ISSN 1392 — 124X INFORMATION TECHNOLOGY AND CONTROL, 2009, Vol.38, No.1

SEPARATION OF EVENT AND CONSTRAINT RULES IN UML&OCL
MODELS OF SERVICE ORIENTED INFORMATION SYSTEMS

Lina Ceponiene, Lina Nemuraite, Gediminas Vedrickas

Kaunas University of Technology, Department of Information Systems
Studentu st. 50-315a, LT-51368 Kaunas, Lithuania
Lina.Ceponiene@ktu.lt, Lina.Nemuraite@ktu.lt, g.vedrickas@erp.eu

Abstract. In this paper, possibilities of advancing BusinBsecess Modelling when joining it with Business Rules
approach are analysed. The problem currently umtiscussion in business rule and business procesmgament
communities is that business process (or evengsrale changing independently from structural, amstraint-oriented
business rules, and coupling them together reqeinesging business processes when rules are clgaragid vice versa.
The paper addresses the problem of modelling ragpg business constraint rules from event ruiddML&OCL models.
The proposed principles of separation are basddMh 2 state machines applied in the context of Batel Model Driven
Approach for Service Oriented Information SysteRspresentation of event and constraint rules in SBMRjplate Based

Language and OCL is analysed.

Keywords. Business rules, event rules, constraint rulese staichines, UML, OCL, MDE.

1. Introduction

Existing Model driven approaches as Model
Driven Architecture (MDA), Model Driven
Development (MDD) and Model Driven
Engineering (MDE) are taking a very little care

about business rules. J. D. Haan [18] has mentioned

eight reasons why Model Driven approaches may
fail. He argues that the main goal of MDE is to
reduce the wvulnerability of software artefacts
regarding changes; however, currently addressed
changes are mainly related with implementation
platforms and not with business changes. Currently

business people to work together. We additionally
argue that MDE CASE tools should have
repositories of business rules that should be used
during modelling business and generating software
code — similarly as business rule engines are using
business rules during execution [16, 17, 19].

Object Constraint Language (OCL) is the
language designed for expressing business rules in
UML models. Recent analysis has shown [28] that
UML&OCL models are capable to express all types
of executable business rules subsumed in their
different classifications and typologies [11, 40Q].4
However, in these business rule representations OCL

business rules management systems and businessexpressions are tangled with UML graphical
rule engines are addressing these needs by enablingelements. On the one hand, augmenting visual

the non-technical users to make changes to their
software. Model Driven approaches are limited as
they do not treat business rules according to the
Business Rule approach.

One of the most fundamental principles of
developing the software is separation of concerns.
Concerns that could be captured, analyzed,
developed, implemented and maintained separately
should be separated. One of such concerns is
business rules that usually are embedded by
developers in use cases, interactions, state meghin
class and other models. As graphical modelling
languages are not capable to express all real life
semantics that should be implemented by software,
graphical model elements are supplemented with
textual expressions (informal, e.g. natural langyag
or formal, e.g. OCL [29]). Properly separated from
visual models, business rules could be updated by
business people, and translated to system pergpecti
and backwards by IT people. J.D.Haan [18]
maintains that improved business and IT alignment

models with elements of business rules helps
developer to anticipate modelling; on the otherchan

it is purposeful to separate business rule expressi
from graphical elements to facilitate changes. The
problem currently under discussion in business rule
and business process management communities is
that business process (or event) rules are changing
independently of other (structural, or constraint
oriented) business rules and coupling them together
requires changing business processes when rules are
changing, and vice versa. So there exists a problem
of modelling — how to separate constraint-oriented
business rules from process-oriented rules in
UML&OCL behavioural models?

The rest of the papkis organized as follows. In
section 2 the related work is considered. Section 3
presents the classification of business rules and
introduces constraint and event rule types. Seetion

! The work is supported by Lithuanian State Sciemoe
Studies Foundation according to High Technology

requires a shared language and such a language pevelopment Program Project "VeTIS" (Reg.No. B-

should be business rules that allow for IT and

29

07042)

is devoted for representation of process rules with
UML state machines. In section 5 rule
representations in SBVR, Template Based Language
and OCL are considered in the context of EMDA
process. Section 6 draws conclusions and highlights
the future work.

2. Related Work: Accelerating Model Driven
Development Process with Business Rule
Approach

Though OMG has issued Semantics of business
Vocabulary (SBVR) standard [38] and is working on
Production Rule Representation [33], Business Rule
approach initiated by R. G.Ross [35, 36] and
Business Rule group [11] yet has a few applications
within MDE. The advantages of such a development
are well understood [22], but for the meantime MDE
lacks standards and methodologies for modelling
executable business rules and transition from
semantic business rules, i.e. Computation
Independent models (CIM), to executable, Platform
Independent models (PIM).

For this purpose, RuleML initiative and
REWERSE group are creating interchangeable
specifications for various kinds of rules, devoted
Semantic Web and Object-Oriented systems. URML
[25] is an interesting approach of REWERSE group
for visual modelling of derivation and production
rules, implemented in UML CASE tool “Strelka”.
Rules are represented as first class entitiesasscl
models and have relationships (supplemented with
expressions) with concepts involved. This approach
differs from practice of expressing business ries
object-oriented models and may be inefficient for
large sets of business rules.

