
Abstract. In this paper, possibilities of advancing Business Process Modelling when joining it with Business Rules
approach are analysed. The problem currently under discussion in business rule and business process management
communities is that business process (or event) rules are changing independently from structural, or constraint-oriented
business rules, and coupling them together requires changing business processes when rules are changing, and vice versa.
The paper addresses the problem of modelling – separating business constraint rules from event rules in UML&OCL models.
The proposed principles of separation are based on UML 2 state machines applied in the context of Extended Model Driven
Approach for Service Oriented Information Systems. Representation of event and constraint rules in SBVR, Template Based
Language and OCL is analysed.

Keywords. Business rules, event rules, constraint rules, state machines, UML, OCL, MDE.

1. Introduction

Existing Model driven approaches as Model
Driven Architecture (MDA), Model Driven
Development (MDD) and Model Driven
Engineering (MDE) are taking a very little care
about business rules. J. D. Haan [18] has mentioned
eight reasons why Model Driven approaches may
fail. He argues that the main goal of MDE is to
reduce the vulnerability of software artefacts
regarding changes; however, currently addressed
changes are mainly related with implementation
platforms and not with business changes. Currently
business rules management systems and business
rule engines are addressing these needs by enabling
the non-technical users to make changes to their
software. Model Driven approaches are limited as
they do not treat business rules according to the
Business Rule approach.

One of the most fundamental principles of
developing the software is separation of concerns.
Concerns that could be captured, analyzed,
developed, implemented and maintained separately
should be separated. One of such concerns is
business rules that usually are embedded by
developers in use cases, interactions, state machines,
class and other models. As graphical modelling
languages are not capable to express all real life
semantics that should be implemented by software,
graphical model elements are supplemented with
textual expressions (informal, e.g. natural language,
or formal, e.g. OCL [29]). Properly separated from
visual models, business rules could be updated by
business people, and translated to system perspective
and backwards by IT people. J. D. Haan [18]
maintains that improved business and IT alignment
requires a shared language and such a language
should be business rules that allow for IT and

business people to work together. We additionally
argue that MDE CASE tools should have
repositories of business rules that should be used
during modelling business and generating software
code – similarly as business rule engines are using
business rules during execution [16, 17, 19].

Object Constraint Language (OCL) is the
language designed for expressing business rules in
UML models. Recent analysis has shown [28] that
UML&OCL models are capable to express all types
of executable business rules subsumed in their
different classifications and typologies [11, 40, 41].
However, in these business rule representations OCL
expressions are tangled with UML graphical
elements. On the one hand, augmenting visual
models with elements of business rules helps
developer to anticipate modelling; on the other hand,
it is purposeful to separate business rule expressions
from graphical elements to facilitate changes. The
problem currently under discussion in business rule
and business process management communities is
that business process (or event) rules are changing
independently of other (structural, or constraint
oriented) business rules and coupling them together
requires changing business processes when rules are
changing, and vice versa. So there exists a problem
of modelling – how to separate constraint-oriented
business rules from process-oriented rules in
UML&OCL behavioural models?

The rest of the paper1 is organized as follows. In
section 2 the related work is considered. Section 3
presents the classification of business rules and
introduces constraint and event rule types. Section 4

1 The work is supported by Lithuanian State Science and

Studies Foundation according to High Technology
Development Program Project "VeTIS" (Reg.No. B-
07042)

ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2009, Vol.38, No.1

SEPARATION OF EVENT AND CONSTRAINT RULES IN UML&OCL
MODELS OF SERVICE ORIENTED INFORMATION SYSTEMS

Lina Ceponiene, Lina Nemuraite, Gediminas Vedrickas
Kaunas University of Technology, Department of Information Systems

Studentu st. 50-315a, LT-51368 Kaunas, Lithuania
Lina.Ceponiene@ktu.lt, Lina.Nemuraite@ktu.lt, g.vedrickas@erp.eu

29

is devoted for representation of process rules with
UML state machines. In section 5 rule
representations in SBVR, Template Based Language
and OCL are considered in the context of EMDA
process. Section 6 draws conclusions and highlights
the future work.

2. Related Work: Accelerating Model Driven
Development Process with Business Rule
Approach

Though OMG has issued Semantics of business
Vocabulary (SBVR) standard [38] and is working on
Production Rule Representation [33], Business Rule
approach initiated by R. G. Ross [35, 36] and
Business Rule group [11] yet has a few applications
within MDE. The advantages of such a development
are well understood [22], but for the meantime MDE
lacks standards and methodologies for modelling
executable business rules and transition from
semantic business rules, i.e. Computation
Independent models (CIM), to executable, Platform
Independent models (PIM).

