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Abstract. The parameter identification for problems where losses arising from overestimation and underestimation 
are different and can be described by an asymmetrical and polynomial function is investigated in this paper. The Bayes 
decision rule allowing to minimize potential losses is used. Calculation algorithms are based on the nonparametric 
methodology of statistical kernel estimators, which releases the method from dependence on distribution type. Three 
basic cases are considered in detail: a linear, a quadratic, and finally a general concept for a higher degree polynomial – 
here the cube-case is described in detail as an example. For each of them, the final result constitutes a numerical proce-
dure enabling to effectively calculate the optimal value of a parameter in question, presented in its complete form 
which demands neither detailed knowledge of the theoretical aspects nor laborious research of the user. Although the 
above method was investigated from the point of view of automatic control problems, it is universal in character and 
can be applied to a wide range of tasks, also outside the realm of engineering. 
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1. Introduction 

The dynamic development of computer science 
and metrological technology now means obtaining 
more and more precise measurements, as well as col-
lecting received information with the aim of further 
processing forever more complex control algorithms. 
However, more precise and faster instrumentation 
only manage to lessen the error in measurements, not 
eliminate it entirely. As an example: one of the main 
parameters of mechanical systems – mass, is often not 
measured at all, or only grossly assumed on the basis 
of general conditioning. Moreover, it often changes 
with consumption of fuel or other substances used in 
the production process.  

Quality of control is influenced not only by errors 
in measurement but also the structure of the model 
itself, which directly determines the range of possibi-
lities for the reflection of properties in real processes. 
A full consideration of all phenomena occurring in an 
object is not just impossible, but even pointless, as the 
complexity of such a model would make it unusable. 
Thus, it is not achievable to accurately measure para-
meters occurring in a model, not only due to metrolo-
gical limitations, but also because of structural rea-
sons, where many parameters represent a wide range 

of phenomena, and so, often do not possess “exact” 
values. For further details in this topic see [3, 4, 17-19, 
21], where subject literature can also be found, which 
in the case of identification is particularly diverse re-
garding wealth of methodology as well as the variety 
of tasks it is applied to. 

As identification is in practice always subject to a 
higher goal (usually conditioned by the control algo-
rithm), very valuable results can be obtained thanks to 
the consideration – during estimation of the parame-
ters’ values – of the losses implied through errors, as 
mentioned earlier, unchecked in practice. In control 
engineering applications such losses can often be de-
scribed by the function assuming the following 
asymmetrical and polynomial form:  
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with }0{\N∈k , where the coefficients a and b are 

positive, and may differ, while λ  and λ̂  mean the 
values of the parameter under consideration and its 
estimator, respectively. Assuming the above form of 
the loss function constitutes a comfortable compro-
mise between accuracy of description of losses resul-
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ting from modeling errors, and complexity, and in 
consequence usefulness of the approach proposed.  

Similar conditioning can also be shown for many 
problems outside the area of automatic control, or 
even broadly understood engineering. For example, as 
stated by Kahneman – a Nobel laureate in the field of 
economics – behavior in business is not completely ra-
tional. According to his theory, a human reacts strong-
ly to extreme stimuli and is disposed to exaggerating 
losses as well as undervaluing gains. This fear of large 
losses enables animals to survive in nature, however, 
in the economy it leads to an illogical dread of change. 
Therefore, if one describes the psychological prefe-
rences of the ordinary person, then it can be defined 
by formula (1), for example with 2k = , i.e. in the 
quadratic case. Here an inverse relationship to losses 
and gains is represented by nonsymmetry, and fear of 
extremes by quadratic form.  

Consider therefore the typical situation where one 
has m values of the investigated parameter 1x , 

2 , ... , mx x  obtained directly by measuring or with the 
aid of auxiliary quantities. In this paper, the uncer-
tainty of the examined parameter is considered with a 
probabilistic approach. For identification of character-
istics of probabilistic measure the statistical kernel 
estimators methodology [8, 20, 22] will be used. This 
is the current leading concept of nonparametric esti-
mation, the present development of which is con-
nected with a dynamic growth of possibilities and in 
particular the universal availability of computer sys-
tems. As opposed to classical parametric estimation, 
where firstly one arbitrarily assumes a typical prob-
ability distribution type, and next calculates the values 
of its parameters, in the case of kernel estimators prac-
tically no assumptions are made, and atypical, com-
plex and multimodal distributions can be treated ex-
actly the same as simple, even textbook cases. Finally, 
a Bayes estimator, optimal in the sense of minimiza-
tion of expectation value of losses, will be found ac-
cording to principles of the Bayes decision rule [2].  

Three basic cases will be investigated in the fol-
lowing: linear (Section 3.1), quadratic (Section 3.2), 
and higher degree polynomial (Section 3.3) – here the 
cube-case will be described in detail. In every case, 
the final result will be a procedure for the calculation 
of values for an optimal estimator. Thanks to the pres-
ence of complete established algorithms applied here, 
as well as clear analytical forms of quantities used, its 
practical implementation will consist of only routine 
introduction dependencies. The proposed procedure is 
universal and can be applied in a wide range of tasks, 
not only in the field of engineering. Furthermore, the 
method worked out can be used for other uncertainty 
approaches apart from that of probability, e.g. fuzzy 
logic [7].  