There already are proposals for simple
transformations of SBVR specifications to UML
models [23, 34]. The Model Driven Enterprise
Engineering (MDEE) methodology created by
KnowGravity is one of the first efforts to apply
OMG SBVR and other standards in the holistic 1S
development process where information
technologies are managed by business needs [37].
MDEE supports the smooth going from SBVR
structural and operative rules to PIM Constraints,
ECA and CA (Condition-Action) rules. It uses fact
diagrams for representing business vocabularies;

L. Ceponiene, L. Nemuraite, G. Vedrickas

The simple, but proven BROOD approach
recently published in [24] proposes simple temlate
for specification of restricted typology of busises
rules, and simple object-oriented development
process that augments UML by explicitly
considering business rules as an integral parinof a
object-oriented development. BROOD process is
supported by a tool developed on top of the Generic
Modelling Environment (GME). This approach
(though it is not related with OCL) has many
common points with our efforts and represents
modern trends in MDE [12], i.e. development of
modelling environments tailored for specific
domains and specific development methodologies.

Currently, new technologies complementing
event manipulating in database systems [27] are
arising such as Complex Event Processing, Event
Driven Architecture, Event Servers and Event Rule
Engines, for example, [10, 21, 26] and others. €hes
technologies are related with the further
enhancement of Web Service Architecture, Business
Process Management and Business Rule approach.
Separation of processes and constraints may be done
on the base of events that are already addressed in
Event Driven technologies; however, they are
lacking modelling support. There are some proposals
how to separate process rules from constraints.
T. Graml et all [15] externalize decisions, data
constraints and activity compositions. S. Goedertie
and JVanthienen14] propose a declarative process
modelling language that extends SBVR business
vocabulary categorising sixteen business rule types
Most of these rules are expressed in terms ofifictiv
states and events instead of states of business
objects. This approach may lead to desired
separation of business processes and business
constraints, despite it does not consider complex
events and cabe more difficult to understand than
the graphical process notations. F. Bry et alH&@}e
proposed the Xchange language for representing
complex events, however, in this approach
constraint and event rules are coupled. The idea of
T. van Eijndhoven et all [13] is the identifyingeth
variable and non-variable process segments and
combining workflow patterns that model the
behaviour of each variant by means of business
rules, but it also does not solve the aforementone
problem. D. Bugaite and O. Vasilecas [5] investgat

UML class, use case diagrams and state machines related, but rather different viewpoint: how events

for representing system models; and BPMN for
modelling business processes. The final PIM is
presented by executable state machines with
KnowGravity expressions for business rules that are
proprietary solution requiring hard manual efforts;

nevertheless, MDEE is an excellent evidence of
usefulness and applicability of OMG standards. The
prototype, proposed by M. H. Linehan [23] for

transformation of limited SBVR rules to OCL pre-

conditions, also is related with business process
modelling. OCL constraints are addressed in [6, 9,
42, 43].

30

and rules are linking together in business system,
information system and software system levels.

The mentioned problems of separating process
rules from business constraints are especially
important in Model Driven Development processes
of service-oriented information systems. We are
working in creation of enhanced development
process which was called “Extended Model Driven
Approach” (EMDA). We have coped with
limitations of Model Driven Architecture of using
PIM and PSM and therefore introduced Design-
independent model (DIM) for representation of

Separation of Event and Constraint Rules in UML&OCL Models of Service Oriented Information Systems

requirements in MDD process [7]. Currently MDA
also acknowledges the necessity of involving more
layers (or dimensions) of models into the Model
Driven Development processes (as in the more
powerful model-driven methodology “Model Driven
Engineering” (MDE) introduced by S. Kent [20]).

Other characteristic of our method is the precise
conceptual modelling [31, 32] during requirement
phase and reconciliation of conceptual data model
with behavioural model. The resulting requirement
model (DIM) is represented as a class diagram
containing entities and abstract interfaces to the
system under development [7, 8]. In our previous
work, we have introduced several types of events
and OCL expressions facilitating separation of
constraint-oriented rules and process-orientedsrule
(we name them “event rules”) during EMDA
process. In the current paper, we develop this idea
for other types of event rules and are intending to
extend the State Coordinator pattern for processing
complex events that are inherent for service-ogiént
systems.

3. Constraint rules and event rules

One of the problems of applying Business Rule
approach is a proper specification of businesssrule

separating rules related with business processes,
from rules related with business constraints. Saich
separation allows increasing the agility of Busies
Rule approach because constraint rules are changing
faster and independently of process rules. OMG has
issued the SBVR standard for specification of “real
business rules (i.e. rules under business jurisaict

in implementation technology independent manner.
In declarative business rule statements of SBVR
standard, process rules are expressed implicitig. T
overall SBVR rules are classified to structural and
operative rules. The structural rules express
necessities; the operative rules serve for obbgati

of business behaviour.

When going to information system requirement
(i.e. DIM) or design (i.e. PIM) models, both typafs
semantic rules may be transformed to integritysule
production rules, or variations of event-condition-
action rules; additionally, derivation and
transformation rules may be distinguished [40, 41].
We have added object-oriented rules to this
classification (Figure 1). Rules may have pre-
condition, action, post-condition, left-hand side
(LHS), right-hand side (RHS) and other expressions
as their components. These components are
expressible using UML and OCL constructs.

