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Abstract. The paper describes the implementation of stress dependent boundary conditions in the FEMTOOL code 
developed for numerical solution of coupled problems. Moving interface flows including breaking waves are 
considered. The performance of the numerical technique is validated by solving the dam break problem in the confined 
domain. The code development issues and the detailed investigation of parameters governing water separation from 
walls are presented. 

 
 

1. Introduction 

The progress in simulation of particular fields sti-
mulated the development of numerical methods and 
computational technologies for coupled problems in-
cluding multi-physical phenomena, complex flows 
and moving interfaces [5]. Various coupling mecha-
nisms in a different context [6], such as flow-structure 
interaction [2], interfaces separating different fluids or 
gases [9], magneto-thermo-mechanical analysis [12], 
electromagnetic metal forming [17] are meant by the 
term “coupled analysis”. Available numerical analyses 
are strongly dependent on the application. 

Moving interface flows include a strong coupling 
between the interface propagation and dynamics of the 
continuum. Numerical methods advocated for solving 
moving interface problems might be classified into 
two categories: interface tracking techniques (ITT) 
and interface capturing techniques (ICT). In the first 
category of interface simulating methods, a moving 
interface is represented and tracked explicitly either by 
making it with special marker points, or by attaching it 
to a mesh surface. Various ITT [2, 15] for attaching 
the interface to a mesh surface were developed during 
the past decades using the finite element method 
(FEM). In the second category of interface simulating 
methods, either massless particles or an indicator 
function marks gas or fluid on either side of the 
interface. The marker-and-cell method [7], the volume 
of fluid method [8] and the level set method [16] are 

well known methods using the ICT idea and the 
Eulerian approach. The ICT require no geometry 
manipulations after the mesh is generated and can be 
applied to interfaces of a complex topology. The FEM 
is becoming increasingly popular in many fields of 
engineering, therefore, the demand for further 
investigation of the ICT and implementation in FEM 
codes is rapidly growing [9, 18]. 

 
a) 

 
b) 

Figure 1. Non-physical behaviour of the flow near 
walls: (a) inappropriate handling of the flow 

separating from the upper wall; (b) incorrect flow 
behaviour in the corner 

Complex 3D flows often include waves hitting a 
wall or jets entering geometrically complex cavities 
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[4]. The developed software should accurately capture 
behaviour of the flow near walls or handle air bubbles 
near the corners. The application of the standard slip 
boundary conditions in conjunction with conventional 
numerical schemes sometimes can produce non-physi-
cal behaviour of the flow. Figure 1a illustrates inap-
propriate handling of the flow separating from the 
wall. Sometimes flow easily moves in the tangential 
direction of the wall, but the motion in the normal 
direction is heavily induced. The incorrect flow beha-
viour in the corner is shown in Figure 1b. Such prob-
lems can be resolved applying the stress dependent 
boundary conditions [3]. The above idea leads to a 
change in the type of boundary conditions for the 
velocity on the certain boundaries. Dirichlet-type 
boundary conditions are replaced by Neumann one, 
producing differences in the global finite element 
matrix [1]. The FEM code development and imple-
mentation issues are presented in this paper. 

The space-time Galerkin least squares finite ele-
ment method [15] is applied as a general-purpose 
computational approach to solve the partial differen-
tial equations (1−4). Equal order bilinear shape func-
tions are used for both the pressure and velocity 
components as well as for the pseudo-concentration 
function. The detailed description of variational for-
mulation and stabilisation parameters can be found in 
the work [10]. 

3. Stress dependent boundary conditions 

In the most cases the slip boundary conditions for 
velocity are prescribed on impermeable rigid walls: 

0=iinu ,  (5) 

where ni are components of a unit normal vector. The 
boundary conditions (5) are a usual choice of boun-
dary conditions on rigid walls used for solving moving 
interface problems. 

