4-24.

 [7] R. Ramloll, C. Trepagnier, M. Sebrechts, J. Beeda-
sy. Gaze data visualization tools: opportunities and
challenges. Proc. IEEE Conference on Information
Visualization, 2004, 173–180.

Received January 2007.

