
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2008, Vol.37, No.1

ANALYSIS OF PARALLEL CALCULATIONS IN COMPUTER NETWORK

Aleksandr Igumenov1, Tomas Petkus2

1Institute of Mathematics and Informatics, Akademijos str. 4, LT-08663, Vilnius, Lithuania
2Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius, Lithuania

Abstract. In various spheres of activities, we often face the necessity to find the best or fastest way of solving a
relevant problem. Nowadays, computer technologies are applied in solving most problems: in great flow of information
processing as well as in scientific research. Complex problems, solution of which is problematic by using only one
computer, are solved by several computers connected into a network. Seeking effective usage of computer network for
parallel calculations conceptually different software can be applied.

In the article, the analysis of clusters by classical parallel solution algorithms is presented. An approximate value of
π, matrix and vector and a system of linear equations and matrices product algorithms are analyzed. The present study
consider a cluster that consists of 60 processors, as well as problem solution of cluster operating in the system with
Windows XP at different speeds of networks.

1. Introduction Master-slave type algorithms are analyses, when
the computer-master has the list of tasks and distri-
butes them to computer-slaves for solving. Speaking about parallel calculations, first of all

data processing procedures are meant, when several
operations of a computer system may be performed at
the same time. Parallelism may be achieved if we
have:

The task distribution among computers is one of
the major problems in the construction of effective
parallel algorithms [1].

First, we have to stress that a master-slave algo-
rithm is a “one-to-many“ communication model type
algorithm, i. e., one computer, called master, commu-
nicates with many other computers called slaves.
Slaves do not exchange information among them-
selves. Such a limitation eliminates a large class of
tasks, where the parallel solution of tasks requires the
information from neighbouring tasks.

• Operation independence of separate calculating
machines

• Adequacy of calculating system elements:
– applying specialised equipment;
– duplicating calculating machines.

Analysing organisation problems of parallel calcu-
lations, the following execution modes of independent
program parts should be distinguished: Master-slave type algorithms may not be applied

to all tasks, because the peculiarities of some tasks
allow speedup and good efficiency of the parallel
algorithm only when special algorithms are created for
that task.

− Multitask (time distribution mode).
− Parallel execution.
− Distributed calculations.

Let us discuss the operational scheme of master-
slave algorithms (Figure 1).

In this article, systems working in the second mode
are analysed (parallel execution).

2. Parallel calculations
Parallel algorithms

According to the tasks solved, parallel algorithms
are distributed into several classes: data parallelism
algorithms, functional parallelism algorithms, mas-
ter-slave type algorithms.

Master-slave type algorithms may be applied to all
tasks, where lists of tasks are not interdependent.

57

Figure 1. Executing scheme of master-slave algorithms

A. Igumenov, T. Petkus

The computer-master generates and saves the list
of tasks from which the tasks are distributed to
computer-slaves. After calculating the received task,
the computer-slaves send the results back to the mas-
ter, which stores the common result and supplements
the list of tasks. The arrows mark here data inter-
change among computers. Let us point out the fact
that, at the same moment various computer-slaves
may operate with absolutely different algorithms (it is
functional parallelism). Most often there are such
cases in practice, where all computer-slaves execute
the same algorithm, but only with different data (data
parallelism type algorithms) [2].

Criteria for evaluation of parallel algorithms

The first criterion that might be used to compare
several parallel algorithms is speedup of the parallel
algorithm when solving the problem with p
processors:

p
p T

TS
*

1= . (1)

Here is the time required for solving the task
with the best known serial algorithm and is the
time needed for parallel algorithm to solve the prob-
lem with p processors.

*
1T

pT

Note that T and T are most often different, be-
cause not all serial algorithms may be completely
parallelised and so the fastest serial algorithm differs
from the parallel one. The inequality T is always
true when a parallel algorithm is made up by modi-
fying the serial one. The modification of constructions
appends an additional program which slows down the
algorithm. It is also noteworthy that, the different
parallel algorithms solving the same task in different
ways may gain an advantage when there is a certain
number of a processor, but rather poor when with ano-
ther quantity of processors. All that may depend on the
parallel computer.