For this purpose, RuleML initiative and
REWERSE group are creating interchangeable
specifications for various kinds of rules, devoted for
Semantic Web and Object-Oriented systems. URML
[25] is an interesting approach of REWERSE group
for visual modelling of derivation and production
rules, implemented in UML CASE tool “Strelka”.
Rules are represented as first class entities in class
models and have relationships (supplemented with
expressions) with concepts involved. This approach
differs from practice of expressing business rules in
object-oriented models and may be inefficient for
large sets of business rules.

There already are proposals for simple
transformations of SBVR specifications to UML
models [23, 34]. The Model Driven Enterprise
Engineering (MDEE) methodology created by
KnowGravity is one of the first efforts to apply
OMG SBVR and other standards in the holistic IS
development process where information
technologies are managed by business needs [37].
MDEE supports the smooth going from SBVR
structural and operative rules to PIM Constraints,
ECA and CA (Condition-Action) rules. It uses fact
diagrams for representing business vocabularies;
UML class, use case diagrams and state machines
for representing system models; and BPMN for
modelling business processes. The final PIM is
presented by executable state machines with
KnowGravity expressions for business rules that are
proprietary solution requiring hard manual efforts;
nevertheless, MDEE is an excellent evidence of
usefulness and applicability of OMG standards. The
prototype, proposed by M. H. Linehan [23] for
transformation of limited SBVR rules to OCL pre-
conditions, also is related with business process
modelling. OCL constraints are addressed in [6, 9,
42, 43].

The simple, but proven BROOD approach
recently published in [24] proposes simple templates
for specification of restricted typology of business
rules, and simple object-oriented development
process that augments UML by explicitly
considering business rules as an integral part of an
object-oriented development. BROOD process is
supported by a tool developed on top of the Generic
Modelling Environment (GME). This approach
(though it is not related with OCL) has many
common points with our efforts and represents
modern trends in MDE [12], i.e. development of
modelling environments tailored for specific
domains and specific development methodologies.

Currently, new technologies complementing
event manipulating in database systems [27] are
arising such as Complex Event Processing, Event
Driven Architecture, Event Servers and Event Rule
Engines, for example, [10, 21, 26] and others. These
technologies are related with the further
enhancement of Web Service Architecture, Business
Process Management and Business Rule approach.
Separation of processes and constraints may be done
on the base of events that are already addressed in
Event Driven technologies; however, they are
lacking modelling support. There are some proposals
how to separate process rules from constraints.
T. Graml et all [15] externalize decisions, data
constraints and activity compositions. S. Goedertier
and J. Vanthienen [14] propose a declarative process
modelling language that extends SBVR business
vocabulary categorising sixteen business rule types.
Most of these rules are expressed in terms of activity
states and events instead of states of business
objects. This approach may lead to desired
separation of business processes and business
constraints, despite it does not consider complex
events and can be more difficult to understand than
the graphical process notations. F. Bry et all [4] have
proposed the Xchange language for representing
complex events, however, in this approach
constraint and event rules are coupled. The idea of
T. van Eijndhoven et all [13] is the identifying the
variable and non-variable process segments and
combining workflow patterns that model the
behaviour of each variant by means of business
rules, but it also does not solve the aforementioned
problem. D. Bugaite and O. Vasilecas [5] investigate
related, but rather different viewpoint: how events
and rules are linking together in business system,
information system and software system levels.

The mentioned problems of separating process
rules from business constraints are especially
important in Model Driven Development processes
of service-oriented information systems. We are
working in creation of enhanced development
process which was called “Extended Model Driven
Approach” (EMDA). We have coped with
limitations of Model Driven Architecture of using
PIM and PSM and therefore introduced Design-
independent model (DIM) for representation of

L. Ceponiene, L. Nemuraite, G. Vedrickas

30

requirements in MDD process [7]. Currently MDA
also acknowledges the necessity of involving more
layers (or dimensions) of models into the Model
Driven Development processes (as in the more
powerful model-driven methodology “Model Driven
Engineering” (MDE) introduced by S. Kent [20]).

Other characteristic of our method is the precise
conceptual modelling [31, 32] during requirement
phase and reconciliation of conceptual data model
with behavioural model. The resulting requirement
model (DIM) is represented as a class diagram
containing entities and abstract interfaces to the
system under development [7, 8]. In our previous
work, we have introduced several types of events
and OCL expressions facilitating separation of
constraint-oriented rules and process-oriented rules
(we name them “event rules”) during EMDA
process. In the current paper, we develop this idea
for other types of event rules and are intending to
extend the State Coordinator pattern for processing
complex events that are inherent for service-oriented
systems.

