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Abstract. This paper deals with a method, called locally linear embedding. It is a nonlinear dimensionality reduc-
tion technique that computes low-dimensional, neighbourhood preserving embeddings of high dimensional data and 
attempts to discover nonlinear structure in high dimensional data. The implementation of the algorithm is fairly 
straightforward, as the algorithm has only two control parameters: the number of neighbours of each data point and the 
regularisation parameter. The mapping quality is quite sensitive to these parameters. In this paper, we propose a new 
way for selecting the number of the nearest neighbours of each data point. Our approach is experimentally verified on 
two data sets: artificial data and real world pictures. 
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1. Introduction 

Data coming from the real world are often difficult 
to understand because of their high dimensionality. A 
number of dimensionality reduction techniques are 
proposed, that allow the user to better analyse or 
visualize complex data sets.  

Dimensionality reduction techniques may be divi-
ded into two classes. In the first one, there are linear 
methods, such as the Principal Component Analysis 
(PCA, [7]), or the classical scaling ([4, 5]), etc. 
However, the underlying structure of real data is often 
highly nonlinear and hence cannot be approximated by 
linear manifolds. The second class includes nonlinear 
algorithms, such as nonlinear variants of multidimen-
sional scaling (MDS) [4, 5], the self-organising map 
(SOM) [8], generative topographic mapping (GTM) 
[3], principal curves and surfaces [6], etc. 

Several nonlinear manifold learning methods – lo-
cally linear embedding (LLE) [11, 12], Isomap [13], 
Laplacian Eigenmaps [2] – have been developed 
recently. These methods are supposed to overcome the 
difficulties experienced with other classical nonlinear 
approaches mentioned above: they are simple to 
implement, have a very small number of free para-
meters, and do not trap local minima. These algo-
rithms are able to recover the intrinsic geometric 
structure of a broad class of nonlinear data manifolds 
and come in two flavours: local and global. Local ap-
proaches (e.g., LLE, Laplacian Eigenmaps) attempt to 

preserve the local geometry of the data; particularly, 
they seek to map nearby points on the manifold to 
nearby points in the low-dimensional representation. 
Global approaches (e.g., Isomap) attempt to preserve 
geometry at all scales, by mapping nearby points on 
the manifold to nearby points in a low-dimensional 
space, and faraway points to faraway points.  

In this paper, we concentrate on the LLE algo-
rithm. What are the advantages of LLE compared with 
PCA and MDS? The dimensionality reduction by LLE 
succeeds in identifying the underlying structure of the 
manifold, while PCA or MDS methods map faraway 
data points on the manifold to nearby points in the 
plane, failing to identify the structure. Unlike MDS, 
LLE eliminates the need to estimate pairwise distances 
between widely separated data points. This fact is 
illustrated in Figure 2, by mapping a nonlinear two-
dimensional S-manifold (Figure 1).  

 

Figure 1. A nonlinear S-manifold consisting of 1000 data 
points 
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 a) the result obtained by LLE b) the result obtained by PCA c) the result obtained by MDS 

Figure 2. Embeddings of the S-manifold, obtained by different methods 

The main control parameter of the LLE algorithm 
is the number of neighbours of each data point. This 
parameter strongly influences the results obtained. We 
propose here a new way for selecting the number of 
the nearest neighbours of each data point and apply 
LLE to high dimensional data visualization. 

2. Locally linear embedding method 

Locally linear embedding (LLE) [11, 12] is a non-
linear method for dimensionality reduction and mani-
fold learning. Given a set of data points distributed on 
a manifold in a high dimensional space, LLE is able to 
project the data to a lower space by unfolding the 
manifold. 

LLE works by assuming that the manifold is well 
sampled, i.e., there are enough data, each data point 
and its neighbours lie on or close to a locally linear 
patch. Therefore, a data point can be approximated as 
a weighted linear combination of its neighbours. The 
basic idea of LLE is that such a linear combination is 
invariant under linear transformations (translation, ro-
tation, and scaling) and, therefore, should remain un-
changed after the manifold has been unfolded to a low 
space. The low dimensional configuration of data 
points is given by solving two constrained least 
squares optimisation problems. 