*
1 1

1
*

1 T≤

Another criterion that might help to evaluate the
parallel algorithm is the efficiency coefficient of
processors [3]:

p
S

E p
p = . (2)

The efficiency shows how the processors are used.
In solving certain problems, a high efficiency may be
achieved only when there is a fixed number of
processors, but with an increase in their number, the
efficiency decreases. The efficiency depends not only
on the problem, but also on the parallel algorithm and
the parameters of parallel computers: granulation, cal-
culation speed of processors, communication speed,
etc. The efficiency of the same algorithm in different
computers may vary very much. Traditionally, the
higher communication speed of processors and the
slower the processors the better efficiency is achieved.
Amdahl Law [2] states that the efficiency of any

parallel algorithm is lower than 1, and with an in-
crease in number of processors it decreases.

3. Software and hardware

We used here the software package MPICH v.1.2.5
for solving parallel problems in a computer network.
This kit may operate only with programs created using
not lower than the Microsoft Visual C++ 6.0 version.
MS Office programs were used for data processing
and presentation.

Cluster of the Faculty of Mathematics and in-
formatics, Vilnius Pedagogical University. This
cluster consists of 60 computers, where 30 of them are
Pentium III class and 30 are Pentium 4 class
computers. The computer specifications are:
15 computers:
• Processor – Intel® Pentium 3,0 GHz (with Hyper

Treading);
• RAM – DDR2 512 Mb RAM;
• HDD – SATA2 80 Gb, Cach 8 Mb, data transmis-

sion speed 300 Mb/s;
• 1 Gb integrated Ethernet adapter.
15 computers:
• Processor – Intel® Pentium 3,2 GHz (with Hyper

Treading);
• RAM – DDR 512 Mb RAM;
• HDD – SATA 80 Gb, Cach 8 Mb, data trans-

mission speed 150 Mb/s;
• 100 Mb integrated Ethernet adapter.
• 1 Gb D-Link Ethernet adapter
15 computers:
• Processor – Intel® Celeron 2,0 GHz;
• RAM – DDR 256 Mb RAM;
• HDD – IDA 40 Gb, Cach 8 Mb;
• 100 Mb integrated Ethernet adapter.
15 computers:
• Processor – Intel® Celeron 1 GHz;
• RAM – DDR 256 Mb RAM;
• HDD – IDA 40 Gb, cach 8 Mb;
• 100 Mb Ethernet adapter.

The total cluster RAM makes up to 22,5 Gb with
standing memory 3,5 Tb.

4. Classical algorithms of parallel calculations

The parallel algorithm is decomposed into
processes that can be executed in a parallel way.
Several processes may be executed on one processor.
Thus, the number of processes and processors can be
different.

Calculation of π

There exists a function:

21
1)(
x

xf
+

= . (3)

58

Analysis of Parallel Calculations in Computer Network

In geometry, a definite integral means an area un-
der a curvilinear trapezoid, limited by the lines x = a,
x = b, y = 0 and the function f(x):

4
)0arctan()1arctan(

1
1

1

0
2

π
=−=

+∫ dx
x

. (4)

From this expression we get the π value:

∫ +
=

1

0
21

4 dx
x

π . (5)

One of the integral calculation methods is calcula-
tion by partial sums (Riemann sums, the left rectangle
method). Figure 3. The scheme of the i-th step of algorithm of the

Gaussian elimination method (direct process)

A reverse process of algorithm (backward
elimination) starts (Figure 4), after SLE has acquired
the form (8). The result is achieved by way of
rearrangements. Thus, we have a rearranged SLE (9)
(reduced echelon form). This is the way of computing
all the variables xi, where i = 0, 1, 2, 3, …, n-2.









=+++

=+++

=+++

−−−−
"

11
"

11

"
11

"
11

"
00

"
00

00
00
00

nnnn bxa
bxa
bxa

L

L

L

 (9)
Figure 2. Illustration of the rectangle method.

 The distribution of tasks among the processors is
shown in Figure 2. The process-slaves send their own
sums to the computer-master, after finishing the cal-
culation of their sums. The computer-master calculates
the total sum (Riemann) of process-slaves sums. In
this way, an approximate value of π is obtained.

