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Abstract. Multidimensional scaling addresses the

problem how multidimensional data can be represented

by points in a low dimensional space. The problem

is reduced to global minimization of a stress function

which measures a fit of dissimilarity by the distances

between the respective points. Symmetries in data may

exist. Performance of global optimization may be in-

creased reducing search space so that only one of the

symmetric solutions should be found. Restriction of

search space is proposed and demonstrated on geomet-

ric data sets for multidimensional scaling.

Multidimensional scaling (MDS) is a technique
for exploratory analysis of multidimensional data
widely usable in different applications [2, 4]. It is
assumed that pairwise dissimilarities between n ob-
jects are given by the matrix (δij), i, j = 1, . . . , n.
A set of points in an embedding space is consid-
ered as an image of the set of objects. Normally,
an m-dimensional embedding metric space is used,
and points xi ∈ Rm, i = 1, . . . , n, should be found
whose inter-point distances fit the given dissimilar-
ities.

Frequently the objects are defined by multidi-
mensional points and the dissimilarities are defined
as pairwise distances between points in the original
multidimensional space. In such a case an image
can be interpreted as a nonlinear projection of the
high-dimensional space to the space of lower dimen-
sionality.

The problem of constructing the image of the set
of considered objects is reduced to minimization of
an accuracy of fit criterion, e.g. of the frequently

used least squares STRESS function

S(x) =
n∑

i=1

n∑
j=1

wij (d (xi,xj)− δij)
2
, (1)

where x = (x11, x21, . . . , xnm)T is an (n · m)
vector aggregating coordinates of points xi =
(xi1, xi2, . . . , xim)T , i = 1, . . . , n; d(xi,xj) denotes
the distance between the points xi and xj ; weights
are positive: wij > 0, i, j = 1, . . . , n; and d(xi,xj)
is defined as Minkowski distance:

dr(xi,xj) =

(
m∑

k=1

|xik − xjk|r
)1/r

. (2)

Equation (2) defines Euclidean distances when r =
2, and city-block distances when r = 1. The most
frequently used distances are Euclidean. However,
MDS with other Minkowski distances in the em-
bedding space can be even more informative than
MDS with Euclidean distances [1].

In the present paper MDS algorithms based on
the STRESS criterion with city-block distances in
the embedding space are considered. STRESS nor-
mally has many local minima. The STRESS func-
tion is invariant with respect to translation, ro-
tation and mirroring. In the case of city-block
distances STRESS can be non-differentiable even
at a minimum point [7]. Therefore MDS with
city-block distances is a difficult high-dimensional
(x ∈ RN , N = n×m) global optimization problem.

A survey of city-block MDS was presented in [1].
Topics include theoretical issues, algorithmic de-
velopments, and methodological discussions. A
combinatorial approach for city-block MDS was
proposed in [5], where combinatorial local search
to construct good object orders along dimensions,
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and least-squares to estimate the coordinates for
the objects based on the object orders are used.
A heuristic algorithm based on simulated anneal-
ing for two-dimensional city-block scaling was pro-
posed in [3]. Each coordinate axis is partitioned by
uniformly spaced points, and a simulated annealing
algorithm is used to search the lattice defined by
these points aiming to minimize one of two types
of STRESS either the sum of squares or the sum of
corresponding absolute values. The found solution
is locally improved by quadratic programming. A
two-level algorithm for two-dimensional city-block
scaling has been proposed in [7], where evolution-
ary combinatorial global search is combined with
local minimization employing piecewise quadratic
structure of the objective function. Generalization
of the algorithm from two-dimensional scaling to
general case is discussed and visualization of three-
dimensional images is demonstrated in [6]. In the
same paper it was shown that explicit enumeration
of all feasible solutions of the upper level combina-
torial problem is computationally infeasible for all
but the smallest problems.

In this paper restriction of search space is pro-
posed for MDS problems with data exposing sym-
metries so that only one of the symmetric solutions
should be found and computational complexity of
explicit enumeration would be reduced. If exchange
of some objects does not change dissimilarity data,
exchange of points representing these objects does
not change the value of the STRESS function. In
this case equivalent solutions and equivalent sub-
regions of the feasible region exist. In this paper
restriction of search space is proposed and demon-
strated on geometric data sets for MDS.

