
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2008, Vol.37, No.1

HANDLING MULTIPLE FAILURES IN PROCESS NETWORKS

Jonas Čeponis, Egidijus Kazanavičius
Department of Computer Engineering, Kaunas University of Technology

Studentu st. 50-213, LT-51368 Kaunas, Lithuania

Lina Čeponienė
Kaunas University of Technology, Information Systems Department

Studentu st. 50-315a, LT-51368 Kaunas, Lithuania

Abstract. Process network is a computation model used in digital signal processing. This model is effective for
solving various tasks, which can be divided into multiple concurrent processes. These processes communicate through
unbounded FIFO buffers and can be executed simultaneously. In real time digital signal processing applications
execution time is often infinite. However, various hardware/software failures can occur. These failures can be single or
multiple. In our work, dynamic run-time reconfiguration is introduced into process network which ensures single or
multiple error handling, avoiding deadlocks, continuous and on-time result delivery. In this paper, we extend Fault
Tolerant Process Network with algorithm for avoiding multiple simultaneous failures, which is also suitable for
avoiding a single failure.

Keywords: Process Networks, Multiple Failures, Failure Handling, Dynamic Reconfiguration, Concurrent Proces-
ses, Labelled Transition Systems.

1. Introduction

Process networks are often used for solving va-
rious digital signal processing (DSP), multimedia or
control tasks. Usually tasks of this type are called data
flow applications. If the task can be divided into a few
smaller tasks and they can be executed simultaneous-
ly, process network is a suitable implementation solu-
tion.

Depending on implementation, the application
may be control oriented and/or event driven. Such sys-
tems respond to changes of internal states or environ-
ment. In response to these changes, the system must
adequately react. Changes of internal states can be
caused by various hardware/software failures [1]. A
well-designed system should always have a powerful
mechanism for handling failures [21].

Our previous work on Fault Tolerant Process
Network (FTPN) or Error-Proof Process Network
(EPPN) is presented in [4, 5]. In FTPN, network
reconfiguration is used to ensure handling a single
failure in process network. FTPN solution does not
ensure that all failures will be handled and processed
and network will continue its execution. There was no
solution for handling multiple failures in FTPN.

Error-proof data flow applications should use ge-
neral computational model for design, modelling, ana-
lysis and implementation in various platforms. This

ensures rapid application design and utilisation of
existing software/hardware components. Such compu-
tational models are Synchronous Data Flow (SDF)
[13], Parameterized Synchronous Data Flow (PSDF)
[12], Discrete-Event (DE) [12], Kahn Process
Network (KPN) [3, 11], etc.

Kahn Process Network is a subset of more general
Process Network (PN) model. PN consists of concur-
rent processes communicating over first-in first out
unidirectional queues. PN is useful for modelling and
exploiting functional parallelism in streaming data
applications. The PN model maps easily onto multi-
processor and/or multi-threaded targets. KPN ensures
completely dynamic execution of nodes. In KPN,
there is no need for describing scheduling during sys-
tem design, because scheduling does not affect the
functional behaviour of the nodes. These features of
KPN are very useful in dynamic network reconfigura-
tion [23].

Synchronous Data Flow network is useful for
modelling simple dataflow systems without complica-
ted flow of control. In SDF, nodes (processes) read
and write a fixed number of tokens each time they are
executed. The number of tokens and execution time
are defined during system design. Process Network
differs significantly from SDF, as PN uses completely
dynamic execution of nodes. In PN, nodes are
executed asynchronously, but the result of network

19

J. Čeponis, E. Kazanavičius, L. Čeponienė

execution is deterministic. Determinism is ensured by
blocked reading from channel and non-blocked writ-
ing into channel.

Parameterized Synchronous Data Flow is useful
for modelling dataflow systems with reconfiguration.
PSDF represents a design point between complete
static scheduling in SDF and completely dynamic
execution in Process Networks.

Discrete-Event model differs from other discussed
models as it supports time oriented models of systems
such as queuing systems, communication networks
and digital hardware.

In this paper, the improved Fault Tolerant Process
Network (FTPN) model is presented, which is based
on Kahn process network model. Because of dynamic
reconfiguration used in FTPN, execution results may
become non deterministic, but this helps avoiding
critical termination of network execution.