An algorithm for solving a system of linear
equations applying the Gauss method

The general form of a linear equation is as follows:
bxaxaxa nn =+++ −− 111100 L . (6)

Figure 4. The scheme of the i-th step of algorithm of the
Gauss method (reverse process)

The system of linear equations (SLE) has the follo-
wing general form: The data distribution of a parallel algorithm of the

Gauss method among processes is shown in Figure 5.
0 0 0 1 0 1 0

1 0 1 1 1 1 1

2 0 2 1 2 1 2

1 0 1 1 1 1 1.

n

n

n n n n

n n n n n

a x a x a x b
a x a x a x b

a x a x a x b
a x a x a x b

−

−

− − − −

− − − −

+ + + =
 + + + =

 + + + =

+ + + =

L

L

M M

L

L
n−

−

'

'

.

 (7)

By the elementary rearrangement the system (7) is
reduced to a triangular form, which is called an
echelon form, and looks like this:

' ' '
0 0 0 0 1 1 0 1 1 0

' '
1 1 1 1 1 1 1

' '
1 1 1 1

0

0 0

n n

n n

n n n n

a x a x a x b
a x a x b

a x b

− −

− −

− − − −

 + + + =


+ + + =


 + + + =

L

L

M M

L

 (8)
Figure 5. The scheme of data distribution of the parallel

algorithm applying the Gauss method

That stage of the Gauss method is called direct
process of algorithm (forward elimination) during
which the variables xn-1 is calculated (Figure 3).

An algorithm for the matrix and vector product

In the algebra and number theory the matrix and
vector product is calculated as follows:

59

A. Igumenov, T. Petkus

∑
−

=

=
1

0

q

s
jssiji BAC . (12) 1

1

1 1
2

111 1 2 2

3 3
3

11

1

*

*

.
*

*

n

i i
i
n

i i
in
n

i i
im mn

n m
n

m i i
i

a b

b c
a b

a a b c
b c

a b
a a

b c

a b

=

=

=

=

 
 
 
    

                ∗ = =       
      

        
 
 
 

∑

∑

∑

∑

K

M O M

L M

M

M

(10)

The number of blocks is k*k, k=n/q. The program

GRID topology has been created to facilitate data
transmission and calculation.

5. Experimental results

The master-slave strategy has been applied in ex-
periments. The task was formed by the process-master
and distributed to process-slaves. The answer is for-
med in the process-master by collecting the data from
process-slaves.

Approximate calculations of the π value
The interval [0, 1] was divided into 1.000.000.000

parts for execution of experiments.
Figure 6. The scheme of data distribution among processes

multiplying the matrix by a vector In experiments, we calculate π with 1 Gb and 100
Mb computer networks. The achieved results are
compared. The results are illustrated in Figure 7 where
one computer solves one process, and the results
where one computer solves two processes are illust-
rated in Figure 8.

Parallel multiplication of matrix and vector may be
obtained by applying several methods: transmitting a

row of matrix A and the vector to the process-sla-

ves or the fragments of matrix A and the vector to
the process-slaves.

→
b

→
b

0,96
0,97
0,98
0,99
1,00

Number of computers

E
ff

ic
ie

nc
y

1 Gb 0,998 0,996 0,991 0,972

100 Mb 0,999 0,998 0,991 0,966

2 4 8 16

In this article, the first method is analysed, where
the process-master distributes a rows of matrix A and

the vector among process-slaves. Solving the task,

each process multiplies two vectors a and . In
experiments the matrix is quadratic with the rank

r(A)=1000 and the vector has 1000 components
(generated at random). The distribution of data among
the processes is illustrated in Figure 6.

→
b

→

i

→
b

→
b Figure 7. The algorithm efficiency in different networks,

where one computer solves one process

0,60
0,70
0,80
0,90

Number of computers

E
ff

ic
ie

nc
y

1 Gb 0,845 0,845 0,840 0,830

100
Mb

0,746 0,743 0,745 0,733

2 4 8 16

An algorithm for multiplication of matrices

There are parallel realisations of matrices multi-
plying:
• bar data distribution
• data distribution by blocks:

• Fox algorithm;
• Cannon algorithm. Figure 8. The algorithm efficiency in different networks,

where one computer solves two processes Fox and Cannon algorithms differ only by data
distribution among processes. In this article, the Fox
algorithm is analysed: data distribution by blocks
when the number of processes is p= s * q. Besides, the
number of matrix rows has to be iterative of number s,
and the number of columns is iterative of number q:

Parallel solution of SLE applying Gauss method

To carry out experiments, an SLE of 1000 equa-
tions was generated. The experiments were done with
1 Gb and 100 Mb computer networks.

