The preliminary version of this article was presen-
ted as the conference-paper [15]. Its main theses have 
also been included in the synopses [10-12].  

List of Notations  
In order of appearance:  
l  –  loss function  
λ  –  parameter  
λ̂  –  estimator of the parameter λ   
k  –  degree of asymmetrical polynomial loss func-

tion  
a  –  coefficient of the asymmetrical polynomial loss 

function regarding underestimation  
b  –  coefficient of the asymmetrical polynomial loss 

function regarding overestimation  
N  –  set of natural numbers  

1x , 2 , ... , mx x   –  random sample, interpreted here as 
the measurements of the estimated parameter  

m  –  size of random sample  
R  –  set of real numbers  
Z  –  set of states of nature  
D  –  set of possible decisions  
f  –  density of probability distribution  
z  –  state of nature  
d  –  decision  

Bl  –  Bayes loss function  

Bd  –  Bayes decision  
X  –  random variable  
f̂  –  kernel estimator of density of probability distri-

bution  
x  –  independent variable, interpreted here as esti-

mated parameter  
i , j   –  natural indices  
K  –  kernel  
h  –  smoothing parameter  
r  –  degree of the plug-in method  
σ̂  –  estimator of standard deviation  

10ψ� , sψ , 1g , 2g , 3g , g , p , P , R , L   –  auxiliary 
parameters and functions used in the plug-in 
method  

1s , 2 , ... , ms s   –  modifying parameters  
c  –  intensity of modifying procedure  
s  –  auxiliary parameter used for modifying proce-

dure  
M   –  mass submitted to control  
t  –  time  

1X  –  first coordinate of state of a dynamic system  

2X –  second coordinate of state of a dynamic system  
U  –  control  

t-oJ   –  minimum-time performance index for optimal 
control  

UT   –  time to reach the origin when the control U is 
used  

M̂  –  estimator of the parameter M  
x̂  –  estimator of the parameter x  
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I  –  primitive function of the kernel K  
y  –  auxiliary variable  

iU , iV , iW   –  auxiliary functions used in the investi-
gated algorithm  

L  –  auxiliary function for Newton’s algorithm  
qJ  –  quadratic performance index for optimal control  

Q , R   –   matrices of losses of the quadratic per-
formance index  

X  –  state vector of a dynamic system  
U  –  control vector  
Λ  –  parameter  
Λ̂  –  estimator of the parameter Λ   

),( σμN   –  normal distribution with the expectation 
value μ  and the standard deviation σ   

2. Mathematical Preliminaries  
2.1. Bayes Decision Rule  

The main aim of decision theory [2] is the selec-
tion of a concrete decision based only on a repre-
sentation of measure characterizing the imprecision of 
states of nature. Let there be given a nonempty set of 
states of nature Z = R, and a nonempty set of possible 
decisions RD ⊂ . Assume that the imprecision of 
states of nature is of probability type and its distribu-
tion is described by the density :  R [0, )f → ∞ . Let 
there be given also the loss function R: →× ZDl , 
while its values ( , )l d z  can be interpreted as losses 
occurring in a hypothetical case, when the state of 
nature is z and the decision d is taken. If for every 
d D∈  the integral 

R
( , ) ( ) dl d z f z z∫  exists, then the 

Bayes loss function : R { }Bl D → ∪ ±∞  can be defined 
as  

R

( ) ( , ) ( ) dBl d l d z f z z= ∫   . (2) 

Every element Bd D∈  such that ( )B Bl d = min ( )Bd D
l d

∈
 

is called a Bayes decision, and the above procedure – 
a Bayes decision rule. As the above definition shows, 
the Bayes decision Bd  is chosen from the elements of 
the set of possible decisions so as to minimize the 
value of the Bayes loss function – from the probabilis-
tic point of view: the expectation value of losses after 
the decision d was made. Further details can be found 
in the book [2].  

2.2. Statistical Kernel Estimators  

Let the one-dimensional random variable X, with a 
distribution having the density f , be given. Its kernel 
estimator )[0,R : ∞→f  is calculated on the basis of 
the m-element simple random sample 1x , 2 , ... , mx x  

acquired experimentally from the variable X, and is 
defined in its basic form by the formula  

1

1ˆ ( )
m

i

i

x x
f x K

mh h=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑   , (3) 

where the function ),0[R : ∞→K , which is measur-
able, symmetrical relative to zero, and has a weak 
global maximum at this point, fulfilling the condition 

R
( ) d 1K x x =∫ , and is called a kernel, whereas the 

positive coefficient h  is known as a smoothing pa-
rameter [8, 20, 22].  

Fixing values introduced in definition (3), i.e. 
choosing the form of the kernel K and calculating the 
smoothing parameter h value, is most often carried out 
using the mean square criterion.  

Thus, from the statistical point of view, the form of 
the kernel seems not to have essential meaning, thanks 
to which it becomes possible for the choice of the 
function K to be arbitrary, taking into account above 
all required properties of the estimator obtained, e.g. 
class of regularity, positive values, or other qualities 
important in the case of a particular problem, especial-
ly the convenience of calculations.  