If city-block distances d1(xi,xj) are used,
STRESS (1) can be redefined as

S(x) =
n∑

i=1

n∑
j=1

wij

(
m∑

k=1

|xik − xjk| − δij

)2

. (3)

Let A(P) denote a set such that

A(P) = {x|xik ≤ xjk for pki < pkj ,

i, j = 1, . . . , n, k = 1, . . . ,m} ,

where P = (p1, . . . ,pm); pk = (pk1, pk2, . . . , pkn)
is a permutation of 1, . . . , n; k = 1, . . . ,m.

For x ∈ A(P), (3) can be rewritten as quadratic
function

S(x) =
n∑

i=1

n∑
j=1

wij

(
m∑

k=1

zkij (xik − xjk)− δij

)2

,

where

zkij =
{

1, pki > pkj ,
−1, pki < pkj ,

∣∣∣∣ k = 1, . . . ,m.

Since the function S(x) is quadratic over poly-
hedron x ∈ A(P), the minimization problem

min
x∈A(P)

S(x)

is a quadratic programming problem which is
equivalent to

min

− m∑
k=1

n∑
i=1

xik

n∑
j=1

wijδijzkij+

1
2

 m∑
k=1

m∑
l=1

n∑
i=1

xikxil

n∑
t=1,t6=i

witzkitzlit−

−
m∑

k=1

m∑
l=1

n∑
i=1

n∑
j=1,j 6=i

xikxjlwijzkijzlij


s.t.

n∑
i=1

xik = 0, k = 1, . . . ,m,

x{j|pkj=i+1},k − x{j|pkj=i},k ≥ 0, i = 1, . . . , n− 1.

A standard quadratic programming method can be
applied to solve this problem.

The structure of the minimization problem sug-
gests a two level minimization algorithm: to solve
a combinatorial problem at the upper level, and
to solve a quadratic programming problem at the
lower level:

min
P

S(P), (4)

s.t. S(P) = min
x∈A(P)

S(x).

The upper level (4) objective function is defined
over the set of m-tuple of permutations of 1, ..., n.
The number of feasible solutions of the upper level
combinatorial problem is (n!)m. A solution of MDS
with city-block distances is invariant with respect
to mirroring around coordinate axes and exchang-
ing of coordinates. The feasible set can be re-
duced taking into account such symmetries. Refus-
ing mirrored solutions around each coordinate axis
the number of feasible solutions can be reduced to
um, where u = n!/2. It can be further reduced
to approximately um/m! refusing mirrored solu-
tions with exchanged coordinates. Therefore the
number of feasible solutions is equal to u in case
m = 1, equal to (u2 + u)/2 in case m = 2, equal
to (u3 + 3u2 + 2u)/6 in case m = 3, and equal to
(u4 + 6u3 + 11u2 + 6u)/24 in case m = 4.

Theoretically the upper level combinatorial prob-
lem can be solved using different algorithms. In
this paper explicit enumeration algorithm is con-
sidered.

2. MDS with city-block distances 



Reducing of Search Space of Multidimensional Scaling Problems with Data Exposing Symmetries 

379 

If exchange of some objects does not change dissim-
ilarity data, exchange of points representing these
objects does not change the value of the STRESS
function. In this case equivalent solutions and
equivalent sub-regions of the feasible region exist.
We propose to restrict the search space by con-
straints. In continuous optimization we propose to
constrain the sequence of the first coordinate values
of image points of symmetric objects. In combina-
torial upper level algorithm of two-level optimiza-
tion it would be equivalent to allowing only some
of permutations of the first coordinate p1.

Sets of multidimensional points corresponding to
the well understood geometric objects are used to
evaluate performance of MDS algorithms. Exam-
ples of such data sets are vertices of multidimen-
sional simplices and cubes. Global optimization
problems of increasing complexity correspond to in-
creasing dimensionality of the original space (dim).
Below we use the shorthands ‘simplex’ and ‘cube’
for the sets of their vertices.

