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Abstract. Process network is a computation model used in digital signal processing. This model is effective for 
solving various tasks, which can be divided into multiple concurrent processes. These processes communicate through 
unbounded FIFO buffers and can be executed simultaneously. In real time digital signal processing applications 
execution time is often infinite. However, various hardware/software failures can occur. These failures can be single or 
multiple. In our work, dynamic run-time reconfiguration is introduced into process network which ensures single or 
multiple error handling, avoiding deadlocks, continuous and on-time result delivery. In this paper, we extend Fault 
Tolerant Process Network with algorithm for avoiding multiple simultaneous failures, which is also suitable for 
avoiding a single failure. 
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1. Introduction 

Process networks are often used for solving va-
rious digital signal processing (DSP), multimedia or 
control tasks. Usually tasks of this type are called data 
flow applications. If the task can be divided into a few 
smaller tasks and they can be executed simultaneous-
ly, process network is a suitable implementation solu-
tion. 

Depending on implementation, the application 
may be control oriented and/or event driven. Such sys-
tems respond to changes of internal states or environ-
ment. In response to these changes, the system must 
adequately react. Changes of internal states can be 
caused by various hardware/software failures [1]. A 
well-designed system should always have a powerful 
mechanism for handling failures [21]. 

Our previous work on Fault Tolerant Process 
Network (FTPN) or Error-Proof Process Network 
(EPPN) is presented in [4, 5]. In FTPN, network 
reconfiguration is used to ensure handling a single 
failure in process network. FTPN solution does not 
ensure that all failures will be handled and processed 
and network will continue its execution. There was no 
solution for handling multiple failures in FTPN. 

Error-proof data flow applications should use ge-
neral computational model for design, modelling, ana-
lysis and implementation in various platforms. This 

ensures rapid application design and utilisation of 
existing software/hardware components. Such compu-
tational models are Synchronous Data Flow (SDF) 
[13], Parameterized Synchronous Data Flow (PSDF) 
[12], Discrete-Event (DE) [12], Kahn Process 
Network (KPN) [3, 11], etc. 

Kahn Process Network is a subset of more general 
Process Network (PN) model. PN consists of concur-
rent processes communicating over first-in first out 
unidirectional queues. PN is useful for modelling and 
exploiting functional parallelism in streaming data 
applications. The PN model maps easily onto multi-
processor and/or multi-threaded targets. KPN ensures 
completely dynamic execution of nodes. In KPN, 
there is no need for describing scheduling during sys-
tem design, because scheduling does not affect the 
functional behaviour of the nodes. These features of 
KPN are very useful in dynamic network reconfigura-
tion [23]. 

Synchronous Data Flow network is useful for 
modelling simple dataflow systems without complica-
ted flow of control. In SDF, nodes (processes) read 
and write a fixed number of tokens each time they are 
executed. The number of tokens and execution time 
are defined during system design. Process Network 
differs significantly from SDF, as PN uses completely 
dynamic execution of nodes. In PN, nodes are 
executed asynchronously, but the result of network 
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execution is deterministic. Determinism is ensured by 
blocked reading from channel and non-blocked writ-
ing into channel. 

Parameterized Synchronous Data Flow is useful 
for modelling dataflow systems with reconfiguration. 
PSDF represents a design point between complete 
static scheduling in SDF and completely dynamic 
execution in Process Networks.  

Discrete-Event model differs from other discussed 
models as it supports time oriented models of systems 
such as queuing systems, communication networks 
and digital hardware. 

In this paper, the improved Fault Tolerant Process 
Network (FTPN) model is presented, which is based 
on Kahn process network model. Because of dynamic 
reconfiguration used in FTPN, execution results may 
become non deterministic, but this helps avoiding 
critical termination of network execution. 

DSP real time systems often require non-standard 
and costly hardware and software solutions. Modern 
workstation can represent an alternative to develop 
real time intensive various purposes signal processing 
applications. Furthermore, the programming model of 
Process Network corresponds completely to this kind 
of applications and fits perfectly on multiprocessor 
systems. 

Various systems developed using Process Network 
can be modelled using workstation and even personal 
computer. This helps in finding and processing critical 
network operation points. This also helps to simulate 
possible network failures, which can be single or 
multiple in time [20]. 