3. Constraint rules and event rules

 One of the problems of applying Business Rule
approach is a proper specification of business rules

separating rules related with business processes,
from rules related with business constraints. Such a
separation allows increasing the agility of Business
Rule approach because constraint rules are changing
faster and independently of process rules. OMG has
issued the SBVR standard for specification of “real”
business rules (i.e. rules under business jurisdiction)
in implementation technology independent manner.
In declarative business rule statements of SBVR
standard, process rules are expressed implicitly. The
overall SBVR rules are classified to structural and
operative rules. The structural rules express
necessities; the operative rules serve for obligations
of business behaviour.

When going to information system requirement
(i.e. DIM) or design (i.e. PIM) models, both types of
semantic rules may be transformed to integrity rules,
production rules, or variations of event-condition-
action rules; additionally, derivation and
transformation rules may be distinguished [40, 41].
We have added object-oriented rules to this
classification (Figure 1). Rules may have pre-
condition, action, post-condition, left-hand side
(LHS), right-hand side (RHS) and other expressions
as their components. These components are
expressible using UML and OCL constructs.

Figure 1. Classification of executable business rules (adapted from RuleML, R2ML [40, 41])

Main UML construct for business rule
representation is Constraint . It has context ,
constrainedElement, and Value

Specification [30]. Value specification may be
provided as OpaqueExpression using any
language, un-interpretable in UML. Business rules
are represented using logical expressions or
sentences such as disjunction, conjunction, negation
(strong negation or negation as failure), implication,
bi-conditional comparisons (>, <, ≤, ≥ , …),
quantified sentences (existential and universal), user
defined predicates (i.e. functions or relations) etc.

None of these rules directly represent process
rules. For investigating the variety of process rules it
is purposeful to examine workflow patterns that
W. M. P. van der Aalst et all [1] have proposed for

evaluating the expressive power of business process
modelling languages. In these patterns event rules
and constraint rules are coupled together. Event-
condition-action rules allow more flexible
representation of business processes. A simple ECA
rule may be represented by template:

On <event> if <condition> then
<action>.

Unlike if–then constructs in programming
languages, ECA rules do not allow if–then–else
statements but the action part of an ECA rule can
represent operation invocation, branching or looping
constructs that ensure the required flexibility.
However, such a language is not capable to express
all workflow patterns, for example, synchronizing
merge [1]. The Xchange language [4] allows

Separation of Event and Constraint Rules in UML&OCL Models of Service Oriented Information Systems

31

representing complex events and may express all of
workflow patterns, but it cannot separate business
processes from business constraints because
constraint rules also are coupled with event rules.
T. Graml et all [15] propose to externalize decisions,
data constraints and activity compositions as
business rules but their approach also is incomplete.

Unlike the majority of approaches, we propose to
use UML state machines for business process
modelling. There are many reasons for this: state
machines are best suited to represent behavioural
semantics of object-oriented and service-oriented
systems [2, 3]; they are more rigorous than intuitive
activity diagrams and more expressive than Pi-
calculus [44]; state machines are often clearer and
more compact. UML state machines are extension of
Harel statecharts that have expanded the Mealy and
Moore state machines (in Mealy state machines
actions are performed in transitions, in Moore,
conversely, actions are performed in states). Harel
allowed actions in both states and transitions, and
enhanced the previously flat models with nested
states and concurrent states. The UML 2.1.2 state
machines have the further improvements in respect
with previous UML specifications based on Harel
statecharts. The UML 2.1.2 state machines [30] are
very similar to activity diagrams (it is possible to
consider activity diagrams as a special case of UML
state machines). Similarly as ECA rule actions,
effects of state machine transitions may represent
any kind of behaviour – state machine, activity,
interaction or opaque behaviour; in such a way, state
machines are flexible enough to express any kind of
behaviour. However, for separation of event and
business constraint concerns, an appropriate
methodology is needed.

For processing real life tasks, ECA rules should
allow to represent complex events. The problem of
representing complex events may be solved by event
derivation rules. For modelling services, we have
distinguished between atomic event types
SendRequestEvent, SendResponseEvent,
ReceiveRequestEvent and ReceiveResponse

Event [7] that may correspond to UML Send

OperationEvent or SendSignalEvent ; or to
ReceiveOperationEvent and ReceiveSignal

Event . For directly representing ECA rules by UML
state machine diagrams we use OperationCall

Event and execution events (ExecutionStart

Event and ExecutionFinishEvent). For brevity,
we will unite where appropriate the
ReceiveOperationEvent with Operaction

CallEvent on state transitions and mark them with
stereotype <<call>> . ExecutionStartEvent and
ExecutionFinishEvent will be marked as
<<start>> and <<finish>> events. They are
explained on the sequence diagram in Figure 2.