Executable
BusinessRule
| T
Integrity Derivation Production ECA Transformation | |Object-oriented
Rule Rule Rule Rule Rule Rule
1 . a1f§ 0.1§o0d 0.1 0.1 §0.1 1 1 1 o =
[] = J o
Deontic Alethic 0. 04 0 o Event LHS Invariant
; : Conclusi PreConditi Acti . ; -
Intlz_ﬂ;“y Imlgﬂrerty onclusion reCondition E:pre:;osri'un I Expression i
D“k R.HS
1 0.* \—‘
Logical PostCondition ECAP
Expression Rule
1
I ! n..1'
Figure 1. Classification of executable business rules (adsfpten RuleML, R2ML [40, 41])
Main UML construct for business rule evaluating the expressive power of business process
representation isConstraint It has context |, modelling languages. In these patterns event rules
constrainedElement, and Value and constraint rules are coupled together. Event-

Specification [30]. Value specification may be
provided as OpaqueExpression using any
language, un-interpretable in UML. Business rules
are represented using logical expressions or
sentences such as disjunction, conjunction, negatio
(strong negation or negation as failure), implicati
bi-conditional comparisons (>, <g, > o)y
quantified sentences (existential and universaigr u
defined predicates (i.e. functions or relations) et

None of these rules directly represent process
rules. For investigating the variety of proces®stit
is purposeful to examine workflow patterns that
W. M. P. van der Aalst et all [1] have proposed for

31

condition-action rules allow more flexible
representation of business processes. A simple ECA
rule may be represented by template:

On <event> if <condition> then
<action>.
Unlike if-then constructs in programming

languages, ECA rules do not allafathen—else
statements but the action part of an ECA rule can
represent operation invocation, branching or logpin
constructs that ensure the required flexibility.
However, such a language is not capable to express
all workflow patterns, for example, synchronizing
merge [1]. The Xchange language [4] allows

representing complex events and may express all of
workflow patterns, but it cannot separate business
processes from business constraints
constraint rules also are coupled with event rules.
T. Graml et all [15] propose to externalize deaisio

data constraints and activity compositions as
business rules but their approach also is incomaplet

Unlike the majority of approaches, we propose to
use UML state machines for business process
modelling. There are many reasons for this: state
machines are best suited to represent behavioural
semantics of object-oriented and service-oriented
systems [2, 3]; they are more rigorous than intaiti
activity diagrams and more expressive than Pi-
calculus [44]; state machines are often clearer and
more compact. UML state machines are extension of

Harel statecharts that have expanded the Mealy and

Moore state machines (in Mealy state machines
actions are performed in transitions, in Moore,
conversely, actions are performed in states). Harel
allowed actions in both states and transitions, and
enhanced the previously flat models with nested
states and concurrent states. The UML 2.1.2 state
machines have the further improvements in respect
with previous UML specifications based on Harel
statecharts. The UML 2.1.2 state machines [30] are
very similar to activity diagrams (it is possible t
consider activity diagrams as a special case of UML
state machines). Similarly as ECA rule actions,
effects of state machine transitions may represent
any kind of behaviour — state machine, activity,
interaction or opaque behaviour; in such a waygesta
machines are flexible enough to express any kind of
behaviour. However, for separation of event and
business constraint concerns, an appropriate
methodology is needed.

For processing real life tasks, ECA rules should
allow to represent complex events. The problem of
representing complex events may be solved by event
derivation rules. For modelling services, we have

distinguished between atomic event types
SendRequestEvent, SendResponseEvent,

ReceiveRequestEvent and ReceiveResponse
Event [7] that may correspond to UMISend
OperationEvent or SendSignalEvent ; or to
ReceiveOperationEvent and ReceiveSignal
Event . For directly representing ECA rules by UML
state machine diagrams we uSgerationCall
Event and execution eventsExecutionStart
Event andExecutionFinishEvent). For brevity,
we will unite where appropriate the
ReceiveOperationEvent with Operaction
CallEvent on state transitions and mark them with
stereotypec<call>> . ExecutionStartEvent and
ExecutionFinishEvent will be marked as
<<start>> and <<finish>> events. They are
explained on the sequence diagram in Figure 2.

Further, in EMDA we differentiate between
UML state machines of entities and protocol state
machines of interfaces. In state machines of estiti

32

L. Ceponiene, L. Nemuraite, G. Vedrickas

states are pervasive states stored in database; the
cannot have events,dd“ activities, and internal

because transitions. In protocol state machines of intezfac

conversely, states mean activity states. Enteong t
state by default coincides with calling an operatio
triggered by event on transition. Execution starts
when pre-conditions of that operation are satisfied
Effects on transitions of UML Protocol State
Machines are replaced by post-conditions of
operations called by events on the corresponding
transitions.

| Sender |

Pece.u‘ver |

ReceiveRequestEvent
ExecutionStantEvent

ExecutionFinishEvent
SendResponseEvent

Figure 2. Atomic event types

We will distinguish between event rules where
event and action parts of ECA-like rules may
express only atomic or complex events without any
constraints; and constraint rules where the”‘part
of ECA rule may express only a single atomic event,
the condition part may express a constraint on that
event and the action part corresponds to an atomic
a complex event reacting to that simple event. Such
rules will look like:

<<eventRule>>:
<Event2> ;

<<constraintRule>>: on <SimpleEvent>
if <Condition> then <Event>.

on <Eventl> then

Here <€vent > generalizes complex and atomic
events. €vent2 > can represent <sll >> event, if
<Eventl > is <<finish >> event; €vent > can
denote <start >> event, if SimpleEvent > is
<<call >> event etc. In such a way it is possible to
write constraint and event rules separately.