As opposed to the form of the kernel, the value of 
the smoothing parameter h has significant influence 
on the quality of the estimator obtained. In any case, 
convenient algorithms have been developed in order to 
calculate this value on the basis of a random sample. 
For the one-dimensional case considered here, the 
most convenient is the so-called plug-in method. Its 
concept consists of the calculation of this parameter 
using an approximate method, and after r steps im-
proving the result, one obtains a value close to opti-
mal. In practice, it is taken that 2r ≥ , with the lowest 
possible value recommended. On the basis of simu-
lation research carried out for the needs of the task 
worked out in this paper, 3r =  was assumed. In this 
case the plug-in method consists of the application of 
the following formulas:  

10 1 2 11

945
ˆ64π

ψ
σ

−
=�   , (4) 

while σ̂  denotes the estimator of a standard deviation  

2 2

1 1

1 1ˆ ( )
1 ( 1)

m m

i i
i i

σ x x
m m m= =

= −
− −∑ ∑  (5) 

and  
1 11(8)

1
10

2 (0)
( )
Lg

mP L ψ
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠�

 (6) 

1 9(6)

2
8 1

2 (0)
( ) ( )
Lg

mP L ψ g
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

 (7) 

1 7(4)

3
6 2

2 (0)
( ) ( )

Lg
mP L ψ g

⎛ ⎞−
= ⎜ ⎟
⎝ ⎠

  ; (8) 
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finally  
1 5

2
4 3

( )
( ) ( )

R Kh
mP K ψ g

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

  , (9) 

where the finite quantities are defined as  
2

R

( ) ( ) dR K K x x= ∫  (10) 

2

R

( ) ( ) dP K x K x x= ∫  (11) 

( )
2 1

1 1

1( )
m m

i jp
p p

i j

x x
ψ g L

gm g +
= =

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑∑  

for  1, 2,...p =   . (12) 

The kernel K, applied in estimator (3), is used only in 
the last step. In all other steps, the different kernel L, 
more convenient for the plug-in method, may be used.  

The value of the smoothing parameter h introduced 
in definition (3) is the same for all kernels, mapped to 
particular elements of the random sample. In “dense” 
areas of such elements, the above value should be 
lessened (which allows for better showing of specific 
features of the distribution), as opposed to areas where 
such elements are “sparse” and it should be increased 
(which causes additional smoothing of “tails”). The 
parameter modification procedure achieves this goal 
in compliance with the following algorithm:  

(A) the kernel estimator f̂  is specified according to 
basic formula (3);  

(B) the modifying parameters 0is >  of the form  

ˆ ( )
c

i
i

f x
s

s

−
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

     for  1,  2,  ... ,  i m=   , (13) 

are calculated, while the nonnegative parameter 
c  shows the intensity of the modification proce-
dure, whereas s  is the geometric mean of the 
numbers 1

ˆ ( )f x , 2
ˆ ˆ( ),  ...,  ( )mf x f x ;  

(C) the kernel estimator with the modification of the 
smoothing parameter, is ultimately defined as  

1

1 1ˆ ( )
m

i

i i i

x x
f x K

mh s hs=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑   . (14) 

Note that taking 0c =  results in 1is ≡  and conse-
quently basic form (3).  

Details of the above-presented methodology of sta-
tistical kernel estimators can be found in the books [8, 
20, 22].  

3. The Algorithm  
3.1. Linear Case  

As an example illustrating the investigations pre-
sented in this section, an optimal control [1] problem 

will be considered. The control performance index, 
which exists here, can also refer to quality of identi-
fication allowing the creation of an optimal procedure 
for estimation of object parameter values, thereby no-
tably lowering excess sensitivity of such systems to 
the inaccuracy of modeling.  

Thus, consider the following dynamic system:  

11

22

0( )0 1( )
( )1( )0 0( )

X tX t
U t

X tX t
M

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

�
�   , (15) 

where the positive parameter M represents a mass 
submitted to a force according to Newton’s second 
law of dynamics [1 – Section 7.2]. Then 1X , 2X  and 
U denote position and velocity of the mass, and the 
force regarded here as a control, respectively. Con-
sider the time-optimal control task, the basic form of 
which consists of bringing the system’s state to the 
origin, in minimal and finite time, assuming the con-
trol values are bounded. Thus, the performance index 

t-oJ  is given here as  

t-o ( ) UJ U T=   , (16) 

where UT  denotes the time to reach the origin when 
the control U is used, assumed as infinity if the origin 
is not reached at all with this control. For details see 
the classic textbook [1 – Chapter 7]. Fundamental 
meaning for phenomena existing in the control system 
lies in the proper identification of value of the parame-
ter M. The control is defined in relation to the value of 
the estimator M̂ , actually different from the value of 
the parameter M  in the object. A detailed analysis can 
be found in the paper [16].  

 
Figure 1.  Values of performance index (16) for values of 

the estimator M̂  (with 1=M ) 

In the purely hypothetical case of M̂ M= , i.e. 
when the value of the estimator of this parameter is 
equal to its true value, the process is regular in charac-
ter. The system’s state reaches the origin in minimal 
and finite time. However, in the event of underestima-
tion (i.e. M̂ M< ), overregulation occur in the system 
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– its state oscillates around the origin and reaches it in 
a finite time, albeit larger than the minimal. Next, in 
the case of overestimation (i.e. when M̂ M> ), the 
system’s state moves along a sliding trajectory and 
finally reaches the origin in a finite time, again larger 
than the minimal. Figure 1 shows the graph of the 
performance index for values of the estimator M̂ . 
One can note that an increase in this index is roughly 
proportional to the estimation error ˆ| |M M− , al-
though with different coefficients for positive and 
negative errors. The resulting losses can so be de-
scribed in the form of an asymmetrical linear loss 
function, i.e. given by formula (1) with 1k = .  