The number of vertices of multidimensional sim-
plex is n = dim + 1, and the dimensionality of
the corresponding global minimization problem is
N = m×(dim+1). The distances between any two
vertices of a standard simplex are equal: δij = 1,
i 6= j. 2-dimensional and 3-dimensional standard
simplices are shown in Figure 1. The dissimilarity
matrix of such a seven-dimensional simplex is

δij =



0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0


.

If i-th row and column were simultaneously
changed with j-th row and column, the dissim-
ilarity matrix would not be changed. In other
words exchange of any i-th and j-th objects does
not change dissimilarity data, and exchange of
points representing these objects does not change
the value of the STRESS function. It is possi-
ble to restrict the search space to find only one
of the symmetric solutions by constraining the se-
quence of values of the first coordinate of image
points. In continuous optimization the constraints
would be x11 ≤ x21 ≤ . . . ≤ xn1, which are equiv-
alent to one allowed permutation of the first co-
ordinate in the upper level combinatorial problem:
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Figure 1. Standard simplices

p1 = (1, 2, . . . , n). In this case the number of fea-
sible solutions is equal to 1 in case m = 1, equal
to u in case m = 2, equal to (u2 + u)/2 in case
m = 3, and equal to (u3 + 3u2 + 2u)/6 in case
m = 4. Computational complexity of explicit enu-
meration is reduced by approximately u/m times
to approximately um−1/(m− 1).

Vertices of an unit simplex can be defined by

vij =
{

1, if i = j + 1,
0, otherwise,

∣∣∣∣ i = 1, . . . ,dim + 1,
j = 1, . . . , dim.

2-dimensional and 3-dimensional unit simplices are
shown in Figure 2. The dissimilarity between ver-
tices is measured by city-block distance in the origi-
nal vector space. For example, dissimilarity matrix
of such a seven-dimensional simplex is

δij =



0 1 1 1 1 1 1 1
1 0 2 2 2 2 2 2
1 2 0 2 2 2 2 2
1 2 2 0 2 2 2 2
1 2 2 2 0 2 2 2
1 2 2 2 2 0 2 2
1 2 2 2 2 2 0 2
1 2 2 2 2 2 2 0


.

If i-th (i > 1) row and column were simultaneously
changed with j-th (j > 1) row and column, the
dissimilarity matrix would not be changed. It is
possible to restrict the search space to find only
one of the symmetric solutions by constraining the
sequence of values of the first coordinate of image
points except one representing the vertex at the
origin. In continuous optimization the constraints
would be x21 ≤ x31 ≤ . . . ≤ xn1, which are equiv-
alent to n (which is further reduced to dn/2e by
refusing mirrored solutions) allowed permutations
of the first coordinate in the upper level combina-
torial problem: p1 = (l, 1, 2, . . . , l− 1, l + 1, . . . , n),
l ≤ n/2. In this case the number of feasible so-
lutions is equal to dn/2e in case m = 1. It is not
trivial to estimate the numbers in other cases of m,
therefore experimental investigation is needed.

The number of vertices of a multidimensional
cube is n = 2dim, and the dimensionality of
the corresponding global minimization problem is

3.  Restriction of search space for problems 
exposing symmetries 
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Figure 2. Unit simplices
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Figure 3. Cube

N = m × 2dim. The coordinates of i-th vertex
of a dim-dimensional cube are equal either to 0
or to 1, and they are defined by a binary code of
i = 0, ..., n−1. The dissimilarity matrix of a three-
dimensional cube is

δij =



0 1 1 2 1 2 2 3
1 0 2 1 2 1 3 2
1 2 0 1 2 3 1 2
2 1 1 0 3 2 2 1
1 2 2 3 0 1 1 2
2 1 3 2 1 0 2 1
2 3 1 2 1 2 0 1
3 2 2 1 2 1 1 0


.