4. Representation of business rules in UML
state machines

In EMDA, complex event types are represented
by UML state machine diagrams. As was mentioned,
for investigating the variety of process rules wié w
examine workflow patterns [1]. From the main
workflow patterns, we distinguish sequence, pdralle
split, merge, choice and multiple instances event
patterns (synchronization, discriminator, multiple
merge, exclusive choice, multiple choice etc may be
considered as specializations of these main paltern
Besides, there are other event patterns that sheuld
handled: transactions where sequences of messages
should be sent and received between start andfinis
of complex events; time events; exception events,
and correlation between events.

Protocol state machines will model the main
successful transitions, when pre-conditions of
operations are satisfied; the alternative transitio

Separation of Event and Constraint Rules in UML&OCL Models of Service Oriented Information Systems

may be caused by violation of pre-conditions or
different faults — time expires, exceptions, etc
(Figure 3). All these transitions are specified by
separate event and constraint rules.

|I| —<<call>>event>>
[2]-<<start>>event>>
s [3]-<<finish>>event>>
a 3 b)
<<constraintRule>> On <<call>>op1()if C1 then
<<start>>op1()
<<constraintRule>> On <<call>>op1()if not C1 then
<<start>>op2()
<<constraintRule>> On <<call>> op3() if C2 then
<<start>> op3()
<<eventRule>> On <<finish>>op1 then <<call>>o0p3()
<<eventRule>> On<<start>>o0p1() and after(TOp1)then
AtimeExpiry()

Figure 3. Alternative transitions in a full (a) and the
abbreviated view (b); hergter(TOp1() denotes a
relative time event/timeExpiry() — a message

Event sequends represented by transitions with
trigger events without pre-conditions for both stat
machines of entities and state machines of intesfac
(Figure 4).

<<eventRule>> On <<finish>>e1()
then <<start>>e2()

<<eventRule>> On <<finish>>e2() then
<<start>>e3()

[51

Figure 4. Event sequence

Parallel splitis represented by using composite
state with regions (Figure 5). Note that here

<<startEvent>> can mean<<sendRequest>>
or <<sendResponse>> events.
e2()/

<<eventRule>> On <<finish>> el()
then <<start>> e1() and <<start>> e2()

Figure 5. Parallel split

Similarly, the Synchronizing mergemay be
represented by using join pseudostate (Figure 6).

<<EventRule>> On <<finish>> e1() and
<<finish>> e2() then <<start>> e3()

Figure 6. Synchronizing merge

33

Exclusive choicas represented by using choice
pseudostate (Figure 7). Note thaExitPoint
pseudostate with stereotyperuleViolation>>
may be used for representationetsfe condition in
the case when neither of exclusive conditions is
satisfied. In a similar way, exception and timerdse
(<<exception>>, <<relativeTimeEvent>>
and <<absoluteTimeEvent>>) inherent
service execution states may be represented.

for

<<ruleViolation=>>
not (C1or C2 or C3)] p1() /

[C2le2(}f C3)e3()/
{ e2state } [e3State]

[Caled()/

[edstate]

<<constraintRule>> On <<finish>>e1() if not
(C2 or C3 or C4) then <<ruleViolation>> p1()

<<eventRule>> On <<finish>>el() then
<<call>>e2() or <<call>>e3() or <<call>>e4()

<<constraintRule>> On <<call>>e2() if C2
then <<start>>e2()

<<constraintRule>> On <<call>>e3() if C3
then <<start>>e3()

<<constraintRule>> On <<call>>e4() if C4 then
<<start>>ed4()

Figure 7. Exclusive choice

Constraint rules andtien “ part of event rules
may be handled by State Coordinator [8]. However,
for handling bn” part of complex event rules, State
Coordinator architecture should be supported with
more enhanced capabilities to handle complex event
patterns.

5. SBVR, TBL and OCL Representation of
Event and Constraint Rules in the Context of
EMDA Process

Now we should consider how to define event and
constraint rules using SBVR specifications. Events
are not explicitly represented according to SBVR
standard. Though it is possible somehow to adjust
SBVR specifications for representing events, it is
not clear, should SBVR rules represent processes or
not? There are other questions concerning
specification of “real” business rules. For example
business rule for giving a loan may be specified as
single rule (Figure 8).

It 1s obligatory that a bank gives a loan
1if the debtor is the owner of the bail
or the bail has a consent of the sponsor,
who s the owner of the bail and
the initial date of the consent is not
greater than the issue date of the loan
and the end date of the consent is not less
than the planned return date of the loan and
each loan of the debtor is returned loan and
the return date of the loan is not greater
than the planned return date of the loan.

Figure 8. SBVR rule for giving a loampun concepts
correspond to entity types, roles and attributddML
class diagramyer b concept s — to associations)

Such rules could be implemented as integrity
constraints enforced by functionality of databases

software components. In real life, business praeess
exist, whose activities are performed by different
roles of persons. These processes require different
specifications of business rules. For example,ra pa
of the process of giving a loan may be executed by
sequential or parallel actions in Figure 9 (a) énd

InitiateLoan
SubmitRequest

CheckRequestValidity o

CheckLoanReliability |->(®)

®a) @® b)

Figure 9.Business process for a loan when actions are
performed in a sequence (a) and in parallel (b)

SubmitRequest
CheckRequestValidity

[CheckLoanReliability]
)

IssueLoan

TransferLoan

So the rule, presented in Figure 8, should be split
in four rule sets that are given in Figures 10-th2:
RuleSetl defines the obligation of the bank to give
a loan for each person who gives a request if the
requested loan is the valid and reliable; the
RuleSet2 defines what loan is valid, and the
RuleSet3 — what loan is reliable. ThRuleSet4
defines the reliable person. This rule is the reitgii
for deriving the reliable loan. We address thesesru
as ‘“rule sets” because SBVR business rules have
associated structural rules (definitions), also
supporting fact types, related fact types, synonyms
etc. omitted here for brevity.