=
















×
















−−−

−

−−−

−

−−−

−

1101

1000

1101

1000

1101

1000

qqq

q

qqq

q

qqq

q

CC

CC

BB

BB

AA

AA

K

MM

K

K

MM

K

K

MM

K (11) The experiments were carried out to solve the SLE
by applying the Gauss method with 1 Gb and 100 Mb
computer networks and the results obtained were
compared. The results are illustrated in Figure 9 where
one computer solves one process, and the results

Here each block Ci j of matrix C is found as follows:

60

Analysis of Parallel Calculations in Computer Network

where one computer solves two processes are illust-
rated in Figure 10.

0,0
0,4
0,8
1,2
1,6

Number of computers

Sp
ee

du
p

100 Mb 0,2890,1940,1600,159 0,1490,0450,029

1Gb 1,3311,2761,1201,004 0,7720,6280,602

2 4 6 10 14 18 22

0,0
0,5
1,0
1,5
2,0

Number of computers

Sp
ee

du
p

1 Gb 1,39 1,82 2,03 1,96 1,81 1,75 1,63

100M b 1,05 0,80 0,52 0,38 0,30 0,23 0,13

2 4 6 8 10 12 16

Figure 12. Speedup comparison in different networks where
one computer solves two processes

0,0
2,0
4,0
6,0
8,0

 Nu mber of compute rs

Sp
ee

du
p

Rank 100 0,862 0,663 0,378

Rank 500 3,259 6,727 3,202

Rank 1000 3,787 8,723 7,928

4 16 25

Figure 9. Speedup comparison in different networks where
one computer solves one process

0,0
0,4
0,8
1,2
1,6
2,0

Number of computers

Sp
ee

du
p

1 Gb 1,44 1,58 1,62 1,50 1,40

100 Mb 0,96 0,46 0,25 0,19 0,14

2 4 6 8 10

Figure 13. Speedup comparison in the 1 Gb network

0,0
0,5
1,0
1,5
2,0
2,5

Nu mber of compute rs

Sp
ee

du
p

Rank 100 0,202 0,020 0,005

Rank 500 1,243 0,437 0,136

Rank 1000 2,152 1,355 0,333

4 16 25

Figure 10. Speedup comparison in different networks where
one computer solves two processes

The multiplication of matrix and vector
In experiments, we used a square matrix with the

rank r(A) = 1000 and a vector of 1000 components.

The primary data (matrix A and vector) were ran-
domly generated.

→
b

Figure 14. Speedup comparison in the 100 Mb network
The experiments have been carried out by

multiplying the matrix by the vector, using 1 Gb and
100 Mb computer networks. The obtained results were
compared. The results are illustrated in Figure 11
where one computer solves one process, and the
results where one computer solves two processes are
illustrated in Figure 12.

The experiments were performed with the 1 Gb
and 100 Mb computer networks. The results were
compared, when the rank of the matrix was 100
(Figure 15), 500 (Figure 16), and 1000 (Figure 17).

Analysis of the experimental results
All the experiments have been carried out at the

Vilnius Pedagogical University cluster that operates
on the basis of Windows XP. Windows XP has one
very serious shortcoming: there are too many system
transmissions in the local network. It may be expe-
rimentally illustrated very well by multiplication of
matrices with the rank r = 100 and by solving the
SLE. Besides, the formulation of a primary task is
predetermined by computer-master resources. For
example, by multiplying matrices with the rank
r = 1000, the required memory is about 22 MB, and
with the rank r = 10000 it requires about 2 GB.
Furthermore, as experiments have shown, application
of the 100 Mb network is reasonable for solving tasks
with a low network load, e.g., approximate calculation
of the value π (Figures 7 and 8).

0,00
0,50
1,00
1,50
2,00

Number of computers

Sp
ee

du
p

100 M b 0,299 0,197 0,1810,1630,142 0,066 0,035

1 Gb 1,909 1,779 1,6821,3891,184 1,094 0,997

2 4 6 10 14 18 22

Figure 11. Speedup comparison in different networks where

one computer solves one process

The multiplication of matrices
The experiments were done with square matrices

of different rank. The primary data were randomly ge-
nerated (matrices A and B). The experiments were
carried out with 1 Gb and 100 Mb computer networks.
A series of experiments done with the 1 Gb computer
network are illustrated in Figure 13. Other experi-
ments carried out with the 100 Mb computer network
are illustrated in Figure 14.