It is difficult to define changes of objects which
does not change dissimilarity matrix, but the data
are symmetric as can be seen in Figure 3 where a
(three-dimensional) cube is shown. It is possible to
restrict the search space so that at least the vertex
at the origin would be represented by the leftmost
point in the image. In continuous optimization the
constraints would be x11 ≤ xi1, i = 2, . . . n, which
are equivalent to allowed permutations of the first
coordinate with p11 = 1.

The efficiency of the two-level algorithm with ex-
plicit enumeration of combinatorial problem (with
and without coping with symmetries of data) and
standard quadratic programming method has been
evaluated experimentally. The accuracy of scaling
evaluated as minimum of S(x) depends on n and
δij , i, j = 1, . . . , n. Therefore such a criterion is

n=12 f*=0.3300

Figure 4: Image of a standard eleven-dimensional
simplex (n = 12)

not very convenient to compare accuracies of scal-
ing for different sets of objects. To reduce such an
undesirable impact, a relative scaling error

f(x) =

√√√√S(x)

/
n∑

i=1

n∑
j=1

wijδ2
ij

is used in the experimental investigation below.
Performance of deterministic global optimization
algorithms is measured using the optimization time
t, s, and the smallest relative scaling error f∗. We
also present the number of the lower level quadratic
programming problems solved (NQP).

Performance of the two-level MDS algorithm on
standard simplices is shown in Table 1. Numbers
of quadratic programming problems solved coin-
cide with theoretical estimates derived in previ-
ous section. As it can be seen from the table,
problems of m = 1 of standard simplices can be
solved by solving one quadratic programming prob-
lem when the search space is restricted. The num-
ber of quadratic programming problems solved to
find the global solution in m-dimensional scaling
with restricted search space is equal to the num-
ber of quadratic programming problems solved in
(m − 1)-dimensional scaling of the original prob-
lem. Although the solution time in such a case
is increased because of larger quadratic problems,
the dimensionality of the global optimization prob-
lems solved in acceptable time is the same as for
(m − 1)-dimensional scaling for the original prob-
lem. In two-dimensional scaling n = 12 problem
has been solved instead of n = 8 and in three-
dimensional scaling n = 8 instead of n = 6 has been
solved. The two-dimensional image of a standard
eleven-dimensional simplex is shown in Figure 4.
The dimensionality of the largest global optimiza-
tion problems solved is N = 24.

Performance of the two-level MDS algorithm on
unit simplices is shown in Table 2. For the origi-

4. Experimental investigation 
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Table 1. Experimental results on standard simplices
m = 1 m = 2 m = 3

n t, s (NQP) f∗ t, s (NQP) f∗ t, s (NQP) f∗

3 0.00 (3) 0.3333 0.00 (6) 0.00 0.00 (10) 0.00
4 0.00 (12) 0.4082 0.00 (78) 0.00 0.01 (364) 0.00
5 0.00 (60) 0.4472 0.03 (1830) 0.1907 1.79 (37820) 0.00
6 0.00 (360) 0.4714 1.71 (64980) 0.2309 589.72 (7840920) 0.00
7 0.03 (2520) 0.4879 118.59 (3176460) 0.2621
8 0.21 (20160) 0.5000 10229.00 (203222880) 0.2825
9 2.24 (181440) 0.5092
10 26.63 (1814400) 0.5164
11 351.09 (19958400) 0.5222
12 4702.00 (239500800) 0.5270

Restricted search space
3 0.00 (1) 0.3333 0.00 (3) 0.00 0.00 (6) 0.00
4 0.00 (1) 0.4082 0.00 (12) 0.00 0.00 (78) 0.00
5 0.00 (1) 0.4472 0.00 (60) 0.1907 0.09 (1830) 0.00
6 0.00 (1) 0.4714 0.01 (360) 0.2309 5.01 (64980) 0.00
7 0.00 (1) 0.4879 0.10 (2520) 0.2621 379.88 (3176460) 0.0945
8 0.00 (1) 0.5000 1.01 (20160) 0.2825 31681.00 (203222880) 0.1250
9 0.00 (1) 0.5092 11.89 (181440) 0.2991
10 0.00 (1) 0.5164 153.88 (1814400) 0.3115
11 0.00 (1) 0.5222 2121.56 (19958400) 0.3217
12 0.00 (1) 0.5270 31170.00 (239500800) 0.3300