The input of the LLE algorithm consists of  –
dimensional vectors  ( X ). The 
output consists of  – dimensional vectors 

 (Y ). The LLE algorithm has three 
steps. In the first step, one identifies  neighbours of 
each data point . Different criteria for neighbour 
selection can be adopted; the simplest possibility is to 
choose the -nearest neighbours according to the 
Euclidean distance. In the second step, one computes 
the weights  that reconstruct each data point  

best from its neighbours ) , minimizing 
the following error function 
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and  are not neighbours. This is a typical 
constrained least squares optimisation problem, which 
can be easily answered by solving a linear system of 
equations. The third step consists in mapping each 
data point  to a low-dimensional vector Y , which 
best preserve high-dimensional neighbourhood 
geometry represented by the weights . That is, the 
weights are fixed and we need to minimize the 
following function:  
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those provide a unique solution. The most 
straightforward method for computing the d -
dimensional coordinates (

dd ×

nd < ) is to find the bottom 
1+d  eigenvectors of the sparse matrix 
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= ). These eigenvectors are associated with the 
1+d  smallest eigenvalues of . The bottom 

eigenvector, whose eigenvalue is closest to zero, is the 
unit vector with all equal components and it is 
discarded. The remaining  eigenvectors form the  
embedding coordinates that are found by LLE. 

M

d d

3.  Selection of the number of the nearest 
neighbours  

The most important step to success of LLE is the 
first step, that is, to define the number  of the 
nearest neighbours for each data point. The mapping 
quality is rather sensitive to this parameter. If  is set 
too small, the continuous manifold can falsely be 
divided into disjoint sub-manifolds, in this way, the 
mapping does not reflect any global properties (Figure 
3, for example 

k

k

5=k ). If  is too high, a large k
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number of the nearest neighbours causes smoothing or 
elimination of small-scale structures in the manifold, 
the mapping loses its nonlinear character (Figure 3, 

for example 100=k ) and behaves like traditional 
PCA (Figure 2b). 

       
 k = 5 k = 6 k = 7  k = 8 

       
 k = 10 k = 15 k = 20  k = 30 

       
 k = 31 k = 40 k = 70  k = 100 

Figure 3. Embeddings of the 2-dimensional S-manifold, computed for different choices of the number  
of the nearest neighbours k by LLE 

   
a) m = 1000, k = 50       b) m = 2000, k = 50 

Figure 4. Embeddings of the S-manifolds with LLE 

The results of LLE [12] are typically stable over 
some range of neighbourhood sizes. Figure 3 shows a 
range of embeddings discovered by the LLE 
algorithm, all on the same data set, but using different 
numbers of the nearest neighbours . A reliable em-
bedding is obtained over a wide range of values, i.e., 

] . However, as mentioned in [12], the size of 
that range depends on various features of the data, 
such as the sampling density and manifold geometry. 
The dependence of LLE results on sampling density is 
shown in Figure 4. Two 2-dimensional S-manifolds 
were investigated. One of them consisted of 1000 
points and the other of 2000 points. In both cases, 
embeddings were computed, as . LLE failed to 

unravel the S-manifold of 1000 points and succeeded 
in unraveling the manifold of 2000 points. 

k

50

[ 30;8∈k

=k

If the structure of the manifold is known in ad-
vance, we can use a subjective evaluation that accom-
panies a human visual check. But what can we say 
about the reliability of the embeddings computed 
using a certain value of the parameter , when the 
structure of the manifold is not clear? To estimate the 
embeddings, it is necessary to use quantitative numeri-
cal measures. Spearman’s rho or the residual variance 
is commonly used for estimating the topology preser-
vation with a view to reduce dimensionality. Automa-
tic selection of the number of the nearest neighbours 
was proposed in [9].  

k
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 3.1. A new way for selecting a proper range of 
neighbourhood sizes  

