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Abstract. In various spheres of activities, we often face the necessity to find the best or fastest way of solving a 
relevant problem. Nowadays, computer technologies are applied in solving most problems: in great flow of information 
processing as well as in scientific research. Complex problems, solution of which is problematic by using only one 
computer, are solved by several computers connected into a network. Seeking effective usage of computer network for 
parallel calculations conceptually different software can be applied. 

In the article, the analysis of clusters by classical parallel solution algorithms is presented. An approximate value of 
π, matrix and vector and a system of linear equations and matrices product algorithms are analyzed. The present study 
consider a cluster that consists of 60 processors, as well as problem solution of cluster operating in the system with 
Windows XP at different speeds of networks. 

 
 

1. Introduction Master-slave type algorithms are analyses, when 
the computer-master has the list of tasks and distri-
butes them to computer-slaves for solving.  Speaking about parallel calculations, first of all 

data processing procedures are meant, when several 
operations of a computer system may be performed at 
the same time. Parallelism may be achieved if we 
have: 

The task distribution among computers is one of 
the major problems in the construction of effective 
parallel algorithms [1]. 

First, we have to stress that a master-slave algo-
rithm is a “one-to-many“ communication model type 
algorithm, i. e., one computer, called master, commu-
nicates with many other computers called slaves. 
Slaves do not exchange information among them-
selves. Such a limitation eliminates a large class of 
tasks, where the parallel solution of tasks requires the 
information from neighbouring tasks.  

• Operation independence of separate calculating 
machines  

• Adequacy of calculating system elements:  
– applying specialised equipment; 
– duplicating calculating machines. 

Analysing organisation problems of parallel calcu-
lations, the following execution modes of independent 
program parts should be distinguished: Master-slave type algorithms may not be applied 

to all tasks, because the peculiarities of some tasks 
allow speedup and good efficiency of the parallel 
algorithm only when special algorithms are created for 
that task.  

− Multitask (time distribution mode). 
− Parallel execution. 
− Distributed calculations. 

Let us discuss the operational scheme of master-
slave algorithms (Figure 1). 

In this article, systems working in the second mode 
are analysed (parallel execution). 

 
2. Parallel calculations  
Parallel algorithms 

According to the tasks solved, parallel algorithms 
are distributed into several classes: data parallelism 
algorithms, functional parallelism algorithms, mas-
ter-slave type algorithms. 

Master-slave type algorithms may be applied to all 
tasks, where lists of tasks are not interdependent. 
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Figure 1. Executing scheme of master-slave algorithms  
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The computer-master generates and saves the list 
of tasks from which the tasks are distributed to 
computer-slaves. After calculating the received task, 
the computer-slaves send the results back to the mas-
ter, which stores the common result and supplements 
the list of tasks. The arrows mark here data inter-
change among computers. Let us point out the fact 
that, at the same moment various computer-slaves 
may operate with absolutely different algorithms (it is 
functional parallelism). Most often there are such 
cases in practice, where all computer-slaves execute 
the same algorithm, but only with different data (data 
parallelism type algorithms) [2]. 

Criteria for evaluation of parallel algorithms  

The first criterion that might be used to compare 
several parallel algorithms is speedup of the parallel 
algorithm when solving the problem with p 
processors: 
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Here  is the time required for solving the task 
with the best known serial algorithm and  is the 
time needed for parallel algorithm to solve the prob-
lem with p processors. 
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Note that T  and T  are most often different, be-
cause not all serial algorithms may be completely 
parallelised and so the fastest serial algorithm differs 
from the parallel one. The inequality T  is always 
true when a parallel algorithm is made up by modi-
fying the serial one. The modification of constructions 
appends an additional program which slows down the 
algorithm. It is also noteworthy that, the different 
parallel algorithms solving the same task in different 
ways may gain an advantage when there is a certain 
number of a processor, but rather poor when with ano-
ther quantity of processors. All that may depend on the 
parallel computer. 
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Another criterion that might help to evaluate the 
parallel algorithm is the efficiency coefficient of 
processors [3]: 
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The efficiency shows how the processors are used. 
In solving certain problems, a high efficiency may be 
achieved only when there is a fixed number of 
processors, but with an increase in their number, the 
efficiency decreases. The efficiency depends not only 
on the problem, but also on the parallel algorithm and 
the parameters of parallel computers: granulation, cal-
culation speed of processors, communication speed, 
etc. The efficiency of the same algorithm in different 
computers may vary very much. Traditionally, the 
higher communication speed of processors and the 
slower the processors the better efficiency is achieved. 
Amdahl Law [2] states that the efficiency of any 

parallel algorithm is lower than 1, and with an in-
crease in number of processors it decreases. 