The parameter under investigation, whose value is 
to be estimated, will be denoted by x  hereinafter. In 
order to adhere to the principles of decision theory 
presented in Section 2.1, it will be treated here as the 
value of a random variable. According to point estima-
tion methodology, it is assumed that the metrolo-
gically achieved measurements of the above para-
meter, i.e. 1x , 2 , ... , mx x , are the sum of its “true” (al-
though unknown) value and random disturbances of 
various origin. The goal of this research is the calcu-
lation of the estimator of this parameter (hereinafter 
denoted by x̂ ), which would approximate the “true” 
value – the best from the point of view of a practical 
problem investigated. In order to solve this task, the 
Bayes decision rule will be used, ensuring a minimum 
of expectation value of losses. According to the con-
ditions formulated above, the loss function is assumed 
in asymmetrical linear form:  

ˆ ˆ( ) for 0
ˆ( , )

ˆ ˆ  ( ) for 0
a x x x x

l x x
b x x x x

− − − ≤⎧
= ⎨ − − ≥⎩

  , (17) 

while the coefficients a and b are positive and not 
necessarily equal to each other. Thus, the Bayes loss 
function (2) is given by the formula  

ˆ

ˆ

ˆ ˆ ˆ( ) ( ) ( ) d ( ) ( ) d
x

B
x

l x b x x f x x a x x f x x
∞

−∞

= − − −∫ ∫  , (18) 

where ),0[R: ∞→f  denotes the density of distribu-
tion of a random variable representing the uncertainty 
of states of nature, i.e. the parameter in question. It is 
readily shown that the function Bl  attains its minimum 
at the value being a solution of the following equation 
with the argument x̂ :  

ˆ

( ) d 0
x af x x

a b−∞

− =
+∫   . (19) 

Since 0 ( ) 1a a b< + < , a solution for the above equa-
tion exists, and if the function f  has connected sup-
port, e.g. it is positive, this solution is unique. More-
over, thanks to equality  

1

a
a b

aa b
b

=
+ +

  , (20) 

it is not necessary to identify the parameters a  and b  
separately, rather only their ratio.  

The identification of the density f  present in con-
dition (19) will be carried out using statistical kernel 
estimators, presented in Section 2.2. Then one should 
choose a continuous kernel of positive values and also 
so that the function :R RI →  such that 

( ) ( )d
x

I x K y y
−∞

= ∫  can be expressed by relatively 

simple analytical formula. In consequence, this result 
in a similar property regarding the function 

:R RiU →  for any fixed 1, 2, ... , i m=  defined as  

1( ) d
x

i
i

y x
U x K y

h h−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫   . (21) 

Then criterion (19) can be expressed equivalently in a 
form of  

1

ˆ( ) 0
( )

m

i
i

h aU x
m a b=

− =
+∑   . (22) 

If the left-hand side of the above formula is denoted 
by ˆ( )L x , its derivative is simply  

ˆˆ ˆ( ) ( )L x f x′ =   , (23) 

where f̂  was given by definition (3). In this situation, 
the solution of criterion (19) can be calculated nu-
merically on the basis of Newton’s algorithm [6] as 
the limit of the sequence 0ˆ{ }j jx ∞

=  defined by  

0
1

1ˆ
m

i
i

x x
m =

= ∑  (24) 

1

ˆ( )
ˆ ˆ

ˆ( )
j

j j
j

L x
x x

L x+ = −
′

     for  0, 1, ...j =   , (25) 

with the functions L and L′  being given by formulas 
(22)-(23), whereas a stop criterion takes on the form  

1ˆ ˆ ˆ| |  0.01 j jx x σ−− ≤   , (26) 

where σ̂  denotes the estimator of the standard devia-
tion (5).  

In the linear case worked out above, the Cauchy 
kernel  

2 2

2 1( )
π (1 )

K x
x

=
+

 (27) 

is proposed. Then, for the generalized form of the ker-
nel estimator (14) : 
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2

1 1( ) arctg
π 2

π 1

i

i i
i

i i

i

x x
x x hs

U x
hs x x

hs

−
⎛ ⎞−

= + +⎜ ⎟
⎡ ⎤⎝ ⎠ ⎛ ⎞−
⎢ ⎥+ ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

  .  (28) 

(for the basic form (3) one should put 1is ≡ ), and also  

( ) 1P K =  (29) 

5( )
4π

R K =   . (30) 

Further if the kernel L present in the plug-in method is 
taken as the most commonly used here normal kernel  

21( )) exp
22
xL x

π
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

  , (31) 

then  

( ) 1P L =  (32) 

(4) 4 2 21 1( ) ( 6 3) exp( )
22

L x x x x
π

= − + −  (33) 

(6) 6 4 2 21 1( ) ( 15 45 15) exp( )
22

L x x x x x
π

= − + − −  (34) 

(8) 8 6 4 2

2

1( ) ( 28 210 420
2

1105) exp( )
2

L x x x x x

x

π
= − + −

+ −

 (35) 

which completes all quantities necessary for imple-
menting the algorithm worked out.  

