
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2007, Vol.36, No.4

DIAGONAL MAJORIZATION ALGORITHM: PROPERTIES
AND EFFICIENCY

Jolita Bernatavičienė 1,2, Gintautas Dzemyda 1,2, Virginijus Marcinkevičius 1
1 Institute of Mathematics and Informatics

Akademijos St. 4, LT-08663, Vilnius, Lithuania
2 Vilnius Pedagogical University

Studentų St. 39, LT-08106, Vilnius, Lithuania

Abstract. In this paper, the diagonal majorization algorithm (DMA) has been investigated. The research focuses on
the possibilities to increase the efficiency of the algorithm by disclosing its properties. The diagonal majorization
algorithm is oriented at the multidimensional data visualization. The experiments have proved that, when visualizing
large data set with DMA, it is possible to save the computing time taking into account several factors: the strategy of
numbering of multidimensional vectors in the analysed data set and the neighbourhood order parameter.

Keywords: multidimensional scaling, visualization, large data set, diagonal majorization algorithm.

1. Introduction This paper focuses on the diagonal majorization
algorithm and on the possibilities to increase its
efficiency by disclosing its properties. At present, computer systems store large amounts

of data. Data from the real world are often described
by an array of parameters, i.e., we deal with
multidimensional data. It is much easier for a human
to observe, detect, or extract some information from
the graphical representation of these data (to detect the
presence of clusters, outliers or various regularities in
the analysed data) than from raw numbers.

2. Background for the diagonal majorization
algorithm

Multidimensional scaling (MDS) is a group of
methods that project multidimensional data to a low-
(usually two-) dimensional space and preserve the
interpoint distances among data as much as possible.
Let us have vectors (points) 1 2(, ,...,)i i i i

nX x x x= ,

1,...,i m= (i nX R∈). The pending problem is to get
the projection of these n-dimensional vectors iX ,

1,...,i m= on the plane . The two-dimensional
vectors correspond to them. Here

,

2R
2

m

1 2, ,..., mY Y Y

2)iy 1,.i
R∈

..,1(,i iY y= = . Denote the distance between

the vectors iX and jX by , and the distance bet-
ween the corresponding vectors on the projected space
(Y and) by . In our case, the initial dimen-
sionality is n, and the resulting one is 2. There exists a
multitude of variants of MDS with slightly different
so-called stress functions. In our experiments, the raw
stress (projection error) is minimized:

*
ijd

i Y j
ijd

One of the most popular methods for graphical
representation (visualization) of multidimensional data
is multidimensional scaling (MDS) [5]. It found a lot
of applications in technology [12], economy, medicine
[1], psychology [9], etc.

We face the problems with the standard MDS
algorithm when we have to project (visualize) a large
data set, or a new data point among the previously
mapped points has to be projected. In the standard
MDS, every iteration requires each point to be com-
pared with all other points and the iteration comp-
lexity is , here m is the number of vectors in
analysed data set. Thus, the MDS method is unsuitable
for large data sets: it takes much computing time or
there is not enough computing memory. Various
modifications of MDS have been proposed to visua-
lize of large data sets: Steerable multidimensional
scaling (MDSteer) [16], Incremental MDS, Relative
MDS [3, 13], Landmark MDS [14], Diagonal majo-
rization algorithm (DMA) [15], etc.

2(O m)

*

, 1

(
m

2)MDS ij ij ij
i j
i j

E w d
=

<

= −∑ d (1)

353

J. Bernatavičienė, G. Dzemyda, V. Marcinkevičius

where wij are weights.
Various types of minimization of the stress

function are possible (see [5], [11]). In this paper, we
use the Guttman majorization algorithm (GMA),
based on iterative majorization and its modification
so-called diagonal majorization algorithm (DMA)
[15]. GMA is one of the best optimisation algorithms
for this type of minimization problem [5], [6]. This
method is simple and powerful, because it guarantees
a monotone convergence of the stress function.

Formula (2) is called the Guttman transform [7].
†(' 1) ((')) (')Y t V B Y t Y t+ = , (2)

where has the entries: (())B Y t′

*

, for and 0

0, for and 0

ij
ij

ijij

ij

d
i j d

db

i j d

− ≠

=
 ≠ =

≠

,

1,

m

ii ij
j j i

b b
= ≠

= − ∑ .