DSP real time systems often require non-standard
and costly hardware and software solutions. Modern
workstation can represent an alternative to develop
real time intensive various purposes signal processing
applications. Furthermore, the programming model of
Process Network corresponds completely to this kind
of applications and fits perfectly on multiprocessor
systems.

Various systems developed using Process Network
can be modelled using workstation and even personal
computer. This helps in finding and processing critical
network operation points. This also helps to simulate
possible network failures, which can be single or
multiple in time [20].

Application performance can be improved
dynamically changing network parameters. On the
other hand, hardware systems (embedded systems,
programmable logic, etc.) dedicated to a particular
problem class can be used to minimize processing
time. Process Network implementation in the hard-
ware system would help in verifying efficiency of the
solution in the particular situation.

The remainder of this paper is structured as
follows. The next section discusses related works.
This is followed by the formal definition of improved
Fault Tolerant Process Network model. Next, rules for
handling single and multiple failures are discussed. In
section 5, we conclude and present suggestions for the
future.

2. Related work

Process Networks (dataflow networks) are a suit-
able model of computation for developing streaming
multimedia and digital signal processing applications
[14]. The most popular process network models for
streaming applications are Synchronous Data Flows
and Kahn Process Networks.

Synchronous Data Flow network is applicable to
simple dataflow systems without complicated flow of
control. In SDF, a node produces and consumes a

fixed number of data tokens on each of its outgoing
and incoming channels during each activation. For
activation of the node it must have at least as many
tokens on its input channels as it needs to consume.
The number of tokens and execution times must be
defined during system design.

KPN is a computation model in which many con-
current processes communicating over first-in first-out
unidirectional queues can be executed simultaneously
[18]. KPN is mostly applicable for parallel processing
of streaming data. Many of the existing KPN
modelling tools (Ptolemy [12], Compaan/Laura [22,
24]) are commonly used for simulation rather than im-
plementation. In analyzed dataflow process networks
modelling methods, two important issues were consi-
dered: detection of critical execution points and dyna-
mic network reconfiguration [9].

Since the PN model is Turing complete, memory
requirements cannot be predicted statically. In general,
any bounded-memory scheduling algorithm for this
model requires run-time deadlock detection. The few
PN implementations that perform deadlock detection
detect only global deadlocks. Not all local deadlocks,
however, will cause a PN system to reach global
deadlock. Olson and Evans [17] presented local dead-
lock detection algorithm for PN models based on the
Mitchell and Merritt algorithm. Their algorithm is
suitable for both parallel and distributed PN imple-
mentations.

In order to capture the interaction between input
events and execution units as well as reconfiguration
in dynamic stream processing, Reactive process
Networks (RPN) are introduced [7]. The foundation
for RPN was laid by efforts to integrate dataflow mo-
del and its reactive behaviour [8]. Reactive behaviour
in these models is commonly specified using hierar-
chical state machines.

Another means for specifying dynamic network
reconfiguration during run-time is parameterizable
SDF model [2, 6]. In PSDF, node execution is charac-
terized by iterations that fire subprocesses in a parti-
cular order. Node execution can be reconfigured bet-
ween iterations at run-time [19].

Yet another approach for dynamic process network
reconfiguration is presented in the work of Neuendorf-
fer and Lee [16]. It is concentrated on reconfiguration
as a particular kind of event handling. The states of the
network, in which reconfigurations are allowed, are
named quiescent states. The FIFO channel communi-
cation is used for sending and receiving events or
parameters and for dividing input ports into streaming
input ports and parameter input ports. This work
focuses primarily on reconfiguration of SDF net-
works. This work along with the other discussed
works on dynamic reconfiguration focuses on using
reconfiguration for increasing efficiency.

FTPN presented in our work differs from the
above discussed approaches because it presents ano-
ther point of view to the purpose of process network

20

Handling Multiple Failures in Process Networks

dynamic reconfiguration. This point of view is based
on the idea that we must specify critical moments in
network execution in order to avoid critical termina-
tion. These critical moments appear when communica-
tion between network nodes is broken or node fails. In
initial stage, algorithms for single failure handling
were developed and successfully tested [4, 5]. How-
ever, multiple failures can occur in real world and we
trying to improve fault tolerant process network with
the ability to handle these failures. Fault Tolerant Pro-
cess Network proposed in this work can be recon-
figured dynamically in order to capture and process
single and multiple simultaneous failures of network
execution.