Primary investigations in the linear case were pub-
lished in the paper [9]. The conditional version consti-
tutes the subject of the article [13].  

3.2. Quadratic Case  

As an example to illustrate the reason for the case 
investigated below, consider the problem concerning 
the classical task of optimal control for the quadratic 
performance index with infinite end time  

T T

0

( ) ( )  ( ) ( )  ( ) dqJ t t t t t
∞

= +∫U X Q X U R U  , (36) 

while X and U denote state and control vectors, 
whereas Q and R mean loss matrices defined nonnega-
tive and positive, respectively. For details see [1 – 
Section 9]. The object is the dynamic system  

11

22

( )1 0( )
( )

( )0( )
X tX t

U t
X tX t

Λ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥Λ Λ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

�
�   , (37) 

while R\{0}Λ∈ . Moreover, let }0{\ˆ R∈Λ  represent 
an estimator of the parameter Λ . An optimal feedback 
controller is defined on the basis of the value Λ̂ , not 
necessarily equal to the value of the parameter Λ  ex-
isting in the object. For the sake of simplicity, assume 

the unit matrix Q as well as the matrix (here parame-
ter) R. The values of the performance index obtained 
for a particular Λ̂ , are shown in Figure 2. One can see 
that the resulting graph can be described with great 
precision by a quadratic function with different coeffi-
cients for positive and negative errors, which in fact 
proves that over- and underestimation of the parameter 
Λ  have other results on the performance index value.  

 
Figure 2.  Values of performance index (36) for values of 

the estimator Λ̂ , with 1Λ = . 

To use an analogous methodology to that of the 
linear case considered in the previous section, the loss 
function is assumed in quadratic and asymmetrical 
form defined as  

2

2

ˆ ˆ( ) for 0ˆ( , )
ˆ ˆ( ) for 0

a x x x x
l x x

b x x x x
⎧ − − ≤

= ⎨
− − ≥⎩

  , (38) 

while the coefficients a and b are positive and not 
necessarily equal to each other. Thus, the Bayes loss 
function (2) is given by the formula  

ˆ
2 2

ˆ

ˆ ˆ ˆ( ) ( ) ( ) d ( ) ( ) d
x

B
x

l x a x x f x x b x x f x x
∞

−∞

= − + −∫ ∫   .  (39) 

One can show that the function lB attains its minimum 
at the value x̂  being a solution of the equation  

ˆ

ˆ ˆ( ) ( ) ( ) d ( ) ( ) d 0
x

a b x x f x x a x x f x x
∞

−∞ −∞

− − − − =∫ ∫   .  (40) 

This solution exists and is unique. As in the linear 
case, dividing the above equation by b , note that it is 
necessary to identify only the ratio of the parameters a 
and b.  

Solution of equation (40) for a general case is not 
an easy task. However, if estimation of the density f is 
reached using statistical kernel estimators, then – 
thanks to a proper choice of the kernel form – one can 
design an effective numerical algorithm to this end. 
Let, therefore, a continuous kernel of positive values, 
fulfilling the condition  
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( ) dxK x x
∞

−∞

< ∞∫  (41) 

be given. Besides the functions Ui introduced in Sec-
tion 3.1, let for any fixed 1, 2, ... , i m=  the functions 

:R RiV →  be defined as  

1( ) d
x

i
i

y x
V x yK y

h h−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫   . (42) 

The kernel K should be chosen so the function 
:R RJ →  such that ( ) ( )d

x
J x y K y y

−∞
= ∫  be expres-

sed by a convenient analytical formula.  
If an expected value is estimated by the arith-

metical mean value of a sample, then criterion (40) 
can be described equivalently as  

1

ˆ ˆ ˆ ˆ[( )( ( ) ( )) ] 0
m

i i i
i

a b xU x V x ax axm
=

− − + − =∑  . (43) 

If the left-hand side of the above formula is denoted 
by ˆ( )L x , then – using the equality ˆ ˆ ˆ( ) ( )i iV x xU x′ ′=  
directly resulting from dependencies (21) and (42) – 
one can express the value of its derivative as  

1

ˆ ˆ( ) [( ) ( )]
m

i
i

L x a b U x am
=

′ = − −∑   . (44) 

In this situation, the solution of criterion (40) can be 
calculated numerically on the basis of Newton’s algo-
rithm (24)-(25).  

In the quadratic case also Cauchy kernel (27) is 
proposed; then formula (28) remains true and addi-
tionally for the general form of the kernel estimator 
(14) :  

2

2

1 1( ) arctg
π 2

π 1

(45)

π 1

i

i i
i i

i i

i

i

i

i

x x
x x hs

V x x
hs x x

hs

hs

x x
hs

⎛ ⎞
−⎜ ⎟

⎜ ⎟⎛ ⎞−
⎜ ⎟= + +⎜ ⎟

⎡ ⎤⎜ ⎟⎝ ⎠ ⎛ ⎞−
⎢ ⎥+⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

−
⎡ ⎤⎛ ⎞−
⎢ ⎥+ ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

  . 

Also dependencies (29)-(35) remain unchanged.  
Primary investigations concerning the quadratic 

case, including also the multidimensional, were pub-
lished in the article [14].  