V is a matrix of weights where V has the entries:

1s

ij

ij

ms

w
w

V
w

w

−
=

−

∑

∑

O

O

O

. (3)

†V denotes the Moore-Penrose pseudoinverse of V.

In our case =1, therefore ijw † 1
m

=V , here I is an

identity matrix.

I

′ ε

This algorithm for MDS can be summarized as
follows (see details in [5]):
1. Set the initial values of Y, set t . 0′ =
2. Compute the value of the stress function

 by (1); here the two-dimensional
vectors Y are set in .

(())MDSE Y t′
0t′ =

3. Increase the iteration counter t by one. ′

4. Compute the Guttman transform by (2). ()Y t′

5. Compute E Y . (())MDS t′

6. If E Y or t is equal
to the maximum number of iterations, then stop
(is a small positive constant), else go to Step 3.

((1)) (())MDS MDSt E Y t′ − − < ′

ε
Diagonal majorization algorithm (DMA) was

proposed in [15]. DMA uses simpler majorization
function:

11(' 1) () () [(('))] (')
2

Y t Y t diag V B Y t V Y t−′+ = + − . (4)

DMA attains slightly worse projection error than
GMA, but computing by the iteration equation (4) is
faster and there is no need of computing the

pseudoinverse matrix. In addition, DMA differs
from GMA that a large number of entries b in matrix
V have zero values. This means that iterative
computations of two-dimensional coordinates

,

†V

1,i

ij

1 2(,)i i iY y y= ...,m= are based not on all distances

 between multidimensional points *
ijd iX and jX .

This allows to speed up the visualization process and
to save the computer memory essentially.

This algorithm, however, remains of O m
complexity if we use the standard V matrix (3). With a
view to diminish the complexity of this algorithm,
Trosset and Groenen [15] recommended to use only a
part weights of matrix V and propose two ways of
forming the matrix V:

2()

1. The weights are defined by setting
 for d and *0.4 /(0.4)ij ijw d= + * 0.6ij < 0ijw = ,

otherwise. Here d defines some boundary.
We do not use this way in our experiments,
because it is difficult to estimate the number of
distances that will be taken into consideration,
and the sufficient distance boundary for the
analysed data set.

*
ij

*
ijd

0.6<

2. The weights are defined by setting for k

“cycles” of , e.g., i i

1ijw =
*
ijd 1↔ ± ,…, , etc.

and
i i↔ ± k

0ijw = , otherwise. The parameter k defines

neighbourhood order for point iX in the list of
analysed data set vectors. In this case, the
complexity of DMA algorithm decreases till

. ()mO k
Trosset and Groenen [15] however have not deter-

mined how much the result depends on selection of
the parameter k.

To compare the obtained visualization results, the
projection error is calculated:

* 2 *() (
m m

ij ij ij
i j i j

E d d d
< <

= −∑ ∑ 2) . (5)

The projection error E (5) is used here instead of
MDSE (1), because the inclusion of the normalized

parameter gives a clear interpretation of

the image quality that does not depend on the scale
and the number of distances in an n-dimensional
space.

* 2()
m

ij
i j

d
<
∑

3. Data sets for analysis

Five data sets were used in our experiments. Four
of them are artificial, and the last one is real, namely:

354

Diagonal Majorization Algorithm: Properties and Efficiency

355

1. Ellipsoidal[m, n] set, m=3140, n=50; the set
contains 10 overlapping ellipsoidal-type clusters.
In the experiments, data set, obtained using the
ellipsoidal cluster generator [8], is used. This ge-
nerator creates ellipsoidal clusters with the major
axis of an arbitrary orientation. The boundary of a
cluster is defined by four parameters:
• the origin (which is also the first focus);
• the interfocal distance, uniformly distributed in

the range [1.0, 3.0];
• the orientation of the major axis, uniformly

located amongst all orientations;
• the maximum sum of Euclidean distances to

two foci, belonging to the range [1.05, 1.15] –
equivalent to the eccentricity ranging from
[0.870, 0.952].

For each cluster, data points are generated at a
Gaussian-distributed distance from a uniformly
random point on the major axis, in a uniformly
random direction, and are rejected if they lie out-
side the boundary. Using this ellipsoidal generator,
an Ellipsoidal data set is generated.