All node operations can be divided into two groups
– communication and computation operations. During
communication operations the node performs data
input and result output. After successful data input the
node performs computation operations. When compu-
tations are over, the node writes output data to output
channels chout. Control operations are executed in case
of dynamic network reconfiguration during handling
of failures. Execution of control operations can be
planned (if reallocation of network resources is re-
quired) or unplanned (in case of failure of network
element).

The node can be in one of the states
{ }cexbwwbrr nsnsnsnsnsnsnsNs ,,,,,,⊥= . Initial node

state ns⊥ denotes the starting point of node execution.
In this state, initial working parameters and values of
variables are set for the node. Afterwards, the node
moves to reading state nsr and tries to read data from
input channels chin∈CH. If at least one ch(p)=null |
ch∈chin, the node transits to state nsbr and waits until
data is available in the channel. When the node has
successfully read data from input channels, it moves
to state nsex and executes actions Act⊆A. After
finishing execution, the node transits to writing state
nsw and writes results to its output channels chout∈CH.
If at least one ch(p)≠ null | ch∈chout, p=L, the node
moves to blocked writing state nsbw and waits for
available free space in the output channel. When the
node has finished writing data to channels, it moves to
state nsr.

3. A Model of Fault Tolerant Process Network

In our research the Fault Tolerant Process Network
is developed. This process network is dynamically
reconfigurable and the main purpose of dynamic
network reconfiguration is reaction to failures in
process network and handling of these failures. In [4]
only handling of single failure is described. In this
paper we present the enhanced Fault Tolerant Process
network which is able to handle multiple failures.

First, some common definitions and notations for
process network are described. For FIFO channel spe-
cification there is universal finite set of channels CH
and for every channel ch∈CH there is a corresponding
finite channel alphabet Σ. Each channel ch∈CH is
described by its length L and pointer ch(p) which
refers to the last data record in the channel. The ac-
tions for data transfer through the channel are ch a,
ch a|ch∈CH, a∈Σ. The action ch a denotes input
of data into channel. The action ch a denotes output
of data from channel. These actions form the set of
actions for data transfer Ac={ch , ch a|ch∈CH,
a∈Σ}.

The change of network execution parameters may
be required in two cases: a node is in blocked reading
or blocked writing states (nsbr or nsbw) and timeout
occurs; or external request is received. In any of these
two cases the node moves to control state nsc and
changes required parameters. Afterwards, the node
transits to reading or writing state (nsr or nsw) and
continues execution.

For network nodes specification, a universal finite
set of nodes N is used and for every node of this set
n∈N there is a corresponding set of atomic actions
Act. All actions of all network nodes are defined by
the set A and the actions of every node Act⊆A. Every
node has a set of input and output channels
(chin,chout)∈CH. The duration of execution of each
atomic action is specified. This time is used to ensure
that final result will be reached in proper time. The
operation of each node must be defined as a sequence
of atomic actions. Such specification is necessary for
implementation of dynamic reconfiguration and
change of network parameters when operations must
be allocated from one node to another. The set of
operations for each node Actn is specified as a
sequence of atomic actions (Act1, Act2, ... ,Actk-1, Actk),
where k is the number of atomic actions in the node.
The nodes in FTPN can perform operations Cntrln
which are used for network reconfiguration and
changing network parameters.

In FTPN all nodes are divided into two groups:
internal nodes (having both input and output channels)
and interface nodes (having only input or only output
channels).

The FSP specification of the node which has both
input and output channels is presented below:

range T = 1..2
NodeInOut = Initial,
Initial = (parameters_reading -> Reading),
Reading = (reading_done -> Execution |

channel_empty -> BlockedReading),
Execution = (execution_done -> Writing),
Writing = (writing_done -> Reading | channel_full ->

BlockedWriting),
BlockedReading = (channel_notempty -> Reading |

reading_timeout -> Control[1]),
BlockedWriting = (channel_notfull -> Writing |

writing_timeout -> Control[2]),
Control[t:T] = (when (t==1) reading_continue ->

Reading | when (t==2) writing_continue -> Writing).

21

J. Čeponis, E. Kazanavičius, L. Čeponienė

The FSP specification can be mapped to LTS [10]
graph using the tool LTSA 2.2 [15]. The LTS graph for
the specified internal node is presented in Fig. 1.