2. Governing equations 

The laminar and Newtonian flow of viscous and 
incompressible fluids is described by the Navier-
Stokes equations: 
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The discussed boundary conditions can not resolve 
problems of incompressible flows related with air 
bubbles or flow suddenly separating from the wall. 
The stress dependent boundary conditions [3] have 
been devised by researchers working on metal casting 
or mould filling problems. In practice, moulds are 
made of porous materials. Therefore, permeable walls 
are assumed and air can leave the mould without 
resistance. If the fluid does not push the wall, the open 
boundary conditions are prescribed: 

where ui are the velocity components; ρ is the density; 
Fi are the gravity force components and σij is stress 
tensor 
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In case of dominant inertial forces and high Rey-
nolds numbers, the viscous terms in boundary condi-
tions (6) are negligible. This reduces (6) to a zero 
Dirichlet boundary conditions for the pressure and 
standard Newmann boundary conditions for velo-
cities: where µ is dynamic viscosity coefficient; p is pressure 

and  is Kronecker delta.  δ ij 0=p ,  (7) 
The pseudo-concentration method [11, 19] is 

developed for moving interface flows using the Eule-
rian approach and the interface capturing idea. The 
pseudo-concentration function ϕ serves as a marker 
identifying fluids A and B. ϕ=1 for fluid A and ϕ=0 
for fluid B. The evolution of the interface is governed 
by a time dependent convection equation: 
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On the other side, if fluid pushes against the wall 
then the slip boundary conditions are prescribed, that 
is zero normal velocities and zero tangent stress: 
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if 0<jiji nn σ  then 0=iinu  and 0=jiji tn σ ,  (9) 

where tj are components of a unit tangent vector. The 
condition of zero tangent stress can be replaced by one 
of the Newmann boundary conditions (8) in case of 
straight boundaries or high Reynolds numbers. The 
Newmann boundary conditions (8) are automatically 
satisfied in standard finite element formulations. 
Anyway, resulting set of boundary conditions (6, 9) or 
(5, 7-8) are more complex than standard Newmann or 
Dirichlet boundary conditions. Stress values should be 
accurately computed on the walls and the type of 
boundary conditions should be dynamically changed 
during simulation. 

The velocity uj is obtained from the solution of the 
Navier-Stokes equations (1-3). The initial conditions 
defined on the entire solution domain should be 
prescribed for the equation (4). While the interface 
propagates at a correct velocity, the pseudo-concentra-
tion function becomes irregular after some period of 
time. An interface sharpening procedure [13] together 
with a simpler limiter is applied in order to preserve 
sharpness of the interface and satisfactory mass con-
servation. 
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4. Implementation in FEM code  

The stress dependent boundary conditions have 
been implemented in the FEMTOOL code [10] created 
in Swiss Federal Institute of Technology Zurich and 
developed in Laboratory of Parallel Computing of 
Vilnius Gediminas Technical University. FEMTOOL 
is a Finite Element Method Toolbox developed by 
using FORTRAN and C programming languages, 
which allows implementation of any partial 
differential equation (PDE) with minor expenses. 
Time dependent problems are solved using space-time 
finite elements. The order of shape functions is 
determined by input and is limited neither in space nor 
in time. The flexible and universal structure of the 
code makes FEMTOOL to be applicable to various 
PDEs of interest such as Poisson’s equations, 
convection-diffusion equations, shallow water equa-
tions and Navier-Stokes equations. 

The flow chart of the DOJOB subroutine, gover-
ning main computations, is shown in Figure 2. The 
conventional FEM routines present in the initial 
FEMTOOL code are plotted by the solid lines. The 
dashed lines show new blocs of routines and supple-
mentary conditions added to the structure of the code 
in order to implement the stress dependent boundary 
conditions (6, 9). The TIME LOOP serves as the main 
loop for the time-dependent problems. The NON-
LINEAR LOOP is used for iterative solution of non-
linear PDEs. Subroutine CONVERGENCE checks the 
convergence of non-linear loop and sets some 
governing parameters for the time loop. The OLD 
TIME LOOP, which has been removed from the code, 
is plotted by the point lines.  

The active approach enables the user to implement 
his routines into existing software without deep know-
ledge of the internal structure of the FEMTOOL 
library provided by developers. The user routines are 
implemented as include files *.inc within the frame-
work of a specific toolbox, therefore, new finite ele-
ments for a coupled PDEs can be implemented with 
just a few lines of code. Routine GLOBALBUILD, 
filling the global FE matrix and the global right hand 
side vector, includes three main subroutines that user 
can modify implementing his PDEs and finite 
elements. In INITFKT user fills initial guess of the 
non-linear solution. TIMEFKT is devoted for the time-
dependent boundary conditions. User subroutine LFE 
MATRIX fills the local FE matrix and the local right 
hand side vector. These three subroutines provide for 
users sufficient possibilities to implement any stan-
dard time-dependent PDE including non-linear terms 
and any user finite element. Other user subroutines 
USERFKT can be employed for the implementation of 
the advanced features such as the coupled problems or 
very specific data processing. Subroutine USERFKT1 
is usually placed before the time loop in order to 
provide for users ability to perform some preparatory 
computations. USERFKT2 provides possibility to pro-
cess results before the output at the end of the 

nonlinear iteration, while USERFKT3 performs some 
user specific computations at the end of a time step. 
Subroutine USERFKT4 is devoted for any specific 
post-processing at the end of computations.  
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Figure 2. Flowchart of DOJOB routine 