3. Software and hardware 

We used here the software package MPICH v.1.2.5 
for solving parallel problems in a computer network. 
This kit may operate only with programs created using 
not lower than the Microsoft Visual C++ 6.0 version. 
MS Office programs were used for data processing 
and presentation. 

Cluster of the Faculty of Mathematics and in-
formatics, Vilnius Pedagogical University. This 
cluster consists of 60 computers, where 30 of them are 
Pentium III class and 30 are Pentium 4 class 
computers. The computer specifications are: 
15 computers: 
• Processor – Intel® Pentium 3,0 GHz (with Hyper 

Treading); 
• RAM – DDR2 512 Mb RAM; 
• HDD – SATA2 80 Gb, Cach 8 Mb, data transmis-

sion speed 300 Mb/s; 
• 1 Gb integrated Ethernet adapter. 
15 computers: 
• Processor – Intel® Pentium 3,2 GHz (with Hyper 

Treading);  
• RAM – DDR 512 Mb RAM; 
• HDD – SATA 80 Gb, Cach 8 Mb, data trans-

mission speed 150 Mb/s; 
• 100 Mb integrated Ethernet adapter. 
• 1 Gb D-Link Ethernet adapter 
15 computers: 
• Processor – Intel® Celeron 2,0 GHz; 
• RAM – DDR 256 Mb RAM; 
• HDD – IDA 40 Gb, Cach 8 Mb; 
• 100 Mb integrated Ethernet adapter. 
15 computers: 
• Processor – Intel® Celeron 1 GHz; 
• RAM – DDR 256 Mb RAM; 
• HDD – IDA 40 Gb, cach 8 Mb; 
• 100 Mb Ethernet adapter. 

The total cluster RAM makes up to 22,5 Gb with 
standing memory 3,5 Tb.  

4. Classical algorithms of parallel calculations  

The parallel algorithm is decomposed into 
processes that can be executed in a parallel way. 
Several processes may be executed on one processor. 
Thus, the number of processes and processors can be 
different. 

Calculation of π 

There exists a function: 
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In geometry, a definite integral means an area un-
der a curvilinear trapezoid, limited by the lines x = a, 
x = b, y = 0 and the function f(x): 
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From this expression we get the π value:  
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One of the integral calculation methods is calcula-
tion by partial sums (Riemann sums, the left rectangle 
method). Figure 3. The scheme of the i-th step of algorithm of the 

Gaussian elimination method (direct process) 

 

A reverse process of algorithm (backward 
elimination) starts (Figure 4), after SLE has acquired 
the form (8). The result is achieved by way of 
rearrangements. Thus, we have a rearranged SLE (9) 
(reduced echelon form). This is the way of computing 
all the variables xi, where i = 0, 1, 2, 3, …, n-2. 
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Figure 2. Illustration of the rectangle method.  

 The distribution of tasks among the processors is 
shown in Figure 2. The process-slaves send their own 
sums to the computer-master, after finishing the cal-
culation of their sums. The computer-master calculates 
the total sum (Riemann) of process-slaves sums. In 
this way, an approximate value of π is obtained. 

An algorithm for solving a system of linear 
equations applying the Gauss method 

The general form of a linear equation is as follows: 
bxaxaxa nn =+++ −− 111100 L . (6)  

Figure 4. The scheme of the i-th step of algorithm of the 
Gauss method (reverse process) 

The system of linear equations (SLE) has the follo-
wing general form: The data distribution of a parallel algorithm of  the 

Gauss method among processes is shown in Figure 5. 
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By the elementary rearrangement the system (7) is 
reduced to a triangular form, which is called an 
echelon form, and looks like this: 
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Figure 5. The scheme of data distribution of the parallel 

algorithm applying the Gauss method 

That stage of the Gauss method is called direct 
process of algorithm (forward elimination) during 
which the variables xn-1 is calculated (Figure 3). 