As shown in Figure 3, it is not necessary to find 
the optimal number of the nearest neighbours, but it is 
enough to estimate a proper range of neighbourhood 
sizes. In this paper, we propose a new way for solving 
this problem. In order to quantitatively estimate the 
topology preservation, we compute Spearman’s rho. It 
estimates the correlation of rank order data, i.e., how 
well the corresponding low-dimensional projection 
preserves the order of the pairwise distances between 
the high-dimensional data points converted to ranks. 
Spearman’s rho is computed by using the following 
equation: 
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where T  is the number of distances to be compared, 
 and  are the ranks of the pairwise distances 

calculated for the original and projected data points. 
. The best value of Spearman’s rho is 

equal to one.  
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In the calculation of Spearman’s rho, distances 
both on the plane and on a multidimensional space are 
used. A question arises which distances should be eva-
luated when estimating Spearman’s rho: Euclidean or 
geodesic? Euclidean distances are usually used on the 
plane. On a multidimensional space, either the Eucli-
dean or geodesic distances are applied. Geodesic dis-
tances represent the shortest paths along the curved 
surface of the manifold. The author in [1] states that 
the Euclidean distance is not good for finding the 
shortest path between points within the framework of 
the manifold. The paper [13] states that it is necessary 
to apply geodesic distances in order to preserve the 
global structure of the manifold. It is reasonable to use 
the Euclidean distances in case the manifold is flat, 
therefore in further experiments on the plane we will 
always evaluate only Euclidean distances.  

The S-manifold ( ) has been investigated. 
The LLE algorithm was run for many times gradually 
increasing the number of neighbours k , each 
time calculating Spearman’s rho (Figure 5). Two de-
pendences of Spearman’s rho on  have been obtai-
ned: (I) the Euclidean distances were evaluated in a 
space, (II) the geodesic distances were evaluated in a 
space. Let the number of neighbours be k . We 
see that, when estimating the Euclidean distances, the 
value of Spearman’s rho is near to 1 ( ), and 
when estimating the geodesic distances in a space, the 
value of Spearman’s rho is much lower ( ). If 

, the Euclidean distances are preserved very 
well, but the structure of the manifold is destroyed 
(Figure 3, ), and we wished to preserve it. This 
experiment corroborates the fact that it is 

indispensable to evaluate geodesic distances in a 
space; therefore we will evaluate only geodesic 
distances in our further experiments. 
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Figure 5. Dependences of Spearman’s rho on k  obtained 
after visualizing the S-manifold by LLE:  

(I) Euclidean distances were evaluated in a space,  
(II) geodesic distances were evaluated in a space 

Only one parameter is selected in the calculation 
algorithm of geodesic distances – the number of the 
nearest neighbours necessary to draw a graph. Denote 
it as k . The LLE algorithm also has the same kind 

of parameter, – the number of neighbours . What 
value of  should it be when calculating geodesic 

distances? Should  be coincident with the chosen 
number of neighbours  in the LLE algorithm? 
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Figure 6. Dependences of Spearman’s rho on   
obtained after visualizing the S-manifold by LLE.  

Geodesic distances were evaluated in a space,  
as (a) 

k

10=geodk , (b)  kkgeod =

In Figure 6, two dependences of Spearman’s rho 
on  have been obtained: (a) when calculating geo-
desic distances in a space, a very small number of 
neighbours was fixed, e.g., , (b) when cal-
culating geodesic distances, the number of neighbours 
was varying just like in the LLE algorithm, i.e., 

. If 

k

geod

10=geodk

kk = 100=k , the value of Spearman’s rho 
according to curve (a) is rather low ( ≈ ), and the 
declined curve rises but slightly. Hence it follows that 
distances are badly retained and the mapping does not 

82.0
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represent the global structure. Curve (b) illustrates that 
the value of Spearman’s rho approaches 1 ( 95.0≈ ). It 
implies that the LLE result is rather good. However it 
is obvious that after visualising these data by LLE 
with , the resulting mapping does not reflect 
the structure of the manifold (Figure 3, 