Remaining routines of the code is grouped around 
the time loop. Subroutine DATAINPUT reads the 
main data arrays from the file. Subroutine 
USERDATA is devoted for special user arrays that can 
be used for transferring the data between coupled 
problems solved iteratively. Subroutine DATAOUT-
PUT writes the results of the current time step or non-
linear iteration to the result file. The block of routines 
INIALLOCATE reads governing parameters and 
dynamically allocates a memory for main data arrays. 
Subroutine PATTERN prepares the pattern arrays 
describing the structure of the global FE matrix. The 
memory for the global FE matrix, the right hand side 
vector and other arrays used by the GMRES SOLVER 
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and PRECONDITIONER can be allocated by LOOP-
ALLOCATE, when subroutine PATTERN have 
performed its work. Subroutines LOOPDEALLO-
CATE and FINALDEALLOCATE de-allocate the 
memory. 

In general, the conventional FEM codes do not 
include the stress dependent boundary conditions. The 
main difficulty is related with dynamic change of the 
structure of the global finite element matrix in the 
time loop. The application of the boundary conditions 
(7-8) yield two degrees of freedom for velocity 
components at a boundary node. The boundary condi-
tion (5) yields one degree of freedom for pressure and 
one for the tangent velocity component. Moreover, the 
computation of stresses includes accurate handling of 
normal and tangent vectors on boundaries forming 
corners and other complicated shapes.  

The initial structure of FEMTOOL does not allow 
the direct implementation of the considered boundary 
conditions by users without changing the main code 
provided as “the black box”. The user subroutine 
TIMEFKT is devoted for computation of time depen-
dent values of boundary conditions, but it cannot 
change the global FE matrix structure. The stress 
computations STRESS and the update of boundary 
conditions BCUPDATE can be naturally implemented 
in the user subroutine USERFKT3 without changing 
the whole library. However, the memory for the global 
matrix and the solver should be allocated and de-
allocated in the time loop (LOOPALLOCATE and 
LOOPDEALLOCATE) in order to consider these 
changes. Subroutine PATTERN should also be called 
after every change of the boundary condition type. 
The indicator NewBC set up in USERFKT3 governs 
the necessary calls of appropriate routines. The 
preparation of information for stress computations 
should be performed after the call to PATTERN, 
therefore, it is done in the user routine USERFKT1. 
The initial solution can also be updated in the user 
routine INITFKT, but some governing parameters are 
not conveniently accessed in GLOBALBUILD, inside 
the non-linear loop. Therefore, the update of the initial 
solution considering the global changes are also 
performed in the user routine USERFKT1, in the time 
loop. The whole USERFKT1 can be switched off if 
the user does not need the stress boundary conditions. 
The extension of the time loop and additional 
conditions governed by indicator NewBC can be 
considered as the main changes of the basic code 
structure. 

The solution of the coupled problems, including 
moving interfaces, is illustrated in Figure 3. The para-
meters of the main problem, governing by the Navier-
Stokes equations, are set up at the beginning of com-
putations. Considering specified parameters DOJOB 
calls the appropriate user routines. The parameters of 
the second problem governed by the convection equa-
tion are set up in the user routine USERFKT3A at the 
end of each time step. The subroutine DOJOB gover-
ned by these parameters is called recursively. The 

names of user subroutines like USERFKT3$(prob2) 
includes the name of the second problem, therefore, 
the conflict does not happen. The interface sharpening 
is performed in the subroutine REINIT called from the 
USERFKT3conv. All computations of the stress boun-
dary conditions are performed in user routines USER-
FKT1 and USERFKT3B. The stress computations are 
separated from the solution of the second problem in 
order to have more structured code. Therefore, two 
different user routines USERFKT3A and USER-
FKT3B appear instead of the former USERFKT3. The 
user routines USERFKT2 and USERFKT4 are not 
employed. The modified structure of the code shows, 
that development of the software modelling breaking 
waves presents challenges to all scientists and soft-
ware developers. 
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Figure 3. Flow chart of the FEMTOOL solving the coupled 