<RuleSetl> It is obligatory
that the bank issues a loan
if the loan is the valid loan

and the reliable loan.

Figure 10. The operative rule for a bank to issuing the
loan

<RuleSet2> It 1s necessary that

a loan is the valid loan

if the debtor is the owner of the bail
or the bail has a consent of the sponsor
who is the owner of the bail and

the initial date of the consent is

not greater than the issue date

of the loan and the end date

of the consent is not less than

the request date of the loan.

Figure 11.The structural rule that defines a valid loan

<RuleSet3> It is necessary that
a loan is the reliable loan
if the person is the reliable debtor.
<RuleSetd> It is necessary that
the person is the reliable debtor if
each loan of the person is the returned loan
and the actual return date of the loan is not
greater than planned return date of the loan.

Figure 12. The structural rules that define the reliable loan

The example of definitions and supporting fact
types are presented in Figures 13-14.

34

L. Ceponiene, L. Nemuraite, G. Vedrickas

is necessary that the

one debtor.

is necessary that the

one request date.

is necessary that the
one amount.

loan has exactly

loan has exactly

loan has exactly

Figure 13. The example of structural rules (definitions)

Loan has debtor Loan has request date
Loan has bail Loan has amount

The noun concept “loan request” is a role
that ranges over noun concept “loan”.

Figure 14.The example of supporting fact types

According to EMDA, use cases for the
implementation of the loan service (Figure 15) are
mapped to interfaces comprising sets of abstract
operations (events). Use case specifications are
written using business rules and vocabulary terms
representing entities, roles, attributes and stafes
the conceptual model. In the next step, sequence
diagrams are created representing interactions
between interfaces (the main scenario is presented
Figure 16). State machines of entities (e.g. irufgg
17) and protocol state machines of interfaces (B.g.
Figure 18) serve for reconciliation of various
scenarios from several sequence diagrams.

%% CheckPerson %
Reliabilit i
Person Bank Y Banking

System

Figure 15.Use Cases of the Loan Service system

‘ :Person 2 | | : GetLoan (D) ‘ | : GiveLoan(D) ‘ | : CheckPersonReliability O
I 1 requestLoan(y T 2 checkRequestl) I
| | o f A4

3. [Rules et2]checkloany alidity(l)
|

@ [Rules Etﬁ]chEEkLDaﬂREHaElmyU)
|
|

|
|
|
|
|
|
| eheckeersorRelaniity(p)
|
|
}
|
|
|
|

6 [RuleSetd] checkPelg pnReliab|lity|

7_igsueLoan()

L
G._respo FgTuLuaﬂReq_uestU‘C

B

| B! transferLoani)

— — F—=F

. _[ValidLoan] [ReliahleLoan]_

Unreliableloan

rejectloant)

izzueloan)

IssuedlLoan

transferl.oani’)

InvalidLoan
rejectloan()

TransferredLoan RejectedLoan]
returnlloani)
Returnedloan
(O

Figure 17. State machine of tHean entity

Separation of Event and Constraint Rules in UML&OCL Models of Service Oriented Information Systems

3 | BankingSystem
InitiateL oan A Il
requestLoant j [RequestedLoan] o I 4 pankingSystem Il
| calgdrr - — — — — — — — — — —
requestloan | aer TrequestLoan) ! PtimeExpir] Ik | " sauses i
o | | 0.* bank e kR |
<=<timeExpiry== I |l Bank @y | dektor| Person g E;wmarireawsﬁfw RealEstate gy | |
[ReguesiedLoan] I LI hankCode 1__|personCode SpOnSor " |address |
Leymass perzonState 1
i T [ek [—cEL |
«=ruleviolation=» [| o R 1 0.1
InvalidLoan] rejectl aan(i / [Rejectedl pan congent|0.* |
checkLaanvalidig P : ! bl : Loan e |
@) | Jrecuestpate b e s i
L | amount 7"minmalData 0. |
____________________ | : plarnedRsturnDats |lan - CONSET |onynate Tt |
CheckL. Reliabili F rejectionDate
eckloanRe ishiity I e izzuebate 0.* |
[h==M] I 1t transferDate \oan
[RellabjeDebto] checkPs sonReliatilityd / [raceiveRespToCHeckParsof i AR Dt T — '
checkPersonReliability ARNE P, LoanState Fenumeration | |
==timaExpiry=> i I use Per: |
after {TcheckPerson) f [MimeExpil iabili
(T)i ping] L3 [n=r] i I CheckPersonReliability RequestedLoan |
.—:« (@) I | +checkPersonReliability() dsldbomn UnreliableDebtor | |
==rulevjolation== = |1 I JeresponseTaCheckPersonReliskilty) ",;;"aa"gll;ﬁz';n
[PnreliablePerson] receiveResgToCheckPersond /| | |<<u5_==> v ralbiaLEa |
- | lzzuedloan |
<=rulevidlation== I | GiveLoan C ?EjEdedLU:C |
3 XS idetadl ransterredLoan
r!) [UnreliahbleLoan] rejeciLoan(f [Rejdcted] opn] | | requesiLoan)) el |
' Il +HimeExpiry()
| [+checkLoan'aliciyi() |
[ReliableLoan] issueloan(f [IssuedLloan] | +rejectloant)
4 1 | —|+checkLoanReliakilty() |
issuelLoan s +esponseToloanReguest() |
— |soal,
[lssuedLoan] transferLdani / [TransferredLoan] ‘ I{fj;‘;;ﬁ';gno |
| +eceiveRespToCheckPerson()
transferLoan relectLoan | +checkRequest) |
T |
[TransferrgdLoan) I — GetLoan O |
L E . +returnloan(00 | T — — — — — — — — — — — —
responseToRequestLoan +requestLoan()
+responseToloanRequest()
@®