An algorithm for the matrix and vector product  

In the algebra and number theory the matrix and 
vector product is calculated as follows: 
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The number of blocks is k*k, k=n/q. The program 

GRID topology has been created to facilitate data 
transmission and calculation. 

5. Experimental results 

 

The master-slave strategy has been applied in ex-
periments. The task was formed by the process-master 
and distributed to process-slaves. The answer is for-
med in the process-master by collecting the data from 
process-slaves. 

Approximate calculations of the π value 
The interval [0, 1] was divided into 1.000.000.000 

parts for execution of experiments. 
Figure 6. The scheme of data distribution among processes 

multiplying the matrix by a vector In experiments, we calculate π with 1 Gb and 100 
Mb computer networks. The achieved results are 
compared. The results are illustrated in Figure 7 where 
one computer solves one process, and the results 
where one computer solves two processes are illust-
rated in Figure 8. 

Parallel multiplication of matrix and vector may be 
obtained by applying several methods: transmitting a 

row of matrix A and the vector  to the process-sla-

ves or the fragments of matrix A and the vector  to 
the process-slaves. 
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In this article, the first method is analysed, where 
the process-master distributes a rows of matrix A and 

the vector  among process-slaves. Solving the task, 

each process multiplies two vectors a  and . In 
experiments the matrix is quadratic with the rank 

r(A)=1000 and the vector  has 1000 components 
(generated at random). The distribution of data among 
the processes is illustrated in Figure 6. 
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b Figure 7. The algorithm efficiency in different networks, 

where one computer solves one process 
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An algorithm for multiplication of matrices 

There are parallel realisations of matrices multi-
plying:  
• bar data distribution 
• data distribution by blocks: 

• Fox algorithm; 
• Cannon algorithm. Figure 8. The algorithm efficiency in different networks, 

where one computer solves two processes Fox and Cannon algorithms differ only by data 
distribution among processes. In this article, the Fox 
algorithm is analysed: data distribution by blocks 
when the number of processes is p= s * q. Besides, the 
number of matrix rows has to be iterative of number s, 
and the number of columns is iterative of number q:  

Parallel solution of SLE applying Gauss method 

To carry out experiments, an SLE of 1000 equa-
tions was generated. The experiments were done with 
1 Gb and 100 Mb computer networks.  
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K  (11) The experiments were carried out to solve the SLE 
by applying the Gauss method with 1 Gb and 100 Mb 
computer networks and the results obtained were 
compared. The results are illustrated in Figure 9 where 
one computer solves one process, and the results 

Here each block Ci j of matrix C is found as follows: 
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where one computer solves two processes are illust-
rated in Figure 10. 
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Figure 12. Speedup comparison in different networks where 
one computer solves two processes 
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Figure 9. Speedup comparison in different networks where 
one computer solves one process 
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Figure 13. Speedup comparison in the 1 Gb network 
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Figure 10. Speedup comparison in different networks where 
one computer solves two processes 

The multiplication of matrix and vector 
In experiments, we used a square matrix with the 

rank r(A) = 1000 and a vector of 1000 components. 

The primary data (matrix A and vector ) were ran-
domly generated.  

→
b

Figure 14. Speedup comparison in the 100 Mb network 
The experiments have been carried out by 

multiplying the matrix by the vector, using 1 Gb and 
100 Mb computer networks. The obtained results were 
compared. The results are illustrated in Figure 11 
where one computer solves one process, and the 
results where one computer solves two processes are 
illustrated in Figure 12. 

The experiments were performed with the 1 Gb 
and 100 Mb computer networks. The results were 
compared, when the rank of the matrix was 100 
(Figure 15), 500 (Figure 16), and 1000 (Figure 17). 