Application performance can be improved 
dynamically changing network parameters. On the 
other hand, hardware systems (embedded systems, 
programmable logic, etc.) dedicated to a particular 
problem class can be used to minimize processing 
time. Process Network implementation in the hard-
ware system would help in verifying efficiency of the 
solution in the particular situation. 

The remainder of this paper is structured as 
follows. The next section discusses related works. 
This is followed by the formal definition of improved 
Fault Tolerant Process Network model. Next, rules for 
handling single and multiple failures are discussed. In 
section 5, we conclude and present suggestions for the 
future. 

2. Related work 

Process Networks (dataflow networks) are a suit-
able model of computation for developing streaming 
multimedia and digital signal processing applications 
[14]. The most popular process network models for 
streaming applications are Synchronous Data Flows 
and Kahn Process Networks. 

Synchronous Data Flow network is applicable to 
simple dataflow systems without complicated flow of 
control. In SDF, a node produces and consumes a 

fixed number of data tokens on each of its outgoing 
and incoming channels during each activation. For 
activation of the node it must have at least as many 
tokens on its input channels as it needs to consume. 
The number of tokens and execution times must be 
defined during system design. 

KPN is a computation model in which many con-
current processes communicating over first-in first-out 
unidirectional queues can be executed simultaneously 
[18]. KPN is mostly applicable for parallel processing 
of streaming data. Many of the existing KPN 
modelling tools (Ptolemy [12], Compaan/Laura [22, 
24]) are commonly used for simulation rather than im-
plementation. In analyzed dataflow process networks 
modelling methods, two important issues were consi-
dered: detection of critical execution points and dyna-
mic network reconfiguration [9]. 

Since the PN model is Turing complete, memory 
requirements cannot be predicted statically. In general, 
any bounded-memory scheduling algorithm for this 
model requires run-time deadlock detection. The few 
PN implementations that perform deadlock detection 
detect only global deadlocks. Not all local deadlocks, 
however, will cause a PN system to reach global 
deadlock. Olson and Evans [17] presented local dead-
lock detection algorithm for PN models based on the 
Mitchell and Merritt algorithm. Their algorithm is 
suitable for both parallel and distributed PN imple-
mentations. 

In order to capture the interaction between input 
events and execution units as well as reconfiguration 
in dynamic stream processing, Reactive process 
Networks (RPN) are introduced [7]. The foundation 
for RPN was laid by efforts to integrate dataflow mo-
del and its reactive behaviour [8]. Reactive behaviour 
in these models is commonly specified using hierar-
chical state machines.  

Another means for specifying dynamic network 
reconfiguration during run-time is parameterizable 
SDF model [2, 6]. In PSDF, node execution is charac-
terized by iterations that fire subprocesses in a parti-
cular order. Node execution can be reconfigured bet-
ween iterations at run-time [19]. 

Yet another approach for dynamic process network 
reconfiguration is presented in the work of Neuendorf-
fer and Lee [16]. It is concentrated on reconfiguration 
as a particular kind of event handling. The states of the 
network, in which reconfigurations are allowed, are 
named quiescent states. The FIFO channel communi-
cation is used for sending and receiving events or 
parameters and for dividing input ports into streaming 
input ports and parameter input ports. This work 
focuses primarily on reconfiguration of SDF net-
works. This work along with the other discussed 
works on dynamic reconfiguration focuses on using 
reconfiguration for increasing efficiency. 

FTPN presented in our work differs from the 
above discussed approaches because it presents ano-
ther point of view to the purpose of process network 
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dynamic reconfiguration. This point of view is based 
on the idea that we must specify critical moments in 
network execution in order to avoid critical termina-
tion. These critical moments appear when communica-
tion between network nodes is broken or node fails. In 
initial stage, algorithms for single failure handling 
were developed and successfully tested [4, 5]. How-
ever, multiple failures can occur in real world and we 
trying to improve fault tolerant process network with 
the ability to handle these failures. Fault Tolerant Pro-
cess Network proposed in this work can be recon-
figured dynamically in order to capture and process 
single and multiple simultaneous failures of network 
execution. 