A (ReizitedLoarl | Figure 19 Design Independent Model obtained from
L business rules of the Loan domain

Figure 18. Protocol state machine for loan service ontext: GiveLoan::checkLoanValidity()

process pre:([Loan.state]=[RequestedLoan]) and

([Loan.debtor]=[Loan.bail.owner]) or
. . . Ly . t. =
All business constraint rules in process models | {{omoonsontiouna and
i i ([Loan.consent.initialDate]<= ([Loan.requestDate])

are_ _expressed through perva_swe states 01_: bus_lness and([Loan.consent.endDate<=Loan.plannedReturnDat e))}
entities. These states are defined as state iméaria post:[Loan.state]=[ValidLoan]
Definitions of state invariants can change whibgest

concepts remain permanent. When business Figure 20. Example of constraint rule, obtained from

processes change, new states can be added and RuleSet2 , represented in TBL
existing states can be removed. Note that all ténms : _
L g . Context:GiveLoan::checkLoanValidity(l:Loan):Boolean
!”nod_els have quall_fled names, which are not shqwn pre: (ifLdebtor >notEmpty() then
in diagrams, relating them with the corresponding l.debtor =I.bail.owner
else if l.consent.sponsor ->notEmpty() then
context. l.consent.sponsor =I.concent.bail.owner
. and l.concent.initialDate <=l.requestDate
In Figure 17,RuleSet2 andRuleSet3 denote and l.concent.endDate >=|.plannedReturnDate

rule sets whose fragments are depicted in Figures | eise false endif endif _
. post: l.oclinState(ValidRequest)and result=true
11-12. These rule sets may be expressed in SBVR,
OCL or other formal or informal rule languages. In Figure 21.Example of constraint ruRuleSet2 in OCL
EMDA' the flnal SpECIflcatlon Of service SyStem Context: GiveLoan::checkRequest(l:Loan):Boolean
(Figure 19) uses OCL. However, for the purpose of post: let messagel:oclMessage=
H . H H . H self.“checkRequestvalidity(l:Loan),
facilitating easier coping with Business Rule v
approach, we have created a Template Based self."checkLoanReliakility(l:Loan),
Language (TBL) that allows entering of business e anemnnan hameramedll and
rules in a simpler but strong enough form based on and message2.hasReturnsd(] and
H H H H messagel.result=true
First Order_ Loglc. An example of TBL expression is then seli’issuetoan(l:Lean)else false endif
presented in Figure 20. The same expression in OCL

is presented in Figure 21, and the example of event Figure 22.Example of event rule (RuleSet1) in OCL for

rule RuleSetl) in OCL is presented in Figure 22. issuing a loan (this rule defines the obligatiorsstiing a
. . . loan if loan was checked and request is valid aad is
The first trial version of Template Based reliable)
Language was implemented in plug-in of CASE tool)
MagicDraw UML for input of class invariants into TBL rules can be related to classes, properties,

UML class diagrams [28]. Currently this project is Operations, states, transitions, activity flows,
extended for enabling the input of TBL rules into decision points, sequence diagram messages and

behavioural models — state machines, sequence andinteraction fragments. The structure of TBL
activity diagrams. expressions is simple, yet powerful through

recursion (the similar ExeRule language was
35

implemented in XML [39]). TBL covers a subset of
the First Order Logic; therefore, a mutual
translatability exists between TBL and subsets of
OCL and SBVR. However, TBL was only an
intermediate step devoted for assuring a possibilit
of separating constraint rules from event rules and
applying them in a meaningful way for enhancing
the EMDA process. The true enhancement of Model
Driven approaches should be based on SBVR
standard that currently provides the most complete
basis for that purpose.

6. Conclusions and further work

During our ongoing research that is performed
according to High Technology Development
Program Project “Business Rules Solutions for
Information Systems Development (VeTIS)” we

have encountered problems that also have an impact

on other researchers from the area of Model Driven
Engineering, Service Oriented Architecture and

Business Rules Approach, namely, with the

necessity of separating business process rules from
business constraints for making them agile. We have
proposed a way of separating constraint rules from
event rules governing the business process by
defining business processes with UML state

machines and specifying business rules in the
independent way.

We have created the simplified Template Based
Language (TBL) that allows easier input of business
rules into UML CASE tool environment. The
current prototype of TBL allows using UML model
elements, representing business vocabulary
concepts, in rule specifications. These rules may b
transformed to pre-conditions and post-conditiohs o
service operations that are implemented in State
Coordinator Pattern based architecture for service
oriented information systems. Presented research
fragments allow making some assumptions about the
feasibility of such an approach for modelling and
implementing service oriented information systems
according to Business Rule Approach and Model
Driven Development.