The channel can be in one of the states defined in
set Sc={sc⊥,scw,sccf,scce,scpop,scpush,scinc,scdec}. After
setting initial parameters in state sc⊥, channel transits
to waiting state scw. In this state channel waits for
requests from the nodes. When request from writing
node arrives, channel moves to state sccf, in which it
checks the availability of free space in channel me-
mory. If there is a free space in memory, channel
moves to the state scpush. During this state the inco-
ming token is written to the channel. When request

from reading node arrives, channel moves to state scce,
in which it checks the availability of data in channel.
If there are at least one data token, channel moves to
the state scpop and sends first data token to reading
node. When the token from the writing node arrives
and the channel is full, channel transits to the state
scinc in which the length of the channel is increased.
After successful increasing of the channel length it
moves to state scpush, otherwise it moves to state scw.
The channel can transit to state scdec when a request
from reading node arrives and other channels require
to be increased. In state scdec, the length of the channel
is decreased thus freeing memory for other channels.

Figure 1. The States of Internal Nodes in FTPN

The FSP specification of channels in FTPN is
presented below:

Channel = Initial,
Initial = (set_parameters -> Waiting),
Waiting = (writing -> CheckFullness | read ->

CheckEmptiness),
CheckFullness = (full -> Waiting | notfull -> Writing |

increment -> IncrementSize),
Writing = (write_ok -> Waiting),

IncrementSize = (increment_ok -> Writing |
increment_nok -> Waiting),

CheckEmptiness = (empty -> Waiting | notempty ->
Reading | decrement -> DecrementSize),

DecrementSize = (decrement_ok -> Reading),
Reading = (reading_ok -> Waiting).
This FSP specification is mapped to LTS graph

which is presented in Figure 2.

Figure 2. The States of Channels in FTPN

22

Handling Multiple Failures in Process Networks

4. Algorithms for Handling Multiple Faults in
Fault Tolerant Process Network

The algorithms for handling faults of elements in
process network must be specified to ensure that net-
work continues execution after failure. As the main
elements of the process network are nodes and chan-
nels, the algorithms are specified for the cases of net-
work node failure and for network channel failure.
Network nodes are grouped into internal nodes (hav-
ing input and output channels), interface nodes having
only input channels, and interface nodes having only
output channels.

In case of network node failure we need to redistri-
bute its actions to other node. We also need to redistri-
bute the input and output channels of the faulty node.
In order to minimize data loss, the reconfiguration
must follow these rules:
 1. All nodes connected with faulty node Ni perform

their actions until:
a) chin of the node Ni become full;
b) chout of the node n become empty.

 2. The nodes connected with faulty node Ni transit
to blocked reading or blocked writing states.

 3. After timeout the nodes connected with faulty
node Ni transit to control state. In this state:
a. actions of the faulty node Ni are transferred to

node Ni+1 which first transits to control state
and is connected to output channel of Ni;

b. the channel between Ni and Ni+1 is destroyed;
c. output channels of Ni are connected to Ni+1;
d. input channels of Ni are connected to Ni+1;
e. the data lost during failure is compensated.

 4. The nodes which are in control state move to
writing or reading states and reconfigured
network continues execution.

These rules are applicable to network nodes which
have input and output channels (chin, chout)⊆CH.
There are two exceptions when these rules cannot be
applied: interface nodes having only output channels
and interface nodes having only input channels.

In distributed process network, channel failure is
also critical for network execution and can cause a
global deadlock. In case of network channel failure,
the change of network parameters must follow these
rules:
 1. The nodes connected by faulty channel transit to

blocked reading and writing states nsbr and nsbw.
 2. After timeout the nodes connected by faulty

channel transit to control state nsc.
 3. Creation of a new channel is initiated by the node

which first transits to control state.
 4. The new communication channel is connected to

the reading node as its input channel.
 5. The new communication channel is connected to

the writing node as its output channel.
 6. The data, lost during failure, is compensated.

 7. The nodes which are in control state move to
writing or reading states and reconfigured
network continues execution.

Single failure handling implementation was desc-
ribed in [4, 5]. In this paper we try to improve FTPN
to handle multiple failures at the same time. In case of
multiple network node failures we need to redistribute
their actions to other nodes. We also need to redistri-
bute the input and output channels of the faulty nodes.
Data loss can occur each time of network element
failure. To solve this problem, we introduce the default
value to compensate lost data. This conflicts process
network determinism feature but enables further exe-
cution and helps to synchronize data.