All node operations can be divided into two groups 
– communication and computation operations. During 
communication operations the node performs data 
input and result output. After successful data input the 
node performs computation operations. When compu-
tations are over, the node writes output data to output 
channels chout. Control operations are executed in case 
of dynamic network reconfiguration during handling 
of failures. Execution of control operations can be 
planned (if reallocation of network resources is re-
quired) or unplanned (in case of failure of network 
element). 

The node can be in one of the states 
{ }cexbwwbrr nsnsnsnsnsnsnsNs ,,,,,,⊥= . Initial node 

state  ns⊥ denotes the starting point of node execution. 
In this state, initial working parameters and values of 
variables are set for the node. Afterwards, the node 
moves to reading state nsr and tries to read data from 
input channels chin∈CH. If at least one ch(p)=null | 
ch∈chin, the node transits to state nsbr and waits until 
data is available in the channel. When the node has 
successfully read data from input channels, it moves 
to state nsex and executes actions Act⊆A. After 
finishing execution, the node transits to writing state 
nsw and writes results to its output channels chout∈CH. 
If at least one ch(p)≠ null | ch∈chout, p=L, the node 
moves to blocked writing state nsbw and waits for 
available free space in the output channel. When the 
node has finished writing data to channels, it moves to 
state nsr. 

3. A Model of Fault Tolerant Process Network 

In our research the Fault Tolerant Process Network 
is developed. This process network is dynamically 
reconfigurable and the main purpose of dynamic 
network reconfiguration is reaction to failures in 
process network and handling of these failures. In [4] 
only handling of single failure is described. In this 
paper we present the enhanced Fault Tolerant Process 
network which is able to handle multiple failures. 

First, some common definitions and notations for 
process network are described. For FIFO channel spe-
cification there is universal finite set of channels CH 
and for every channel ch∈CH there is a corresponding 
finite channel alphabet Σ. Each channel ch∈CH is 
described by its length L and pointer ch(p) which 
refers to the last data record in the channel. The ac-
tions for data transfer through the channel are ch a, 
ch a|ch∈CH, a∈Σ. The action ch a denotes input 
of data into channel. The action ch a denotes output 
of data from channel. These actions form the set of 
actions for data transfer Ac={ch , ch a|ch∈CH, 
a∈Σ}. 

The change of network execution parameters may 
be required in two cases: a node is in blocked reading 
or blocked writing states (nsbr or nsbw) and timeout 
occurs; or external request is received. In any of these 
two cases the node moves to control state nsc and 
changes required parameters. Afterwards, the node 
transits to reading or writing state (nsr or nsw) and 
continues execution. 

For network nodes specification, a universal finite 
set of nodes N is used and for every node of this set 
n∈N there is a corresponding set of atomic actions 
Act. All actions of all network nodes are defined by 
the set A and the actions of every node Act⊆A. Every 
node has a set of input and output channels 
(chin,chout)∈CH. The duration of execution of each 
atomic action is specified. This time is used to ensure 
that final result will be reached in proper time. The 
operation of each node must be defined as a sequence 
of atomic actions. Such specification is necessary for 
implementation of dynamic reconfiguration and 
change of network parameters when operations must 
be allocated from one node to another. The set of 
operations for each node Actn is specified as a 
sequence of atomic actions (Act1, Act2, ... ,Actk-1, Actk), 
where k is the number of atomic actions in the node. 
The nodes in FTPN can perform operations Cntrln 
which are used for network reconfiguration and 
changing network parameters. 

In FTPN all nodes are divided into two groups: 
internal nodes (having both input and output channels) 
and interface nodes (having only input or only output 
channels). 

The FSP specification of the node which has both 
input and output channels is presented below: 

range T = 1..2 
NodeInOut = Initial, 
Initial = (parameters_reading -> Reading), 
Reading = (reading_done -> Execution | 

channel_empty -> BlockedReading), 
Execution = (execution_done -> Writing), 
Writing = (writing_done -> Reading | channel_full -> 

BlockedWriting), 
BlockedReading = (channel_notempty -> Reading | 

reading_timeout -> Control[1]), 
BlockedWriting = (channel_notfull -> Writing | 

writing_timeout -> Control[2]), 
Control[t:T] = (when (t==1) reading_continue -> 

Reading | when (t==2) writing_continue -> Writing).  

21 



J. Čeponis, E. Kazanavičius, L. Čeponienė 

The FSP specification can be mapped to LTS [10] 
graph using the tool LTSA 2.2 [15]. The LTS graph for 
the specified internal node is presented in Fig. 1. 