Analysing the results of experiments of SLE (Fi-
gures 9 and 10) it has been found out that application
of both the 100 Mb network and the 1 Gb network is
not reasonable. The maximum speedup with the 1 Gb
network is reached only if 6 computers are available,

61

A. Igumenov, T. Petkus

62

i.e. only 2.03 times faster than 1 computer is used. It
happens due to a very frequent exchange of data
among processes (this is very well illustrated in
Figure 10). In order to increase the efficiency of
algorithm in the network, it is necessary to change the
data exchange strategy: to use a faster network or to
reduce the portions of primary data.

0,0

0,5

1,0

Number of computers

Sp
ee

du
p

100 Mb 0,2022 0,0198 0,0045

1 Gb 0,862 0,663 0,378

4 16 25

Figure 15. Speedup comparison where the matrix rank

r = 100

0,0
2,0
4,0
6,0
8,0

Number of computers

Sp
ee

du
p

100 Mb 1,243 0,437 0,136

1 Gb 3,259 6,727 3,202

4 16 25

Figure 16. Speedup comparison where the matrix rank

r = 500

0,0
2,0
4,0
6,0
8,0

10,0

Number of computers

Sp
ee

du
p

100 Mb 2,152 1,355 0,333

1 Gb 3,787 8,723 7,928

4 16 25

Figure 17. Speedup comparison where the matrix rank

r = 1000
In the experiments, the data of matrix and vector

multiplication (Figures 11 and 12) are analogous to the
experiments of SLE solving. However these results
have one exclusive feature: the maximum speedup is
achieved when the task is solved by two computers
and it is approximately equal to 2. Thus, application of
the 100 Mb network is not reasonable here as well.
This is due to the reasons mentioned above: low net-
work capacity and a great amount of data to exchange
among processes.

In the experiments of multiplying the data of two
matrices illustrate (Figures 13-17) that the data trans-
mission by blocks is more time-consuming than
calculations themselves when the rank of matrices is
r = 100. By increasing the rank of matrices up to
r = 500 we can observe some speedup. The maximum
speedup on the 100 Mb network is achieved with 4

computers and is approximately equal to 1.2 times.
The maximum speedup has been achieved with
4 computers, and almost the same results have ob-
tained (2.15 times) with the rank r = 1000.

A qualitative change is obtained by multiplying
matrices on the 1 Gb network. There is no sense to use
the 1 Gb computer network when the rank of matrices
is r = 100. The rank of matrices being r = 500 and
r = 1000, the results are better. The maximum speed-
up, with r = 1000, is achieved using 16 computers and
it is equal to 8.7 times. Furthermore, a considerable
speedup is achieved with 4 computers. By carrying
out further experiments it has been observed that the
results are highly influenced by the network capacity.

Conclusions

Several classical parallel algorithms have been
analysed in this article. After several experiments, we
can draw the following conclusions:
• Realization of parallel algorithms accelerates

solution of problems compared with serial
algorithms.

• 100 Mb computer network with MS Windows XP
is useless it a larger amount of data transmission
is required for problem solution.

• The computer-master must have much higher
characteristics than computer-slaves, if large-scale
problems with matrices are solved. It is very
important to evaluate the available computer
resources.

• Multiplying large matrices or a large matrix and
vector, it is useful to apply distribution by blocks.

• It is reasonable to use smaller portions of primary
data in order to reduce network load, if a linear
data distribution method is used for multiplying
matrices or matrix and vector.

Acknowledgement

The research is partially supported by the Lithua-
nian State Science and Studies Foundation project
“The research of human factors in multiple criteria
optimization problems applying parallel computing
(No. T-33/07)”.

References
 [1] Technology of paralleling.

http://www.spbcas.ru/cfd/techn/Parallel.htm.
 [2] R. Ciegis, R. Sablinskas. Analysis of the Efficiency

of Master-Slave Parallel Algorithm (In Lithuanian),
Vilnius, 1998, 390-392

 [3] T. Petkus. Application of Computing Network in In-
teractive Optimization. Vilnius, VPU, 2001.

 [4] R. Ciegis. Parallel algorithms (In Lithuanian), Vilnius,
Technika, 2001, 145-156.

Received November 2007.