In Figure 3 a fragment of process network is
presented. For multiple network failure simulation, we
assume that nodes ni1,m, nout1 and channel between
them fails (dashed lines in picture). In this case, net-
work node ni1,m-1 goes to nsbw state when channel
between nii,m-1 and ni1,m has become full. Similarly
nodes ni2,m and nout2 go to nsbr state, when channels
connecting nodes ni1,m and ni2,m and nodes ni1,m and
nout2 have become empty.

ni1,m

ni2,m

nout1

nout2

ni1,m-1

ni2,m-1

Figure 3. Multiple failures in process network

After timeout one of the blocked nodes goes to
control state nsc and begins a recovery from network
deadlock situation. Recovering starts with finding
faulty network elements, then transferring actions of
faulty nodes to working node, redistributing channels,
consuming data from unneeded channels and at last
deleting unneeded channels. In our case node nout2
goes to control state and starts recovery from network
deadlock. Node timeout originates during reading ope-
ration from channel between nodes ni1,m and nout2.
Therefore node nout2 starts to search for failures in
this direction. First of all, node nout2 finds out that
node ni1,m is not working. Then node nout2 follows
network path in all directions from faulty node ni1,m
and tries to find all failed network elements. In our
case node nout2 finds that failed elements are nodes
ni1,m, nout1 and the channel between them. After
finding all failed elements, node nout2 starts
redistributing actions and channels. Network model
after redistribution is presented in Figure 4.

23

J. Čeponis, E. Kazanavičius, L. Čeponienė

ni2,m nout2

ni1,m-1

ni2,m-1

Figure 4. Process network after failures handling

In order to minimize data loss, the change of net-
work parameters in case of multiple failures must
follow these rules:
 1. The nodes perform their actions until input

channels become empty or output channels
become full.

 2. Nodes connected with failed elements transit to
blocked reading or blocked writing states.

 3. After timeout only one of the blocked nodes
transits to control state. In this state:
a. node follows network path in the direction of

the faulty element and finds all faulty ele-
ments;

b. actions of the faulty nodes are transferred to
the node which first transited to control state;

c. operational output channels of failed nodes
are included into the set of output channels of
the node which first transited to control state;

d. operational input channels of failed nodes are
connected to node which first transited to
control state;

e. if the sequence of failed elements ends with a
channel, then the new channel is created and
connected according to the rule 3c or 3d.

 4. The nodes which are in control state move to
writing or reading states and reconfigured net-
work continues execution.

These rules are applicable to handle multiple
network elements failure.

In order to analyze the behaviour of process net-
work in case of hardware failure we are using a multi-
threaded implementation of FTPN. The FTPN was
implemented in C# programming language using mul-
tiple threads running at the same time and performing
different tasks of process network. We used separate
thread for each element of the process network (node
and channel) and the main program for coordination.
The failures of network elements were imitated by
destroying a thread of the node or channel.

5. Conclusion and future work

Various process networks are used for solving DSP
tasks. In real time digital signal processing

applications, execution time is infinite. However, va-
rious hardware or software failures can occur. In our
work, dynamic run-time reconfiguration is introduced
into process network which ensures handling of
multiple failures.

Fault Tolerant Process Network presented in this
paper is modelled as a labelled transition system.
Formal specification of FTPN and the states of net-
work elements during execution is presented. This
specification was used as a base for describing the
rules for network run-time reconfiguration in case of
single or multiple network element failure. These rules
minimize data loss and enable further execution of
FTPN.

Future works include extended implementation
and testing of FTPN in a distributed system and
handling various multiple failures.

References
 [1] A. Avizienis, J. C. Laprie, B. Randell, C. Land-

wehr. Basic Concepts and Taxonomy of Dependable
and Secure Computing. IEEE Transactions on Depen-
dable and Secure Computing, Vol.1, No.1, 2004, 11-
33.

 [2] B. Bhattacharya, S. Bhattacharyya. Parameterized
dataflow modeling for DSP systems. IEEE Transac-
tions on Signal Processing, 49(10): 2001, 2408-2421.

 [3] J. Čeponis, E. Kazanavičius, A. Mikuckas. Design
and analysis of DSP systems using Kahn process net-
works. Ultragarsas, 2002, Vol.45, ISSN 1392-2114,
43-46.

 [4] J. Čeponis, E. Kazanavičius, A. Mikuckas. Fault To-
lerant Process Networks. Information Technology and
Control, ISSN 1392-124X, Kaunas, Technologija,
2006, Vol.35, No.2, 124 - 130.