The channel can be in one of the states defined in 
set Sc={sc⊥,scw,sccf,scce,scpop,scpush,scinc,scdec}. After 
setting initial parameters in state sc⊥, channel transits 
to waiting state scw. In this state channel waits for 
requests from the nodes. When request from writing 
node arrives, channel moves to state sccf, in which it 
checks the availability of free space in channel me-
mory. If there is a free space in memory, channel 
moves to the state scpush. During this state the inco-
ming token is written to the channel. When request 

from reading node arrives, channel moves to state scce, 
in which it checks the availability of data in channel. 
If there are at least one data token, channel moves to 
the state scpop and sends first data token to reading 
node. When the token from the writing node arrives 
and the channel is full, channel transits to the state 
scinc in which the length of the channel is increased. 
After successful increasing of the channel length it 
moves to state scpush, otherwise it moves to state scw. 
The channel can transit to state scdec when a request 
from reading node arrives and other channels require 
to be increased. In state scdec, the length of the channel 
is decreased thus freeing memory for other channels. 

 
Figure 1. The States of Internal Nodes in FTPN 

The FSP specification of channels in FTPN is 
presented below:  

Channel = Initial, 
Initial = (set_parameters -> Waiting), 
Waiting = (writing -> CheckFullness | read -> 

CheckEmptiness), 
CheckFullness = (full -> Waiting | notfull -> Writing | 

increment -> IncrementSize), 
Writing = (write_ok -> Waiting), 

IncrementSize = (increment_ok -> Writing | 
increment_nok -> Waiting), 

CheckEmptiness = (empty -> Waiting | notempty -> 
Reading | decrement -> DecrementSize), 

DecrementSize = (decrement_ok -> Reading ), 
Reading = ( reading_ok -> Waiting).  
This FSP specification is mapped to LTS graph 

which is presented in Figure 2. 

 

Figure 2. The States of Channels in FTPN
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4. Algorithms for Handling Multiple Faults in 
Fault Tolerant Process Network 

The algorithms for handling faults of elements in 
process network must be specified to ensure that net-
work continues execution after failure. As the main 
elements of the process network are nodes and chan-
nels, the algorithms are specified for the cases of net-
work node failure and for network channel failure. 
Network nodes are grouped into internal nodes (hav-
ing input and output channels), interface nodes having 
only input channels, and interface nodes having only 
output channels.  

In case of network node failure we need to redistri-
bute its actions to other node. We also need to redistri-
bute the input and output channels of the faulty node. 
In order to minimize data loss, the reconfiguration 
must follow these rules: 
 1. All nodes connected with faulty node Ni perform 

their actions until: 
a) chin of the node Ni become full; 
b) chout of the node n become empty. 

 2. The nodes connected with faulty node Ni transit 
to blocked reading or blocked writing states. 

 3. After timeout the nodes connected with faulty 
node Ni transit to control state. In this state: 
a. actions of the faulty node Ni are transferred to 

node Ni+1 which first transits to control state 
and is connected to output channel of Ni; 

b. the channel between Ni and Ni+1 is destroyed; 
c. output channels of Ni are connected to Ni+1; 
d. input channels of Ni are connected to Ni+1; 
e. the data lost during failure is compensated. 

 4. The nodes which are in control state move to 
writing or reading states and reconfigured 
network continues execution. 

These rules are applicable to network nodes which 
have input and output channels (chin, chout)⊆CH. 
There are two exceptions when these rules cannot be 
applied: interface nodes having only output channels 
and interface nodes having only input channels. 

In distributed process network, channel failure is 
also critical for network execution and can cause a 
global deadlock. In case of network channel failure, 
the change of network parameters must follow these 
rules: 
 1. The nodes connected by faulty channel transit to 

blocked reading and writing states nsbr and nsbw. 
 2. After timeout the nodes connected by faulty 

channel transit to control state nsc. 
 3. Creation of a new channel is initiated by the node 

which first transits to control state. 
 4. The new communication channel is connected to 

the reading node as its input channel.  
 5. The new communication channel is connected to 

the writing node as its output channel.  
 6. The data, lost during failure, is compensated. 