2. Gaussian[m, n] set, where m=2729, n=10; it
contains 10 overlapping clusters. The Gaussian
data set has been generated, using the Gaussian
cluster generator. This generator is based on a stan-
dard cluster model using multivariate normal dis-
tributions. See [8] for more details.

3. Paraboloid[m, n] set, where m=2583, n=3; the data
set contains 2 non-overlapping clusters. The Para-
boloid data set is also an artificially created data
set. There are two classes in this data set. The
vectors are generated as follows: the first two
coordinates of the vector are randomly generated
in a predefined area (for the first class it is a circle
with radius 0.4, for the second class this area is a
ring, limited by two circles with radii 0.7 and 1.2).
Then the third coordinate is added using such a

rule 2
3 11.8 () ()x x= ⋅ + 2

2x . The created parabo-
loid is rotated to make the classification more
difficult.

4. Abalone[m, n] set, where m=4177, n=8 which
contains 29 clusters. This data set is taken from the
UCI repository [4]. Each vector is described by 8
parameters of abalone: – length (the longest

shell measurement), – diameter (perpendicular
to the length), – height (with meat in the shell),

 – the whole weight of abalone,

1x

2x

3x

4x 5x – shucked
weight (the weight of meat), 6x – viscera weight
(gut weight after bleeding), 7x – shell weight after
being dried, and 8x – rings. The data set samples
are highly overlapping. Since the scales of
parameters are different, it is necessary to
normalize them: to calculate the average jx and

variance 2
jσ of each parameter; the values of each

parameter ijx are normalized by the formula:

()jx x / jij − σ .

X

400k ≥

0.04E
0.21 9E =

4. Selection of the parameter k

As it is mentioned above, parameter k defines
neighbourhood order for point i in the list of
analysed data set vectors.

Selection of the parameter k in the diagonal
majorization algorithm (DMA) has a great influence
on the projection error (5) and obtained map. It has
been investigated how the projection error is varying
by increasing the parameter k, the computing time and
number of iterations being fixed. The vectors of the
initial analysed data set were mixed at random in each
experiment so that there were less similar points in the
list of analysed data points. Having done 50 experi-
ments for each k, when k varied from 100 to 1000, by
step 100, the averages of errors were computed. The
initial two-dimensional vectors were initiated in GMA
and DMA algorithms by the method of principal
component analysis (PCA) [2], [10].

The experiment has shown (see Figures 1 and 2)
that, for and under the fixed computing time,
already after 300 iterations one can get quite an
accurate result. Projection error increases less than
1 % comparing with GMA algorithm. With an increase
in the number of iterations, the error changes but
slightly. By increasing k considerably, the computing
time also increases, while the result approaches that
obtained by GMA algorithm (for
abalone data and

3497=
010 for ellipsoidal data).

0.0425

0.0435

0.0445

0.0455

0.0465

0 100 200 300 400 500 600 700 800 900 1000
k

100 iter. 300 iter. 500 iter. 700 iter. 900 iter.

Pr
oj

ec
tio

n
er

ro
r

Figure 1. Dependence of the projection error on the neighbourhood order parameter k (for abalone data set)

J. Bernatavičienė, G. Dzemyda, V. Marcinkevičius

0.21
0.212
0.214
0.216
0.218
0.22

0.222

0 100 200 300 400 500 600 700 800 900 1000k

100 iter. 300 iter. 500 iter. 700 iter. 900 iter.
Pr

oj
ec

tio
n

er
ro

r

Figure 2. Dependence of the projection error on the neighbourhood order parameter k (for ellipsoidal data set)

This experiment has also illustrated that for too
small k increasing number of iterations, in many cases
the error does not decrease but, vice verse, increases
(see Figures 1 and 2,). 50k =

5. Results of comparative analysis

Carrying out the experiments with different data
sets, it has been established that the projection error is
influenced a great deal by formation of set of multidi-
mensional points, i.e., numbering of vectors in ana-
lysed data set. To corroborate this fact, the following
investigation was performed. The initial set of multi-
dimensional data was made up using three different
strategies of points numbering of the set:
1. (Strategy I). At the beginning of algorithm opera-

tion, the points of analysed multidimensional data
set are mixed up at random (one random numbe-
ring).