3.3. Higher Degree Polynomial Case  

In this section, detailed investigations presented 
earlier will be supplemented with the polynomial case, 
that is where the loss function is an asymmetrical mo-
nomial of the order 2k ≥  and is therefore given by 
the following formula:  

⎪⎩

⎪
⎨
⎧

≥−−
≤−−−=

0ˆfor)ˆ(
0ˆfor)ˆ()1(),ˆ(

xxxxb
xxxxaxxl k

kk
 , (46) 

while the coefficients a and b are positive, and may 
differ. Criterion for the optimal estimator x̂  is given 
here in the form  

1

ˆ
ˆ

1

ˆ( 1) ( ) ( ) d

ˆ( ) ( ) d 0

k k

x

x
k

ak x x f x x

bk x x f x x

∞
−

−

−∞

− −

+ − =

∫

∫
  . (47) 

The solution of the above equation exists and is unique.  
When the statistical kernel estimators are used 

with respect to the density f , it is possible again to 
create an efficient numerical algorithm enabling equa-
tion (47) to be solved. Let the kernel K be continuous, 
of positive values and fulfilling the following condi-
tion:  

1 ( ) dkx K x x
∞

−

−∞

< ∞∫   . (48) 

For clarity of presentation, the case 3k =  is pre-
sented below. Thus, equation (47) takes on the equiva-
lent form  

ˆ ˆ ˆ
2 2

2 2

ˆ ˆ( ) ( ) d 2 ( ) d ( ) d

ˆ ˆ2 ( ) d ( ) d 0

x x x

a b x f x x x x f x x x f x x

a x x x f x x x f x x

−∞ −∞ −∞

∞ ∞

−∞ −∞

⎛ ⎞
+ − +⎜ ⎟

⎝ ⎠
⎛ ⎞

− − + =⎜ ⎟
⎝ ⎠

∫ ∫ ∫

∫ ∫

 .  (49) 

Now, with any fixed 1, 2,  , i m= … , let the functions 
Ui and Vi defined by dependencies (21) and (42) be 
given, and furthermore :R RiW →  be introduced as  

21( ) d
x

i
i

y x
W x y K y

h h−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫   . (50) 

Making use of the above notations, condition (49) can 
be expressed in the following form  

( )2

1

2

( ) ( ) 2 ( ) ( ) 2

lim ( ) 0

m

i i i i
i

ix

a b x U x xV x W x ax x

W x amx

=

→∞

⎡ + − + +⎣

⎤− − =⎦

∑
  .   (51) 

If the left-hand side of the above formula is denoted as 
( )L x , then – also taking into account the equalities 
( ) ( )i iV x xU x′ ′=  and ( ) ( )i iW x xV x′ ′=  resulting from 

dependencies (21), (42) and (50) – the derivative of 
the function L is  

( )
1

( ) 2( ) ( ) ( ) 2

2

m

i i i
i

L x a b xU x V x ax

amx
=

′ = + − +⎡ ⎤⎣ ⎦

−

∑   . (52) 

Finally, the desired estimator can be calculated nu-
merically through Newton’s algorithm (24)-(25), 
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while the functions L  and L′  are given by formulas 
(51)-(52).  

The Cauchy kernel (27) must by modified here to 
the form  

2 3

8 1( )
3π (1 )

K x
x

=
+

  . (53) 

An increase of the power in the denominator has been 
implied with the necessity of ensuring the fulfillment 
of condition (48). Here for the general form of the 
kernel estimator (14) :  

3

2 22 2
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π 1 3π 1

1 1arctg
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i i
i

i i

i i
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⎛ ⎞−

+ +⎜ ⎟
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⎝ ⎠⎜+ −
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The constants used within the plug-in method are:  

1( )
3

P K =  (57) 

7( )
4π

R K =   ; (58) 

dependencies (31)-(35) remain unchanged.  
The above investigations can be similarly trans-

posed to a higher order of asymmetrical polynomial 
loss function (1), although on account of their extreme 
nature, they seem to be useful mainly for atypical ap-
plicational tasks.  

4. Numerical Simulations Results  

The correctness of the algorithm designed here has 
been checked in detail using a numerical simulation. 
The results are shown below for five values of the 
ratio 1 10a b = , 1 3 , 1, 3, 10. Investigations were 
carried out for m = 10, 20, 50, 100, 200, 500, 1000. In 
every case 1000 samples were obtained, and the tables 
below display mean and standard deviation values of 
results calculated on the basis of these samples, de-
scribed using the standard notation „mean value ± 
standard deviation”.  

First, it was assumed that the uncertainty of the es-
timated parameter has standard normal distribution:  

)1,0(N   ; (59) 

in the hereafter-used natural notation ),( σμN  denotes 
normal distribution with the expected value R∈μ  
and the standard deviation 0>σ . The above classical 
example of distribution (59) is taken at the beginning 
only for its simplicity and ease of interpretation – in 
such a simple case use of the complex nonparametric 
estimation method is in practice redundant.  

In Tables 1 and 2 results are compared for twinned 
quadratic and cubic cases, respectively. The theoretical 
value of the estimator is shown here below the values 
of the ratio a b . 