Further, in EMDA we differentiate between
UML state machines of entities and protocol state
machines of interfaces. In state machines of entities,

states are pervasive states stored in database; they
cannot have events, “do“ activities, and internal
transitions. In protocol state machines of interfaces,
conversely, states mean activity states. Entering to a
state by default coincides with calling an operation
triggered by event on transition. Execution starts
when pre-conditions of that operation are satisfied.
Effects on transitions of UML Protocol State
Machines are replaced by post-conditions of
operations called by events on the corresponding
transitions.

Figure 2. Atomic event types

 We will distinguish between event rules where
event and action parts of ECA–like rules may
express only atomic or complex events without any
constraints; and constraint rules where the “on” part
of ECA rule may express only a single atomic event,
the condition part may express a constraint on that
event and the action part corresponds to an atomic or
a complex event reacting to that simple event. Such
rules will look like:

<<eventRule>>: on <Event1> then

<Event2> ;
<<constraintRule>>: on <SimpleEvent>

if <Condition> then <Event>.

Here <Event > generalizes complex and atomic
events. <Event2 > can represent <<call >> event, if
<Event1 > is <<finish >> event; <Event > can
denote <<start >> event, if <SimpleEvent > is
<<call >> event etc. In such a way it is possible to
write constraint and event rules separately.

4. Representation of business rules in UML
state machines

In EMDA, complex event types are represented
by UML state machine diagrams. As was mentioned,
for investigating the variety of process rules we will
examine workflow patterns [1]. From the main
workflow patterns, we distinguish sequence, parallel
split, merge, choice and multiple instances event
patterns (synchronization, discriminator, multiple
merge, exclusive choice, multiple choice etc may be
considered as specializations of these main patterns).
Besides, there are other event patterns that should be
handled: transactions where sequences of messages
should be sent and received between start and finish
of complex events; time events; exception events,
and correlation between events.

Protocol state machines will model the main
successful transitions, when pre-conditions of
operations are satisfied; the alternative transitions

L. Ceponiene, L. Nemuraite, G. Vedrickas

32

may be caused by violation of pre-conditions or
different faults – time expires, exceptions, etc
(Figure 3). All these transitions are specified by
separate event and constraint rules.

<<constraintRule>> On <<call>>op1()if C1 then
 <<start>>op1()
<<constraintRule>> On <<call>>op1()if not C1 then
 <<start>>op2()
<<constraintRule>> On <<call>> op3() if C2 then
 <<start>> op3()
<<eventRule>> On <<finish>>op1 then <<call>>op3()
<<eventRule>> On<<start>>op1() and after(TOp1)then
 ^timeExpiry()

–<<call>>event>>
–<<start>>event>>

1

3

2

1
2

–<<finish>>event>> 3

Figure 3. Alternative transitions in a full (a) and the
abbreviated view (b); here after(TOp1() denotes a
relative time event , ^timeExpiry() – a message

Event sequence is represented by transitions with
trigger events without pre-conditions for both state
machines of entities and state machines of interfaces
(Figure 4).

<<eventRule>> On <<finish>>e1()
 then <<start>>e2()
<<eventRule>> On <<finish>>e2() then
 <<start>>e3()

Figure 4. Event sequence

Parallel split is represented by using composite
state with regions (Figure 5). Note that here
<<startEvent>> can mean <<sendRequest>>

or <<sendResponse>> events.

 <<eventRule>> On <<finish>> e1()
 then <<start>> e1() and <<start>> e2()

Figure 5. Parallel split

Similarly, the Synchronizing merge may be
represented by using join pseudostate (Figure 6).

 <<EventRule>> On <<finish>> e1() and
 <<finish>> e2() then <<start>> e3()

Figure 6. Synchronizing merge

Exclusive choice is represented by using choice
pseudostate (Figure 7). Note that ExitPoint
pseudostate with stereotype <<ruleViolation>>
may be used for representation of else condition in
the case when neither of exclusive conditions is
satisfied. In a similar way, exception and time events
(<<exception>>, <<relativeTimeEvent>>
and <<absoluteTimeEvent>>) inherent for
service execution states may be represented.

<<constraintRule>> On <<finish>>e1() if not
 (C2 or C3 or C4) then <<ruleViolation>> p1()
<<eventRule>> On <<finish>>e1() then
 <<call>>e2() or <<call>>e3() or <<call>>e4()
<<constraintRule>> On <<call>>e2() if C2
 then <<start>>e2()
<<constraintRule>> On <<call>>e3() if C3
 then <<start>>e3()
<<constraintRule>> On <<call>>e4() if C4 then
 <<start>>e4()

Figure 7. Exclusive choice

Constraint rules and “then “ part of event rules
may be handled by State Coordinator [8]. However,
for handling “on” part of complex event rules, State
Coordinator architecture should be supported with
more enhanced capabilities to handle complex event
patterns.