100=k
100=k ), 

though the value of Spearman’s rho is close to 1. The 
reason why is as follows: if very many neighbours 

 are selected while calculating geodesic 
distances in a space, then the structure of nonlinear 
manifold is destroyed, i.e., the nearest neighbours to a 
point in a space may be the points met in the transition 
across the manifold (Euclidean distances are 
calculated when looking for neighbours). In Figure 1, 
the neighbours of the point marked by a black circular 
disk fall into the black circle. In this case, the LLE 
algorithm contains as many neighbours as that for 
calculating geodesic distances: k  (neighbours 
in the LLE algorithm are found by calculating 
Euclidean distances). Therefore, faraway points on the 
manifold are treated as the close ones both in a space 
and in a plane. This is the reason why the value of 
Spearman’s rho increases with an increase in number 
of the nearest neighbours. Good embeddings in Figure 
3 are obtained when curve (a) in Figure 6 reaches its 
maximum. Therefore, Spearman’s rho with fixed 
rather small k  may be used as criterion for 
visualization quality. 
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4. Application of LLE in analysis of picture set 

One of the applications of the LLE method in prac-
tice is visualization of the points, the coordinates of 
which are comprised of the parameters of pictures. A 
picture is digitised, i.e., a vector consists of colour 
parameters of pixels therefore it is of very large 
dimension. The particularity of these data is that, the 
data are comprised of pictures of the same object, by 
turning the object gradually at a certain angle. In this 
way the points differ from one another slightly, 
making up a certain manifold. For an experiment un-
coloured pictures were used, obtained by gradually 
rotating a duckling at the 360  angle [10]. The 
number of pictures (points) was . The images 
had  grayscale pixels, therefore the dimen-
sion of points in a multidimensional space is 

. The LLE algorithm was run for 35 times 
as . Each time Spearman’s rho was 
calculated. Three dependences of Spearman’s rho on 

 have been shown in Figure 7: (I), when calculating 
geodesic distances in a space, a very small number of 
neighbours was fixed, e.g., ; (II), when 
calculating geodesic distances, the number of 
neighbours is varying just like in the LLE algorithm, 
i.e., ; (III) – Euclidean distances were 
estimated in a space. We see that cases (I) and (II) bear 
the highest values of Spearman’s rho, i.e., 

 as 97.091.0 ≤≤ Spρ [ 8;2 ]∈k , while case (III) has 

much lower values of Spearman’s rho as [ ]8;2∈k

9

: 
. For , the values of Spearman’s 

rho considerably diminish ( , as 

7.066.0 ≤≤ Spρ 9≥k

Spρ 54.0≈ =k ) in 
case (I), in case (II) they decrease a little less 
( , as 82.0≈Spρ 9=k ), and in case (III), on the 
contrary, the values increase. Embeddings, obtained 
after visualising these data by LLE, are presented in 
Figure 8. Since the object was gradually turned round 
at the 360  angle, it is likely that the true 
representation is obtained in Figure 8a as 

°
[ ]8;2∈k . 

Hence it follows that cases (I) and (II) yield the right 
result. Case (I) illustrates an especially explicit 
difference between these solutions. 
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Figure 7. Dependences of Spearman’s rho on  obtained 
after visualizing pictures of a rotating duckling by LLE:  

(I) geodesic distances were evaluated in a space, k ; 

(II) geodesic distances were evaluated in a space, 
;  

(III) - Euclidean distances were evaluated in a space 

k

2=geod

kkgeod =

  
 a) k = 4 b) k = 9 

Figure 8. 2-dimensional embeddings of m = 72 pictures  
of a rotating duckling,  

obtained by LLE using k nearest neighbours.  
Larger circles mark representative samples of pictures 
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5. Conclusions 

In this paper, we have explored the LLE algorithm 
for nonlinear dimensionality reduction. The main 
control parameter of LLE is the number of the nearest 
neighbours of each data point. This parameter greatly 
influences the results obtained. In this paper, we pro-
pose a new way for selecting the value of this para-
meter. In order to quantitatively estimate the topology 
preservation, we compute Spearman’s rho. 

The experiments have shown that the quantitative 
measure – Spearman’s rho – is suitable to estimate the 
topology preservation after visualizing the data by the 
LLE algorithm. In order that Spearman’s rho properly 
reflected the projections obtained, it is necessary to 
evaluate the geodesic but not Euclidean distances 
when calculating its value in an n-dimensional space 
by selecting rather a small number of neighbours in 
the geodesic distance algorithm. 
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