2. (Strategy II). The points of multidimensional data
set and two-dimensional vectors, corresponding to
these multidimensional points, and whose coordi-
nates have been calculated in the previous itera-
tions, are randomly mixed up in the operation of
the algorithm at the beginning of the each iteration
(random numbering before each iteration).

3. (Strategy III). Using the method of the principal
component analysis (PCA) [10], multidimensional
vectors are projected onto a straight line, thus
establishing the similarity of this point, and multi-
dimensional data are numbered in this order
(closer points should have similar order numbers).
Using Strategies I and II for multidimensional

vector numbering, 50 experiments have been done

with each k, varying it from 50 to 1000, the data have
been visualized, the averages of projection error and
standard deviation as well as computing time has been
recorded. Since the previous experiments have shown
that the error changes insignificantly after more than
300 iterations, the algorithms have been iterated 300
times each in this experiment (Strategy I is used,
Figures 1 and 2).

Using Strategy II, even after 100 iterations rather
good results have been obtained and by increasing the
number of iterations they almost do not change. Using
this strategy, the least error is obtained, when these
three strategies were compared. The projection error
varies insignificantly by increasing k (Figures 3, 4,
and 5).

Increasing parameter k from 300 to 1000, the
projection error decreases by the rule

0.0002ln()E k C= − + , here C is a constant. It means
that in this case, the projection error will be decreased
till 0.08% approximately.

The experiments done have illustrated that num-
bering of multidimensional data (Strategy III) worsens
the visualizations results (Figures 3 and 4). If we
employ the DMA algorithm, we need close and distant
points side by side, because taking them into consi-
deration the coordinates of two-dimensional vectors
are computed. Mixing of multidimensional vectors at
each iteration implies that when calculating the
coordinates of a two-dimensional point, more and
various neighbors are regarded, which results in a
more accurate projection (Strategy II) and it suffices
less iterations (100 is enough) (Figure 5).

0.042
0.044
0.046
0.048
0.05

0.052

0 100 200 300 400 500 600 700 800 900 1000
k

Strategy I Strategy II Strategy III

Pr
oj

ec
tio

n
er

ro
r

Figure 3. Dependence of the projection error on the neighbourhood order parameter k (for abalone data set),

using different numbering strategies

356

Diagonal Majorization Algorithm: Properties and Efficiency

357

0.2
0.22
0.24
0.26
0.28
0.3

0.32

0 100 200 300 400 500 600 700 800 900 1000
k

Strategy I Strategy II Strategy III

Pr
oj

ec
tio

n
er

ro
r

Figure 4. Dependence of the projection error on the neighbourhood order parameter k (for ellipsoidal data set),

using different numbering strategies

0.21
0.212
0.214
0.216
0.218
0.22

50 100 150 200 250 300 400 500 600 700 800 900 1000
k

Strategy I (100 iterations) Strategy I (300 iterations)
Strategy I (500 iterations) Strategy I (700 iterations)
Strategy I (900 iterations) Strategy II (100 iterations)

Pr
oj

ec
tio

n
er

ro
r

Figure 5. Dependence of the projection error on the neighbourhood order parameter k (ellipsoidal data set),

using different numbering strategies (Strategies I and II) and different number of iterations

Table 1. Projection error, standart deviation of the projection error and computing time for both algorithm

GMA(100 iter.) DMA (Strategy I, 300 iter., k=400) DMA (Strategy II, 100 iter., k=400)
Data

Error time, s Average of
Error

St. deviation
of Error time, s Average of

Error
St. deviation

of Error time, s

abalone 0.043497 151.82 0.043493 0.000065 29.10 0.043726 0.000015 21.96
paraboloid 0.208653 22.40 0.217755 0.004121 16.98 0.214324 0.002012 9.74
ellipsoidal 0.210109 105.27 0.210794 0.000145 23.44 0.210501 0.000059 15.81
gaussian 0.283866 109.28 0.285405 0.000290 28.60 0.284212 0.000039 19.10

Figure 6. Projection of the ellipsoidal data obtained by GMA

algorithm: t=94.22s, E=0.210109

Figure 7. Projection of the ellipsoidal data obtained by DMA

algorithm: k=400, t=13.84s, E=0.210848

Also the GMA and DMA algorithms have been
compared with respect to time and projection error.
The results are presented in Table 1. After the
experiments with four different data sets, it has been
established that the projection error, obtained by
GMA, is slightly smaller, while using DMA, the

computing time is considerably shorter. The larger the
set, the more distinct the computing time difference is.
By comparing visualization results obtained by GMA
and DMA, we notice no great difference between the
obtained projections, since the difference between
errors is very little (1%≤ for abalone, gaussian and
ellipsoidal data sets, and for paraboloid data 4%≤