Analysis of the experimental results 
All the experiments have been carried out at the 

Vilnius Pedagogical University cluster that operates 
on the basis of Windows XP. Windows XP has one 
very serious shortcoming: there are too many system 
transmissions in the local network. It may be expe-
rimentally illustrated very well by multiplication of 
matrices with the rank r = 100 and by solving the 
SLE. Besides, the formulation of a primary task is 
predetermined by computer-master resources. For 
example, by multiplying matrices with the rank 
r = 1000, the required memory is about 22 MB, and 
with the rank r = 10000 it requires about 2 GB. 
Furthermore, as experiments have shown, application 
of the 100 Mb network is reasonable for solving tasks 
with a low network load, e.g., approximate calculation 
of the value π (Figures 7 and 8).  
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Figure 11. Speedup comparison in different networks where 

one computer solves one process 

The multiplication of matrices 
The experiments were done with square matrices 

of different rank. The primary data were randomly ge-
nerated (matrices A and B). The experiments were 
carried out with 1 Gb and 100 Mb computer networks. 
A series of experiments done with the 1 Gb computer 
network are illustrated in Figure 13. Other experi-
ments carried out with the 100 Mb computer network 
are illustrated in Figure 14. 

Analysing the results of experiments of SLE (Fi-
gures 9 and 10) it has been found out that application 
of both the 100 Mb network and the 1 Gb network is 
not reasonable. The maximum speedup with the 1 Gb 
network is reached only if 6 computers are available, 
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i.e. only 2.03 times faster than 1 computer is used. It 
happens due to a very frequent exchange of data 
among processes (this is very well illustrated in 
Figure 10). In order to increase the efficiency of 
algorithm in the network, it is necessary to change the 
data exchange strategy: to use a faster network or to 
reduce the portions of primary data. 
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Figure 15. Speedup comparison where the matrix rank 

r = 100 
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Figure 16. Speedup comparison where the matrix rank 

r = 500 
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Figure 17. Speedup comparison where the matrix rank 

r = 1000 
In the experiments, the data of matrix and vector 

multiplication (Figures 11 and 12) are analogous to the 
experiments of SLE solving. However these results 
have one exclusive feature: the maximum speedup is 
achieved when the task is solved by two computers 
and it is approximately equal to 2. Thus, application of 
the 100 Mb network is not reasonable here as well. 
This is due to the reasons mentioned above: low net-
work capacity and a great amount of data to exchange 
among processes. 

In the experiments of multiplying the data of two 
matrices illustrate (Figures 13-17) that the data trans-
mission by blocks is more time-consuming than 
calculations themselves when the rank of matrices is 
r = 100. By increasing the rank of matrices up to 
r = 500 we can observe some speedup. The maximum 
speedup on the 100 Mb network is achieved with 4 

computers and is approximately equal to 1.2 times. 
The maximum speedup has been achieved with 
4 computers, and almost the same results have ob-
tained (2.15 times) with the rank r = 1000.  

A qualitative change is obtained by multiplying 
matrices on the 1 Gb network. There is no sense to use 
the 1 Gb computer network when the rank of matrices 
is r = 100. The rank of matrices being r = 500 and 
r = 1000, the results are better. The maximum speed-
up, with r = 1000, is achieved using 16 computers and 
it is equal to 8.7 times. Furthermore, a considerable 
speedup is achieved with 4 computers. By carrying 
out further experiments it has been observed that the 
results are highly influenced by the network capacity. 

Conclusions 

Several classical parallel algorithms have been 
analysed in this article. After several experiments, we 
can draw the following conclusions: 
• Realization of parallel algorithms accelerates 

solution of problems compared with serial 
algorithms. 

• 100 Mb computer network with MS Windows XP 
is useless it a larger amount of data transmission 
is required for problem solution. 

• The computer-master must have much higher 
characteristics than computer-slaves, if large-scale 
problems with matrices are solved. It is very 
important to evaluate the available computer 
resources. 

• Multiplying large matrices or a large matrix and 
vector, it is useful to apply distribution by blocks. 

• It is reasonable to use smaller portions of primary 
data in order to reduce network load, if a linear 
data distribution method is used for multiplying 
matrices or matrix and vector.  
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