problem with stress dependent boundary conditions 

5. Numerical results and discussions 
The dam break flow in a confined domain [3] has 

been simulated in order to validate the developed code 
and the implementation of the stress dependent 
boundary conditions. The geometry of the solution do-
main is shown in Figure 4. A rectangular cavity with 
dimensions 0.09m×0.03m is considered (a=0.015m). 
At initial time t=0.0s, water is confined in the left half 
of the cavity. Later it is subject of vertical gravity 
(g=9.81m/s2) and free to move. The density of water is 
ρA=1000kg/m3, the dynamic viscosity coefficient is 
µA=0.01kg/( ⋅m s). The density of air is taken to be 
ρB=1kg/m3 and the dynamic viscosity coefficient is 
µB=0.0001kg/( ⋅m s). The slip boundary conditions (5) 
have been applied to the bottom and sides of the 
reservoir. The stress dependent boundary conditions 
(6, 9) have been prescribed on the upper wall. The 
120×40 and 240×80 finite element meshes are emp-
loyed for computations. The investigated time interval 
t=[0.0; 0.3]s is divided to 300 time steps. The size of 
the time step ∆t=0.001s for the 120×40 finite element 
mesh. In case of 240×180 finite element mesh, the 
number of time steps is equal to 600. Respectively, the 
size of time step is ∆t=0.0005s. 
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Figure 4. Geometry of dam break flow in a confined 
domain 

Figure 5 illustrates time evolution of the moving 
interface. The gravity causes the water column on the 
left of the reservoir to seek the lowest possible level of 
potential energy. Thus, the column will collapse cove-
ring the bottom of the reservoir. The initial stages of 
the flow are dominated by inertia forces. Therefore, on 
such a large scale the effect of surface tension forces is 
unimportant. Figure 5b shows the successful separa-
tion of the water from the upper wall. The slip boun-
dary conditions (5) has been automatically changed to 
the open boundary conditions (7-8), evaluating 
positive stress values on the wall. Figures 5c, 5d, 5e 
illustrate very complex behaviour of the flow in the 
right corner at the top wall. The complexity of the 
interface shape occurring in the different stages of 
breaking wave phenomena can be easily captured 
using the applied numerical technique. When t=0.3s, 
the backward moving wave has folded over and a small 
amount of air is trapped (Figure 5f). In experiments 
[14], this air is present in the form of small bubbles. 
The current methodology has been derived for sharp 
interfaces, therefore, the mesh needs significant re-
finement to a resolution smaller than the bubble size. 
The validation of the obtained numerical results by the 
quantitative comparison with experimental measure-
ments can be found in the works [11, 13]. 

The most complex behaviour of the flow is obser-
ved in the right corner at the top wall. The slip 
boundary conditions (5) should be immediately pre-
scribed when water reaches the top wall in order to 
prevent the mass loss. The prescribed boundary condi-
tions remain until the water fills the corner and starts 
propagate in the tangent direction of the top wall. 
When t=0.125s, the stress values becomes positive in 
several nodes of the upper boundary. Thus, the slip 
boundary conditions (5) should be changed to (7-8) on 
the part of the upper boundary. The dynamic change of 
boundary conditions produces numerical oscillations that 
can significantly influence the stress distribution on the 
boundary. Figure 6 shows the developed algorithm. 
Usually push values lower than zero are considered in 
order to avoid frequent change of boundary conditions 
producing oscillations. Two different conditions are 
employed in the algorithm in order to prescribe different 
values for phi1 and phi2. Numerical experiments have 
showed that phi2-phi1=0.1 helps to postpone early water 
separation from the wall and to prevent undesirable 
oscillations. The best performance has been achieved by 
using two sets of numerical parameters: push=−5.0, 

phi1=0.7, phi2=0.8 and push=−5.0, phi1=0.6, phi2=0.7. 
Larger phi values can cause non-physical slow down of 
the separation process. Figure 7 illustrates the undesirable 
numerical oscillations and the proper handling of water 
separation from the upper wall. 

a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 5. Time evolution of the dam break flow, the 
pseudo-concentration function: (a) t=0.000s; (b) t=0.025s; (c) 

t=0.100s; (d) t=0.125s; (e) t=0.150s; (f) t=0.300s 

if (u2>0 and ϕ>phi1) then 
 set up (5) 

elseif ( jiji nn σ <push and ϕ>phi2) then  
 set up (5) 

else 
 set up (7-8) 

endif 

Figure 6. Algorithm for the stress dependent boundary 
conditions 
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