Thus, if 1,a b =  then – as mentioned – the estima-
tor investigated in this paper reduces to the expected 
value, now amounting to zero for distribution (59). 
The condition 1 3a b =  means that losses caused by 
overestimation are three times greater then those aris-
ing from underestimation – the estimator should there-
fore take a value less then the expectation value. No-
tably, it is transferred to –0,436 and –0,344 for quad-
ratic and cubic cases, respectively. This effect is inten-
sified when 1 10a b =  – the estimators’ values are 
then –0,901 and –0,716, respectively. Conversely, in 
the case 3a b =  the losses relating to overestimation 
are less than those resulting from underestimation, and 
so the estimator should exceed the expectation value – 
in fact it equals 0,436 and 0,344 for quadratic and cu-
bic cases, respectively (due to the symmetry of the 
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considered distribution (59) these values are opposite 
with respect to those obtained for 1 3a b = ). When 

10a b =  this effect is again intensified – the values of 

the investigated estimator are 0,901 and 0,716, re-
spectively.  

Table 1. Results for distribution (59) for the quadratic case (k = 2) 

10
1

=
b
a  

3
1

=
b
a  1=

b
a  3=

b
a  01=

b
a  

m 

–0,9015                –0,4363                0,0000                0,4363                0,9015                
10 –0,8978 ± 0,3986 –0,4337 ± 0,3326 0,0012 ± 0,3123 0,4376 ± 0,3299 0,9010 ± 0,3956 
20 –0,9223 ± 0,2802 –0,4415 ± 0,2364 0,0027 ± 0,2240 0,4474 ± 0,2380 0,9282 ± 0,2871 
50 –0,9335 ± 0,1743 –0,4485 ± 0,1466 –0,0024 ± 0,1402 0,4441 ± 0,1498 0,9288 ± 0,1787 
100 –0,9314 ± 0,1217 –0,4463 ± 0,1019 0,0001 ± 0,0966 0,4468 ± 0,1029 0,9315 ± 0,1239 
200 –0,9257 ± 0,0885 –0,4441 ± 0,0754 0,0007 ± 0,0716 0,4459 ± 0,0753 0,9282 ± 0,0892 
500 –0,9207 ± 0,0558 –0,4427 ± 0,0466 0,0003 ± 0,0439 0,4435 ± 0,0469 0,9221 ± 0,0571 

1000 –0,9201 ± 0,0400 –0,4429 ± 0,0330 0,0001 ± 0,0310 0,4433 ± 0,0329 0,9208 ± 0,0399 

 

Table 2. Results for distribution (59) for the cubic case (k = 3) 

10
1

=
b
a  

3
1

=
b
a  1=

b
a  3=

b
a  01=

b
a  

m 

–0,7158                –0,3436                0,0000                0,3436                0,7158                
10 –0,6812 ± 0,3926 –0,3293 ± 0,3485 0,0012 ± 0,3340 0,3310 ± 0,3469 0,6802 ± 0,3893 
20 –0,7267 ± 0,2882 –0,3473 ± 0,2528 0,0029 ± 0,2434 0,3526 ± 0,2562 0,7305 ± 0,2949 
50 –0,7550 ± 0,1860 –0,3614 ± 0,1591 –0,0023 ± 0,1517 0,3566 ± 0,1591 0,7495 ± 0,1846 
100 –0,7609 ± 0,1303 –0,3623 ± 0,1093 –0,0004 ± 0,1034 0,3612 ± 0,1093 0,7587 ± 0,1302 
200 –0,7574 ± 0,0944 –0,3597 ± 0,0801 0,0013 ± 0,0764 0,3623 ± 0,0808 0,7601 ± 0,0964 
500 –0,7540 ± 0,0596 –0,3584 ± 0,0499 0,0010 ± 0,0476 0,3604 ± 0,0510 0,7567 ± 0,0623 

1000 –0,7543 ± 0,0443 –0,3588 ± 0,0365 0,0004 ± 0,0344 0,3597 ± 0,0365 0,7554 ± 0,0442 
 

Comparing further results for the quadratic and 
cubic cases one can note that in the former the values 
of the estimator are closer to zero. This effect is in-
tuitively justified, as for large arguments, the values of 
the cubic function are greater than the quadratic, and 
consequently, the tendency to eliminate extreme re-
sults appears. It is also worth noticing that estimator 
values in the linear case for 1 10a b = , 1/3, 1, 3, 10 
equal –1,335, –0,675, 0, 0,675, 1,335, respectively, 
which is additionally confirmed in the above inter-
pretation.  

Similar conclusions can be drawn for the next dis-
tribution under research:  

0,25 ( 5, 2) 0,5 (0, 1) 0,25 (5, 2)N N N− + +  . (60) 

The obtained results are shown in Table 3. This distri-
bution is trimodal. Its expectation value equals 0, and 
the standard deviation is 15 3,9≅ , so almost four 
times greater than that for distribution (59). On con-
sideration of this fact one can infer that the results are 
comparative to those previously obtained for distribu-
tion (59), presented in Table 1. It should be concluded 
that the accuracy of estimation does not generally de-
pend on the number of the modal values of the inves-
tigated distribution. Despite a significant change in the 
type of distribution examined, the procedure for calcu-

lating the estimator did not change in any way. This is 
due to the application of the nonparametric statistical 
kernel estimators methodology, the use of which is in 
practice independent of the distribution under research.  