 7. The nodes which are in control state move to 
writing or reading states and reconfigured 
network continues execution. 

Single failure handling implementation was desc-
ribed in [4, 5]. In this paper we try to improve FTPN 
to handle multiple failures at the same time. In case of 
multiple network node failures we need to redistribute 
their actions to other nodes. We also need to redistri-
bute the input and output channels of the faulty nodes. 
Data loss can occur each time of network element 
failure. To solve this problem, we introduce the default 
value to compensate lost data. This conflicts process 
network determinism feature but enables further exe-
cution and helps to synchronize data. 

In Figure 3 a fragment of process network is 
presented. For multiple network failure simulation, we 
assume that nodes ni1,m, nout1 and channel between 
them fails (dashed lines in picture). In this case, net-
work node ni1,m-1 goes to nsbw state when channel 
between nii,m-1 and ni1,m has become full. Similarly 
nodes ni2,m and nout2 go to nsbr state, when channels 
connecting nodes ni1,m and ni2,m and nodes ni1,m and 
nout2 have become empty.  

ni1,m

ni2,m

nout1

nout2

ni1,m-1

ni2,m-1

 
Figure 3. Multiple failures in process network 

After timeout one of the blocked nodes goes to 
control state nsc and begins a recovery from network 
deadlock situation. Recovering starts with finding 
faulty network elements, then transferring actions of 
faulty nodes to working node, redistributing channels, 
consuming data from unneeded channels and at last 
deleting unneeded channels. In our case node nout2 
goes to control state and starts recovery from network 
deadlock. Node timeout originates during reading ope-
ration from channel between nodes ni1,m and nout2. 
Therefore node nout2 starts to search for failures in 
this direction. First of all, node nout2 finds out that 
node ni1,m is not working. Then node nout2 follows 
network path in all directions from faulty node ni1,m 
and tries to find all failed network elements. In our 
case node nout2 finds that failed elements are nodes 
ni1,m, nout1 and the channel between them. After 
finding all failed elements, node nout2 starts 
redistributing actions and channels. Network model 
after redistribution is presented in Figure 4. 
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ni2,m nout2

ni1,m-1

ni2,m-1

 
Figure 4. Process network after failures handling 

In order to minimize data loss, the change of net-
work parameters in case of multiple failures must 
follow these rules: 
 1. The nodes perform their actions until input 

channels become empty or output channels 
become full. 

 2. Nodes connected with failed elements transit to 
blocked reading or blocked writing states. 

 3. After timeout only one of the blocked nodes 
transits to control state. In this state: 
a. node follows network path in the direction of 

the faulty element and finds all faulty ele-
ments; 

b. actions of the faulty nodes are transferred to 
the node which first transited to control state; 

c. operational output channels of failed nodes 
are included into the set of output channels of 
the node which first transited to control state; 

d. operational input channels of failed nodes are 
connected to node which first transited to 
control state; 

e. if the sequence of failed elements ends with a 
channel, then the new channel is created and 
connected according to the rule 3c or 3d. 

 4. The nodes which are in control state move to 
writing or reading states and reconfigured net-
work continues execution.  

These rules are applicable to handle multiple 
network elements failure. 

In order to analyze the behaviour of process net-
work in case of hardware failure we are using a multi-
threaded implementation of FTPN. The FTPN was 
implemented in C# programming language using mul-
tiple threads running at the same time and performing 
different tasks of process network. We used separate 
thread for each element of the process network (node 
and channel) and the main program for coordination. 
The failures of network elements were imitated by 
destroying a thread of the node or channel. 

5. Conclusion and future work  

Various process networks are used for solving DSP 
tasks. In real time digital signal processing 

applications, execution time is infinite. However, va-
rious hardware or software failures can occur. In our 
work, dynamic run-time reconfiguration is introduced 
into process network which ensures handling of 
multiple failures. 

Fault Tolerant Process Network presented in this 
paper is modelled as a labelled transition system. 
Formal specification of FTPN and the states of net-
work elements during execution is presented. This 
specification was used as a base for describing the 
rules for network run-time reconfiguration in case of 
single or multiple network element failure. These rules 
minimize data loss and enable further execution of 
FTPN. 

Future works include extended implementation 
and testing of FTPN in a distributed system and 
handling various multiple failures. 
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