UML models supplemented with constraints are
suitable for the easier representation, checkirgy an
implementing business rules. Proposed separation of
event rules and constraint rules is important due t
emerging technologies of Complex Event
Processing, Event Driven architectures and Event
Rule Engines. To our knowledge, the complete
solution to modelling complex events and business
rules in development of information systems for
their implementation using both Business Rule
Approach and Event Driven technologies currently
is not proposed. We have described sequence,
parallel split, merge, choice and other event paste
and investigated possibilities of representing them
using UML state machines, SBVR standard, our
own Template Based Language and OCL.

36

L. Ceponiene, L. Nemuraite, G. Vedrickas

Our very initial prototype of TBL contributed to
assuring the weightiness of the proposed modelling
approach, but TBL is not the final solution. The
future work is directed to implementing a more
powerful language on the base of SBVR standard
and means for translating this language to OCL and
implementation languages.

References

[1] W. M. P. van der Aalst, A. H. M. ter Hofstede,

M. Dumas. Patterns of Process Modelingn:

M. Dumas, W. M P. van der Aalst, and A. H. M. ter
Hofstede (Eds.), Process-Aware Information
Systems: Bridging People and Software through
Process Technology, Wiley & So8605,179-203.

B. Benatalah, M. Dumas, M. C. Fauvet,

F. A. Rabhi, Q. Z. Sheng. Overview of some
patterns for architecting and managing composite
web services ACM SlGecom Exchanges archive
2002,Vol. 3, Issue 39-16.

D. Berardi, D. Calvanese, G. De Giacomo,
M. Lenzerini, M. Mecella. A foundational vision of
e-servicesln: Proc. CAISE 2003: Workshop on Web
Services, LNC2003,Vol. 3095 28-40.

F. Bry, M. Eckert, P. L. Patranjan,

I. Romanenko.Realizing Business Processes with
ECA Rules: Benefits, Challenges, Limitdn:
Proceedings of 4th Workshop on Principles and
Practise of Semantic Web Reasoning, LNZR)6,
Vol. 418748-62.

D. Bugaite, O. VasilecasEvents linking with rules

— Business system, information system and software
system. In: Information technologies’ 2008,
Proceedings of the 14th International Conference on
Information and Software TechnologieKaunas,
Lithuania, 2008, 324-333.

J. Cabot, E. Teniente.Constraint Support in MDA
tools: a Surveyln: European Conference on Model-
Driven Architecture 2006, LNGC2006, Vol. 4066
256-267.

L. Ceponiene, L. Nemuraite. Design independent
modeling of information systems using UML and
OCL. In: Databases and Information Systems:
selected papers from the 6th International Baltic
Conference on Databases and Information Systems,
Riga, Latvia, June 06-09, 2004, 10S Press,
Amsterdam?2005, 224-237.

L. Ceponiene, L. Nemuraite. Transformation from
Requirements to Design for Service Oriented
Information Systems.In: Proc. ADBIS 2005:
Advances in Databases and Information Systems,
Tallinn, Estonia2005, 164-177.

D. Costal, C.GOmez, A. Queralt, R. Raventos,
R. Teniente. Improving the definition of general
constraints in UML Software and systems modeling,
January,2008, 1-18.

10] F. Daniel, G. Pozzi. An Open ECA Server for
Active Applications. Journal of Database
Management, Vol. 19, Issue2008, 1-20.

Defining Business Rules ~What Are They Really?
The Business Rules Group, formerly, known as the

(2]

(3]

[4]

(5]

(6]

[7]

(8]

[9]

[11]

GUIDE Business Rules Project, Final Report,
Revision 1.32000, 1-77.
[12] A. V. Deursen, E. Visser, J.Warmer. Model-

Driven Software Evolution: A Research Agentta.
D. Tamzalit (Ed.),Proceedings of 1st International
Workshop on Model-Driven Software Evolution

Separation of Event and Constraint Rules in UML&OCL Models of Service Oriented Information Systems

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(MoDSB, University of Nantes, France2007,
41-49.

T.van Eijndhoven, M.l lacob, M. L. Ponisia
Achieving Business Process Flexibility with business
rules. In: Enterprise Distributed Computing
Conference, 2008, EDOC'08, ®2International
IEEE, 2008, 95-104.

S. Goedertier, J Vanthienen. Declarative Process
Modeling with Business Vocabulary and Business
Rules. In: On the Move to Meaningful Internet
Systems 20070TM 2007 Workshops, LNCZ)07,
Vol. 4805,603-612

T. Graml, R.Bracht, M. Spies. Patterns of
Business Rules to Enable Agile Business Processes.
In: Proceedings of the 11th IEEE International
Enterprise Distributed Object Computing
Conference, IEEE Computer Society, 2007,
365-375.

S. Gudas, T. Skersys, A. Lopata.Approach to
Enterprise Modelling for Information Systems
Engineering. Informatica. 2005, Vol.16, No.2,
175-192.

S. Gudas, T. Skersys, A. LopataFramework for
knowledge—based IS engineeringn: T. Yakhno
(Ed.), Proceedings of third international conferenc
LJAdvances inInformation systems (ADVIS2004),
Izmir, Turkey, October 20-22, 200UNCS, 2004,
Vol. 3261 512-522.

J.D.Haan. 8 Reasons Why Model-Driven
Approaches (will) Fail. InfoQ, 2008,
http://www.infog.com.