In every case represented by specific columns in 
Tables 1-3, together with the increase in the random 
sample size m, the average error of the estimation and 
its standard deviation decrease to zero. From an appli-
cational point of view these are fundamental pro-
perties required of estimators used in practice. Above 
all this trait means that, as the size of samples in-
creases, the obtained estimator values tend to the theo-
retical, while their “dispersion” decreases. This allows 
any assumed precision to be acquired, albeit after en-
suring the proper sample size. This in practice implies 
a necessity to reach a compromise between these two 
quantities. A satisfactory degree of precision was ob-
tained when the size of the sample was between 10 
and 200, i.e. for [10, 200]m∈ ; in particular, the large 
values became necessary when the difference between 
parameters a and b increased.  

Below are presented the results obtained for the 
optimal control tasks considered in Sections 3.1. and 
3.2 as the motivations. In both cases, the uncertainty 
of the parameter in question was assumed to be of 
uniform distribution on the interval [0,5 ; 1,5] .  
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Table 3. Results for distribution (60) for the quadratic case (k = 2) 

10
1

=
b
a  

3
1

=
b
a  1=

b
a  3=

b
a  01=

b
a  

m 

–3,6717                –1,6928                0,0000                1,6928                3,6717                
10 –3,4493 ± 1,3887 –1,6209 ± 1,1688 0,0258 ± 1,1098 1,6882 ± 1,2891 3,5199 ± 1,5712 
20 –3,5702 ± 0,9856 –1,6578 ± 0,8518 0,0141 ± 0,7900 1,6940 ± 0,9338 3,6146 ± 1,1102 
50 –3,6540 ± 0,6066 –1,6832 ± 0,5639 0,0017 ± 0,5041 1,6906 ± 0,5971 3,6595 ± 0,6547 
100 –3,6941 ± 0,4215 –1,7104 ± 0,3922 –0,0135 ± 0,3444 1,6829 ± 0,4220 3,6717 ± 0,4642 
200 –3,6796 ± 0,2850 –1,6870 ± 0,2765 0,0095 ± 0,2483 1,7091 ± 0,3052 3,6964 ± 0,3233 
500 –3,6902 ± 0,1850 –1,7031 ± 0,1821 –0,0057 ± 0,1584 1,6914 ± 0,1914 3,6796 ± 0,2004 

1000 –3,6894 ± 0,1285 –1,7003 ± 0,1253 –0,0007 ± 0,1086 1,6998 ± 0,1319 3,6897 ± 0,1378 
 

In the case of the time-optimal control problem 
considered in Section 3.1, approximating the loss 
function from Figure 1 by an asymmetrical linear 
function with 15 5a b ,= , the feedback controller 
based on the procedure proposed here had a signifi-
cant – even to about 40% – advantage over the classi-
cal controller based on the value of the mean.  

For the optimal control task with the quadratic per-
formance index from Section 3.2, the loss function 
shown in Figure 2 was assumed in the asymmetrical 
quadratic form with 5 2a b ,= . For those realizations 
for which the system seemed to be stable, the cont-
roller based on the procedure proposed here also had a 
significant – even to about 50% – advantage with re-
spect to the one using the mean value. Moreover, there 
was a greater distance from the instability area. In the 
case of the feedback controller obtained with the estimator 
worked out here, the system became unstable for the 
value of the object parameter 1,7Λ ≅ , although in the 
case of the system designed using the mean value, this 
had already happened for 1,5Λ ≅ .  

5. Conclusions  

This article has presented the method of estimating 
the values of model parameters, dedicated to those 
cases where the dependence of losses implied by esti-
mation error can be approximated by asymmetrical 
and polynomial function. Asymmetry here represents 
the different influences of under- and overestimation 
of the parameter’s estimator on the value of these 
losses, whereas the degree of the polynomial signifies 
how acceptable large errors are. The method worked 
out here is universal in character and can be applied in 
many areas of science and practice, also outside engi-
neering.  

To find the distribution of the uncertainty measure 
of an estimated parameter, statistical kernel estimators 
were used, which made the investigated procedure 
independent of distribution type. The solution was 
based on the Bayes decision rule, which allows a 
minimum – generally understood – average losses 
value to be obtained. As a result the complete algo-
rithm was worked out, enabling the value of the esti-

mator to be calculated on the basis of the measure-
ments of the examined quantity, and the definition of 
degree – often natural in practical applications – of the 
polynomial and the ratio of the values of a losses func-
tion’s coefficients. The herein-presented procedure is 
complete, and its practical implementation requires 
neither detailed knowledge of the theoretical aspects 
nor laborious research.  

Although the uncertainty of the examined parame-
ter was considered in the most common probabilistic 
approach, the worked out method can also be used for 
other types of uncertainty, for example that based on 
fuzzy logic [7]. In this case one is able to calculate the 
value of the optimal defuzzyficator or the preference 
function [5] – the procedure proposed here allows the 
Bayes preference function for fuzzy numbers to be 
obtained.  

The propriety of the presented algorithms has been 
verified numerically. Thus, depending on the relation 
between the coefficients of the loss function, the esti-
mator’s value properly changed to one of smaller 
losses, while the size of this change was defined by 
the polynomial degree. As the random sample size 
increased, the average error of the estimation and its 
standard deviation tended to zero.  

One may construe that the benefits arising from 
application of the method proposed in this paper are 
greater the more complex the control system is, and 
over- and under-estimation of model’s parameters have 
a more differing influence on performance index, i.e. 
when asymmetry of the loss function is more distinct.  
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