5. SBVR, TBL and OCL Representation of
Event and Constraint Rules in the Context of
EMDA Process

Now we should consider how to define event and
constraint rules using SBVR specifications. Events
are not explicitly represented according to SBVR
standard. Though it is possible somehow to adjust
SBVR specifications for representing events, it is
not clear, should SBVR rules represent processes or
not? There are other questions concerning
specification of “real” business rules. For example,
business rule for giving a loan may be specified as a
single rule (Figure 8).

Figure 8. SBVR rule for giving a loan (noun concepts
correspond to entity types, roles and attributes in UML

class diagram; verb concepts – to associations)

Such rules could be implemented as integrity
constraints enforced by functionality of databases or

Separation of Event and Constraint Rules in UML&OCL Models of Service Oriented Information Systems

33

software components. In real life, business processes
exist, whose activities are performed by different
roles of persons. These processes require different
specifications of business rules. For example, a part
of the process of giving a loan may be executed by
sequential or parallel actions in Figure 9 (a) and (b).

CheckLoanReliability

CheckRequestValidity

IssueLoan

SubmitRequest

ReturnLoan

TransferLoan

InitiateLoan

CheckRequestValidity

CheckLoanReliability

IssueLoan

SubmitRequest

ReturnLoan

TransferLoan

InitiateLoan

 a) b)
Figure 9. Business process for a loan when actions are

performed in a sequence (a) and in parallel (b)

So the rule, presented in Figure 8, should be split
in four rule sets that are given in Figures 10–12: the
RuleSet1 defines the obligation of the bank to give
a loan for each person who gives a request if the
requested loan is the valid and reliable; the
RuleSet2 defines what loan is valid, and the
RuleSet3 – what loan is reliable. The RuleSet4
defines the reliable person. This rule is the requisite
for deriving the reliable loan. We address these rules
as “rule sets” because SBVR business rules have
associated structural rules (definitions), also
supporting fact types, related fact types, synonyms
etc. omitted here for brevity.

Figure 10. The operative rule for a bank to issuing the
loan

Figure 11. The structural rule that defines a valid loan

Figure 12. The structural rules that define the reliable loan

The example of definitions and supporting fact
types are presented in Figures 13–14.

Figure 13. The example of structural rules (definitions)

Figure 14. The example of supporting fact types

According to EMDA, use cases for the
implementation of the loan service (Figure 15) are
mapped to interfaces comprising sets of abstract
operations (events). Use case specifications are
written using business rules and vocabulary terms
representing entities, roles, attributes and states of
the conceptual model. In the next step, sequence
diagrams are created representing interactions
between interfaces (the main scenario is presented in
Figure 16). State machines of entities (e.g. in Figure
17) and protocol state machines of interfaces (e.g. in
Figure 18) serve for reconciliation of various
scenarios from several sequence diagrams.

CheckPerson
Reliability

GiveLoan

GetLoan

Banking
SystemBankPerson

Figure 15. Use Cases of the Loan Service system

Figure 16. The sequence diagram for giving a loan

Figure 17. State machine of the Loan entity

L. Ceponiene, L. Nemuraite, G. Vedrickas

34

Figure 18. Protocol state machine for loan service
process

All business constraint rules in process models
are expressed through pervasive states of business
entities. These states are defined as state invariants.
Definitions of state invariants can change while state
concepts remain permanent. When business
processes change, new states can be added and
existing states can be removed. Note that all terms in
models have qualified names, which are not shown
in diagrams, relating them with the corresponding
context.

In Figure 17, RuleSet2 and RuleSet3 denote
rule sets whose fragments are depicted in Figures
11–12. These rule sets may be expressed in SBVR,
OCL or other formal or informal rule languages. In
EMDA, the final specification of service system
(Figure 19) uses OCL. However, for the purpose of
facilitating easier coping with Business Rule
approach, we have created a Template Based
Language (TBL) that allows entering of business
rules in a simpler but strong enough form based on
First Order Logic. An example of TBL expression is
presented in Figure 20. The same expression in OCL
is presented in Figure 21, and the example of event
rule (RuleSet1) in OCL is presented in Figure 22.

The first trial version of Template Based
Language was implemented in plug-in of CASE tool
MagicDraw UML for input of class invariants into
UML class diagrams [28]. Currently this project is
extended for enabling the input of TBL rules into
behavioural models – state machines, sequence and
activity diagrams.