nal problem the number of quadratic programming
problems solved is the same as for the case of stan-
dard simplices. As it can be seen from the table,
problems of m = 1 of unit simplices can be solved
by solving dn/2e quadratic programming problems
when the search space is restricted. Although the
number of quadratic programming problems solved
to find the global solution in m-dimensional scal-
ing with the restricted search space is larger than
the number of quadratic programming problems
solved in (m − 1)-dimensional scaling of the orig-
inal problem, the dimensionality of the global op-
timization problems solved in acceptable time is
the same as for (m − 1)-dimensional scaling for
the original problem. In two-dimensional scaling
n = 12 problem has been solved instead of n = 8
and in three-dimensional scaling n = 8 instead of
n = 6 has been solved. The two-dimensional image
of standard eleven-dimensional simplex is shown in
Figure 5. The dimensionality of the largest global
optimization problems solved is again N = 24.

Performance of the two-level MDS algorithm on
two- and three-dimensional cubes is shown in Ta-
ble 3. A small increase of performance is seen. A
larger increase would be expected if all symmetries
of such problems were considered.

n=12 f*=0.3167

Figure 5: Image of unit eleven-dimensional simplex
(n = 12)

N = 24 problems of global optimization have been
solved exactly using two level algorithm for MDS
with city-block distances composed of explicit enu-
meration of the upper level combinatorial problem
and standard quadratic programming for the lower
level with the search space restricted considering
symmetries of geometric data sets. Without re-
striction the largest problems solved exactly with
such an algorithm were with N = 18.

5. Conclusions 
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Table 2. Experimental results on unit simplices
m = 1 m = 2 m = 3

n t, s (NQP) f∗ t, s (NQP) f∗ t, s (NQP) f∗

3 0.00 (3) 0.00 0.00 (6) 0.00 0.00 (10) 0.00
4 0.00 (12) 0.3651 0.00 (78) 0.00 0.01 (364) 0.00
5 0.00 (60) 0.4140 0.04 (1830) 0.00 2.02 (37820) 0.00
6 0.01 (360) 0.4554 2.05 (64980) 0.1869 661.11 (7840920) 0.00
7 0.02 (2520) 0.4745 137.12 (3176460) 0.2247
8 0.23 (20160) 0.4917 11662.00 (203222880) 0.2569
9 2.51 (181440) 0.5018
10 29.78 (1814400) 0.5113
11 378.45 (19958400) 0.5176
12 5265.00 (239500800) 0.5236

Restricted search space
3 0.00 (2) 0.00 0.00 (4) 0.00 0.00 (7) 0.00
4 0.00 (2) 0.3651 0.00 (18) 0.00 0.01 (99) 0.00
5 0.00 (3) 0.4140 0.01 (108) 0.00 0.14 (2574) 0.00
6 0.00 (3) 0.4554 0.02 (720) 0.1869 8.49 (101160) 0.00
7 0.00 (4) 0.4745 0.25 (5760) 0.2247 695.19 (5446080) 0.00
8 0.00 (4) 0.4917 2.90 (50400) 0.2569 66686.00 (381049200) 0.0992
9 0.00 (5) 0.5018 37.16 (504000) 0.2759
10 0.00 (5) 0.5113 560.84 (5443200) 0.2936
11 0.00 (6) 0.5176 7813.00 (65318400) 0.3058
12 0.00 (6) 0.5236 122360.00 (838252800) 0.3167

Table 3. Experimental results on hyper-cubes
m = 1 m = 2 m = 3

n t, s (NQP) f∗ t, s (NQP) f∗ t, s (NQP) f∗

4 0.00 (12) 0.4082 0.00 (78) 0.00 0.02 (364) 0.00
8 0.24 (20160) 0.4787 12572.00 (203222880) 0.2245

Restricted search space
4 0.00 (6) 0.4082 0.00 (57) 0.00 0.01 (308) 0.00
8 0.06 (5040) 0.4787 5483.00 (88908120) 0.2245
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