K. Kapocius, R. Butleris. Repository for business
rules based IS requirementsformatica, 2006, Vol.

17, No. 4503-518.

S. Kent Model Driven Engineeringn: Proceedings
of the Third International Conference on Integrated
Formal Methods, LNC2002,Vol. 2335,286—-298.

J. Kobielus. Complex event processing: still on the
launch pad. Network World, 2007,
http://www.computerworld.com.au/.

M. H. Linehan. SBVR Use Cases.In: Rule
Representation, Interchange and Reasoning on the
Web, Proceedings of the International Symposium,
RuleML 2008, Orlando, FL, USA, October 30-31,
LNCS,2008,Vol. 5321, 182-196.

M. H. Linehan. Semantics in Model-driven
Business Designln: 2nd International Semantic
Web Policy Workshop (SWPW'06), Athens, GA,
USA,2006, 1-8.

P. Loucopoulos, W. M. N. W. Kadir. BROOD:
Business Rules-driven Object Oriented Design.
Journal of Database Management, Vol. 19, Issue 1
2008, 41-73.

S. Lukichev, G. Wagner Visual Rules Modeling.
In: Perspectives of System Informatics, LN2&)7,
Vol. 4378,467-473.

A. Michimayr, F. Rosenberg, P. Leitner,

S. Dustdar. Advanced Event Processing and
Notifications in Service Runtime Environments:
DEBS '08, July 1-4, 2008, Rome, Ita®008, 1-11.

L. Motiejunas, R. Butleris, Business rules
manipulation model.Information technology and
control, 2007, Vol. 36, No. 3295-301.

L. Nemuraite, L. Ceponiene, G. Vedrickas.
Representation of Business Rules in UML&OCL
Models for Developing Information Systembn:

J. Stirna, A. Persson (Eds.), The Practice of
Enterprise Modeling. Proceedings of First IFIP WG

37

8.1 Working Conference, POEM 2008, Stockholm,
Sweden, November 12-13, 2008|BIP, 2008, Vol.
15,182-196.

[29] Object Constraint Language OMG Available
Specification, Version 2.0. OMG document
formal/06-05-012006,http://www.omg.org

[30] OMG Unified Modeling Language (OMG UML)
Superstructure, V2.1.DMG Available Specification
formal/2007-11-022007 ,http://www.omg.org.

[31] E. Pakalnickiene, L. Nemuraite, B. Paradauskas.
The orderliness and precision in conceptual
modelling.In: Current Trends in Informatics. Vol. A.
PCI'2007: 11th Panhellenic Conference in
Informatics, 18-20 May, 2007, Patras, Greece,
Athens: New Technologies Publication2007,
341-350.

[32] E. Pakalnickiene, L. Nemuraite. Checking of
conceptual models with integrity constraints.
Information technology and contra2007, Vol. 36,

No 3 285-294.

[33] Production Rule RepresentatiorSubmission to
Business Modeling and Integration Domain
Taskforce. Fair Isaac Corporation, ILOG S2007.

[34] A. Raj, T. V. Prabhakar, S. Hendryx.
Transformation of SBVR business design to UML
models. In: ISEC '08: Proceedings of the 1st
conference on India software engineering
conference, ACM, Hyderabad, Ind2008, 29-38.

[35] R. G. Ross. Principles of the Business Rules
Approach Addison-Wesley, BostoR003.

[36] R. G. Ross.The Business Rule Book: Classifying,
Defining an Modeling Rules.Business Rule
Solutions, Houstor,997.

[37] M. Schacher.Business Rules from an SBVR and an
XUML Perspective (Parts 1-3)Business Rules
Journal,2006,Vol. 7, No. 6-8

[38] Semantics of Business Vocabulary and Business
Rules (SBVR), v1.00MG Available Specification,
OMG Document No. formal/2008-01-&008.

[39] G. Vedrickas, L. Nemuraite, Achieving business
flexibility by empowering business component
system with business rules technology: Executable
rules. In: Vasilecas, O., Eder, J., Caplinskas, A.
(Eds.), Databases and Information Systems: Seventh
International Baltic Conference on Databases and
Information Systems. Communications, Materials of
Doctoral Consortium, Vilnius, Lithuania, 3-6 July,
2006, Technika, Vilniu£006, 193-158.

[40] G. Wagner, A. Giurca, S. Lukichev, A Usable
Interchange Format for Rich Syntax Rules.
Integrating OCL, RuleML and SWRL.In:
Proceedings of Reasoning on the Web, WWW
Workshop, Edinburgh, Scotlan2D06.

[41] G. Wagner, S. Tabet, H.Boley, MOF-RuleML:
The Abstract Syntax of RuleML as a MOF Model,
2004, http://www.ruleml.org.

[42] Wahler, M., Ackerman, L., Schneider, S.Using
IBM Constraint Patterns and Consistency Analysis.
IBM Developer Works, Map008.

[43] M. Wahler, J. Koehler, A.D. Brucker. Model-
driven constraint engineering (2008jh: MoDELS
Workshop on OCL for Meta-Models in Multiple
Application Domains, Electronic Communications of
the EASST, Vol. 5, 2006, Technische Universitat
Dresden, Germany006, 1-15.

[44] G. Xue, J.Lu, S.Yao. Investigating Workflow
Patterns in Term of Pi-calculub): Proceedings of
CSCWD, IEEE Computer Socied07, 823827.