Figure 19. Design Independent Model obtained from
business rules of the Loan domain

 context: GiveLoan::checkLoanValidity()
 pre:([Loan.state]=[RequestedLoan]) and
 ([Loan.debtor]=[Loan.bail.owner]) or
 {([Loan.consent.sponsor]=
 [Loan.consent.bail.owner]) and
 ([Loan.consent.initialDate]<= ([Loan.requestDate])
 and([Loan.consent.endDate<=Loan.plannedReturnDat e])}
 post:[Loan.state]=[ValidLoan]

Figure 20. Example of constraint rule, obtained from
RuleSet2 , represented in TBL

Context:GiveLoan::checkLoanValidity(l:Loan):Boolean
 pre: (if l.debtor �notEmpty() then

 l.debtor =l.bail.owner
 else if l.consent.sponsor �notEmpty() then
 l.consent.sponsor =l.concent.bail.owner
 and l.concent.initialDate <=l.requestDate
 and l.concent.endDate >=l.plannedReturnDate
 else false endIf endIf
 post: l.oclInState(ValidRequest)and result=true

Figure 21. Example of constraint rule RuleSet2 in OCL

Figure 22. Example of event rule (RuleSet1) in OCL for
issuing a loan (this rule defines the obligation of issuing a
loan if loan was checked and request is valid and loan is

reliable)

TBL rules can be related to classes, properties,
operations, states, transitions, activity flows,
decision points, sequence diagram messages and
interaction fragments. The structure of TBL
expressions is simple, yet powerful through
recursion (the similar ExeRule language was

Separation of Event and Constraint Rules in UML&OCL Models of Service Oriented Information Systems

35

implemented in XML [39]). TBL covers a subset of
the First Order Logic; therefore, a mutual
translatability exists between TBL and subsets of
OCL and SBVR. However, TBL was only an
intermediate step devoted for assuring a possibility
of separating constraint rules from event rules and
applying them in a meaningful way for enhancing
the EMDA process. The true enhancement of Model
Driven approaches should be based on SBVR
standard that currently provides the most complete
basis for that purpose.

6. Conclusions and further work

During our ongoing research that is performed
according to High Technology Development
Program Project “Business Rules Solutions for
Information Systems Development (VeTIS)” we
have encountered problems that also have an impact
on other researchers from the area of Model Driven
Engineering, Service Oriented Architecture and
Business Rules Approach, namely, with the
necessity of separating business process rules from
business constraints for making them agile. We have
proposed a way of separating constraint rules from
event rules governing the business process by
defining business processes with UML state
machines and specifying business rules in the
independent way.

We have created the simplified Template Based
Language (TBL) that allows easier input of business
rules into UML CASE tool environment. The
current prototype of TBL allows using UML model
elements, representing business vocabulary
concepts, in rule specifications. These rules may be
transformed to pre-conditions and post-conditions of
service operations that are implemented in State
Coordinator Pattern based architecture for service
oriented information systems. Presented research
fragments allow making some assumptions about the
feasibility of such an approach for modelling and
implementing service oriented information systems
according to Business Rule Approach and Model
Driven Development.

UML models supplemented with constraints are
suitable for the easier representation, checking and
implementing business rules. Proposed separation of
event rules and constraint rules is important due to
emerging technologies of Complex Event
Processing, Event Driven architectures and Event
Rule Engines. To our knowledge, the complete
solution to modelling complex events and business
rules in development of information systems for
their implementation using both Business Rule
Approach and Event Driven technologies currently
is not proposed. We have described sequence,
parallel split, merge, choice and other event patterns,
and investigated possibilities of representing them
using UML state machines, SBVR standard, our
own Template Based Language and OCL.

Our very initial prototype of TBL contributed to
assuring the weightiness of the proposed modelling
approach, but TBL is not the final solution. The
future work is directed to implementing a more
powerful language on the base of SBVR standard
and means for translating this language to OCL and
implementation languages.

References

[1] W. M. P. van der Aalst, A. H. M. ter Hofstede,
M. Dumas. Patterns of Process Modeling. In:
M. Dumas, W. M P. van der Aalst, and A. H. M. ter
Hofstede (Eds.), Process-Aware Information
Systems: Bridging People and Software through
Process Technology, Wiley & Sons, 2005, 179–203.

[2] B. Benatalah, M. Dumas, M. C. Fauvet,
F. A. Rabhi, Q. Z. Sheng. Overview of some
patterns for architecting and managing composite
web services. ACM SIGecom Exchanges archive,
2002, Vol. 3, Issue 3, 9−16.

[3] D. Berardi, D. Calvanese, G. De Giacomo,
M. Lenzerini, M. Mecella. A foundational vision of
e-services. In: Proc. CAiSE 2003: Workshop on Web
Services, LNCS, 2003, Vol. 3095, 28−40.