 [5] J. Čeponis, E. Kazanavičius. Error-Proof Process
Network Model. Proc. 3rd International Conference
on Cybernetics and Information Technologies, Sys-
tems and Applications: CITSA 2006, ISBN 980-6560-
19-1, 2006, 153-158.

 [6] M. Dyer, M. Platzner, L. Thiele. Efficient Execution
of Process Networks on a Reconfigurable Hardware
Virtual Machine. Proc. 12th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM’04), 2004.

 [7] M. Geilen, T. Basten. Reactive Process Networks.
EMSOFT’04, 2004.

 [8] A. Girault, B. Lee, E. Lee. Hierarchical finite state
machines with multiple concurrency models. IEEE
Transactions on Computer-aided Design of Integrated
Circuits and Systems, 18(6):742-760, 1999.

 [9] D. Hofstee, B.H.H. Juurlink. Determining the critica-
lity of processes in Kahn process networks for design
space exploration. Proceedings ProRISC 2002, Veld-
hoven, The Netherlands, 2002, 292-297.

[10] M. Huth. Labelled transition systems as a Stone
space. Logical Methods in Computer Science, 2005,
1–28.

[11] G. Kahn. The semantics of a simple language for pa-
rallel programming. Information Processing 74: Proc.
IFIP Congress 74, 1974, 471-475.

24

Handling Multiple Failures in Process Networks

[12] E. Lee. Overview of the Ptolemy project. Technical
Memorandum UCB/ERL No.M01/11, University of
California, EECS Dept., 2001.

[13] E. Lee, D. Messerschmitt. Synchronous data flow.
IEEE Proceedings, 75(9): 1987, 1235-1245.

[14] E. Lee, T. M. Parks. Dataflow process networks. Pro-
ceedings of the IEEE, 83(5): 1995, 773-798.

[15] J. Magee, J. Kramer. Concurrency: State Models and
Java Programs. 2nd Editon. ISBN: 0-470-09355-2.
2006, 432.

[16] S. Neuendorffer, E.A. Lee. Hierarchical reconfigura-
tion of dataflow models. In Proc. Second ACM-IEEE
International Conference on Formal Methods and
Models for Codesign (MEMOCODE 2004), IEEE
Computer Society Press, 2004.

[17] A.G. Olson, B.L. Evans. Deadlock detection for
distributed process networks. Proc. IEEE Int. Conf. on
Acoustics, Speech and Signal Proc., Vol.5, 2005, 73-76.

[18] A.D. Pimentel, C. Erbas, S. Polstra. A Systematic
Approach to Exploring Embedded System Architec-
tures at Multiple Abstraction Levels. IEEE Transac-
tions on Computers, Vol.55, No.2, 2006, 99-112.

[19] M. Sen, S. Bhattacharyya, T.L. Wolf. Modeling
Image Processing Systems with Homogeneous Para-
meterized Dataflow Graphs. Proc. IEEE International
Conference on Acoustics, Speech, and Signal Proces-
sing, (ICASSP '05), ISBN: 0-7803-8874-7 Vol.5,
2005, 133-136.

[20] T. Skeie. Handling Multiple Faults in Wormhole
Mesh Networks. Proc. 4th international Euro-Par
Conference on Parallel Processing. LNCS, Vol.1470.
Springer-Verlag, 1998, 1076-1088.

[21] D.J. Smith. Reliability, Maintainability and Risk (6
edition). Newnes, 2001, 370.

[22] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis,
E. Deprettere. System Design using Kahn Process
Networks: The Compaan/Laura Approach. Proc. 7th
Int. Conf. Design, Automation and Test in Europe
(DATE 2004), 2004, 340-345.

[23] A. Turjan, B. Kienhuis, E. Deprettere. A hierarchi-
cal classification scheme to derive interprocess com-
munication in process networks. Proc. 15th IEEE
International Conference on Application-Specific Sys-
tems, Architectures and Processors, ISBN: 0-7695-
2226-2, 2004, 282-292.

[24] C. Zissulescu, T. Stefanov, B. Kienhuis, E. Depret-
tere. LAURA: Leiden Architecture Research and
Exploration Tool. Proc. 13th Int. Conference on Field
Programmable Logic and Applications (FPL'03),
2003.

Received December 2007.