[4] F. Bry, M. Eckert, P. L. Patranjan,
I. Romanenko. Realizing Business Processes with
ECA Rules: Benefits, Challenges, Limits. In:
Proceedings of 4th Workshop on Principles and
Practise of Semantic Web Reasoning, LNCS, 2006,
Vol. 4187, 48–62.

[5] D. Bugaite, O. Vasilecas. Events linking with rules
– Business system, information system and software
system. In: Information technologies' 2008,
Proceedings of the 14th International Conference on
Information and Software Technologies, Kaunas,
Lithuania, 2008, 324–333.

[6] J. Cabot, E. Teniente. Constraint Support in MDA
tools: a Survey. In: European Conference on Model-
Driven Architecture 2006, LNCS, 2006, Vol. 4066,
256−267.

[7] L. Ceponiene, L. Nemuraite. Design independent
modeling of information systems using UML and
OCL. In: Databases and Information Systems:
selected papers from the 6th International Baltic
Conference on Databases and Information Systems,
Riga, Latvia, June 06-09, 2004, IOS Press,
Amsterdam, 2005, 224–237.

[8] L. Ceponiene, L. Nemuraite. Transformation from
Requirements to Design for Service Oriented
Information Systems. In: Proc. ADBIS 2005:
Advances in Databases and Information Systems,
Tallinn, Estonia, 2005, 164−177.

[9] D. Costal, C. Gómez, A. Queralt, R. Raventos,
R. Teniente. Improving the definition of general
constraints in UML. Software and systems modeling,
January, 2008, 1–18.

[10] F. Daniel, G. Pozzi. An Open ECA Server for
Active Applications. Journal of Database
Management, Vol. 19, Issue 4, 2008, 1–20.

[11] Defining Business Rules ~What Are They Really?
The Business Rules Group, formerly, known as the
GUIDE Business Rules Project, Final Report,
Revision 1.3, 2000, 1–77.

[12] A. V. Deursen, E. Visser, J. Warmer. Model-
Driven Software Evolution: A Research Agenda. In:
D. Tamzalit (Ed.), Proceedings of 1st International
Workshop on Model-Driven Software Evolution

L. Ceponiene, L. Nemuraite, G. Vedrickas

36

(MoDSE), University of Nantes, France, 2007,
41–49.

[13] T. van Eijndhoven, M. I. Iacob, M. L. Ponisio.
Achieving Business Process Flexibility with business
rules. In: Enterprise Distributed Computing
Conference, 2008, EDOC’08, 12th International
IEEE, 2008, 95–104.

[14] S. Goedertier, J. Vanthienen. Declarative Process
Modeling with Business Vocabulary and Business
Rules. In: On the Move to Meaningful Internet
Systems 2007, OTM 2007 Workshops, LNCS, 2007,
Vol. 4805, 603–612.

[15] T. Graml, R. Bracht, M. Spies. Patterns of
Business Rules to Enable Agile Business Processes.
In: Proceedings of the 11th IEEE International
Enterprise Distributed Object Computing
Conference, IEEE Computer Society, 2007,
365–375.

[16] S. Gudas, T. Skersys, A. Lopata. Approach to
Enterprise Modelling for Information Systems
Engineering. Informatica. 2005, Vol.16, No.2,
175–192.

[17] S. Gudas, T. Skersys, A. Lopata. Framework for
knowledge–based IS engineering. In: T. Yakhno
(Ed.), Proceedings of third international conference
„Advances in Information systems (ADVIS2004)“,
Izmir, Turkey, October 20–22, 2004, LNCS, 2004,
Vol. 3261, 512–522.

[18] J. D. Haan. 8 Reasons Why Model-Driven
Approaches (will) Fail. InfoQ, 2008,
http://www.infoq.com.

[19] K. Kapocius, R. Butleris. Repository for business
rules based IS requirements. Informatica, 2006, Vol.
17, No. 4, 503–518.

[20] S. Kent. Model Driven Engineering. In: Proceedings
of the Third International Conference on Integrated
Formal Methods, LNCS, 2002, Vol. 2335, 286–298.

[21] J. Kobielus. Complex event processing: still on the
launch pad. Network World, 2007,
http://www.computerworld.com.au/.

[22] M. H. Linehan. SBVR Use Cases. In: Rule
Representation, Interchange and Reasoning on the
Web, Proceedings of the International Symposium,
RuleML 2008, Orlando, FL, USA, October 30-31,
LNCS, 2008, Vol. 5321, 182–196.

[23] M. H. Linehan. Semantics in Model-driven
Business Design. In: 2nd International Semantic
Web Policy Workshop (SWPW'06), Athens, GA,
USA, 2006, 1–8.

[24] P. Loucopoulos, W. M. N. W. Kadir. BROOD:
Business Rules-driven Object Oriented Design.
Journal of Database Management, Vol. 19, Issue 1,
2008, 41–73.

[25] S. Lukichev, G. Wagner Visual Rules Modeling.
In: Perspectives of System Informatics, LNCS, 2007,
Vol. 4378, 467–473.

[26] A. Michlmayr, F. Rosenberg, P. Leitner,
S. Dustdar. Advanced Event Processing and
Notifications in Service Runtime Environments. In:
DEBS ’08, July 1-4, 2008, Rome, Italy, 2008, 1–11.

[27] L. Motiejunas, R. Butleris, Business rules
manipulation model. Information technology and
control, 2007, Vol. 36, No. 3, 295−301.

[28] L. Nemuraite, L. Ceponiene, G. Vedrickas.
Representation of Business Rules in UML&OCL
Models for Developing Information Systems. In:
J. Stirna, A. Persson (Eds.), The Practice of
Enterprise Modeling. Proceedings of First IFIP WG

8.1 Working Conference, PoEM 2008, Stockholm,
Sweden, November 12-13, 2008, LNBIP, 2008, Vol.
15, 182–196.

[29] Object Constraint Language OMG Available
Specification, Version 2.0. OMG document
formal/06-05-01, 2006, http://www.omg.org.

[30] OMG Unified Modeling Language (OMG UML)
Superstructure, V2.1.2. OMG Available Specification
formal/2007-11-02, 2007, http://www.omg.org.

[31] E. Pakalnickien÷, L. Nemuraite, B. Paradauskas.
The orderliness and precision in conceptual
modelling. In: Current Trends in Informatics. Vol. A.
PCI'2007: 11th Panhellenic Conference in
Informatics, 18-20 May, 2007, Patras, Greece,
Athens: New Technologies Publications, 2007,
341–350.

[32] E. Pakalnickiene, L. Nemuraite. Checking of
conceptual models with integrity constraints.
Information technology and control, 2007, Vol. 36,
No 3, 285–294.

[33] Production Rule Representation. Submission to
Business Modeling and Integration Domain
Taskforce. Fair Isaac Corporation, ILOG SA, 2007.

[34] A. Raj, T. V. Prabhakar, S. Hendryx.
Transformation of SBVR business design to UML
models. In: ISEC '08: Proceedings of the 1st
conference on India software engineering
conference, ACM, Hyderabad, India, 2008, 29–38.

[35] R. G. Ross. Principles of the Business Rules
Approach. Addison-Wesley, Boston, 2003.

[36] R. G. Ross. The Business Rule Book: Classifying,
Defining an Modeling Rules. Business Rule
Solutions, Houston, 1997.

[37] M. Schacher. Business Rules from an SBVR and an
xUML Perspective (Parts 1–3). Business Rules
Journal, 2006, Vol. 7, No. 6–8.

[38] Semantics of Business Vocabulary and Business
Rules (SBVR), v1.0. OMG Available Specification,
OMG Document No. formal/2008-01-02, 2008.

[39] G. Vedrickas, L. Nemuraite, Achieving business
flexibility by empowering business component
system with business rules technology: Executable
rules. In: Vasilecas, O., Eder, J., Caplinskas, A.
(Eds.), Databases and Information Systems: Seventh
International Baltic Conference on Databases and
Information Systems. Communications, Materials of
Doctoral Consortium, Vilnius, Lithuania, 3–6 July,
2006, Technika, Vilnius, 2006, 193–158.

[40] G. Wagner, A. Giurca, S. Lukichev, A Usable
Interchange Format for Rich Syntax Rules.
Integrating OCL, RuleML and SWRL. In:
Proceedings of Reasoning on the Web, WWW
Workshop, Edinburgh, Scotland, 2006.

[41] G. Wagner, S. Tabet, H. Boley, MOF-RuleML:
The Abstract Syntax of RuleML as a MOF Model,
2004, http://www.ruleml.org.

[42] Wahler, M., Ackerman, L., Schneider, S. Using
IBM Constraint Patterns and Consistency Analysis.
IBM Developer Works, May, 2008.

[43] M. Wahler, J. Koehler, A. D. Brucker. Model-
driven constraint engineering (2006). In: MoDELS
Workshop on OCL for Meta-Models in Multiple
Application Domains, Electronic Communications of
the EASST, Vol. 5, 2006, Technische Universität
Dresden, Germany, 2006, 1–15.

[44] G. Xue, J. Lu, S. Yao. Investigating Workflow
Patterns in Term of Pi-calculus. In: Proceedings of
CSCWD, IEEE Computer Society, 2007, 823−827.

Separation of Event and Constraint Rules in UML&OCL Models of Service Oriented Information Systems

37