J. Bernatavičienė, G. Dzemyda, V. Marcinkevičius

set). Figures 6 and 7 present the ellipsoidal data pro-
jections, obtained by GMA and DMA. 100 iterations
have been performed in both cases. The DMA
employed Strategy II for numbering of a multidimen-
sional data set. In both Figures 6 and 7 the data struc-
ture is sufficiently clear, though errors are slightly
different. However, the difference between computing
times is distinct, the projection has been obtained by
DMA 7 times quicker. This difference of computing
time decreases by increasing the amount of vectors in
the analysed data set and decreasing parameter k,
because data preprocessing for iteration process, using
Strategy II, requires more calculations.

6. Conclusions

The experiments in this paper have proved that
when visualizing large data set, the diagonal majori-
zation algorithm (DMA) is efficient in saving the
computing time when a good visualization quality is
required, however, this is influenced by several fac-
tors: the strategy of numbering of multidimensional
vectors in the analysed data set and the neighbourhood
order parameter k. The projection error by DMA is a
little worse than that obtained by GMA, however, by
selecting the parameter , rather low error is
obtained.

400k ≥

We have established the dependence of DMA
efficiency on the numbering of points of the analysed
set, therefore several strategies of numbering are offe-
red, the usage of which resulted in low visualization
errors for the smaller neighbourhood order parameter
k and has saved time considerably.

Renumbering of multidimensional points of the
analysed data set before each iteration has turned to be
particularly efficient, because, in this case, almost all
the points of the analysed set actually take part in the
calculation of each multidimensional point projection.

Acknowledgment

The research is partially supported by the Lithua-
nian State Science and Studies Foundation project
“Information technology tools of clinical decision
support and citizens wellness for e.Health system (No.
B-07019)”.

References
 [1] J. Bernatavičienė, G. Dzemyda, O. Kurasova, V.

Marcinkevičius, V. Medvedev. The problem of vi-
sual analysis of multidimensional medical data.
Springer optimization and its applications, Models
and algorithms for global optimization, New York :
Springer, ISBN 0-387-36720-9,Vol.4, 2007, 277–298.

 [2] J. Bernatavičienė, G. Dzemyda, O. Kurasova, V.
Marcinkevičius. Optimal decisions in combining the
SOM with nonlinear projection methods. European
Journal of Operational Research, Vol.173, 2006, 729–
745.

 [3] J. Bernatavičienė, G. Dzemyda, V. Marcinkevičius.
Conditions for Optimal Efficiency of Relative MDS.
Informatica. ISSN 0868-4952. Vol.18, No.2, 2007,
187–202.

 [4] C.L. Blake, C.J. Mertz. UCI Repository of machine
learning databases. Irvine, CA: University of Califor-
nia, Department of Information and Computer
Science,1998.

 [5] I. Borg, P. Groenen. Modern Multidimensional Sca-
ling: Theory and Applications. Springer, New York,
1997.

 [6] P.J.F. Groenen, M. van de Vaelden. Multidimen-
sional Scaling, Econometric Institute Report EI2004-
15, 2004,
https://ep.eur.nl/handle/1765/1274/1/ei200415.pdf.

 [7] L. Guttman. A general nonmetric technique for fin-
ding the smallest coordinate space for a configuration
of points. Psychometrika, Vol.33, 1968, 469–506.

 [8] J. Handl, J. Knowles. Cluster generators for large
high-dimensional data sets with large numbers of
clusters. http://dbkgroup.org/handl/generators/.

 [9] J.B. Kruskal. Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis. Psychomet-
rika, Vol.29, No.1, 1964, 1–27.

[10] D.N Lawley, A.E. Maxwell. Factor Analysis as a Sta-
tistical Method. London, Butterworths, 1963.

[11] R. Mathar, A. Žilinskas. On Global Optimization in
Two-Dimensional Scaling, Acta Aplicandae Mathema-
ticae, Vol. 33, 1993, 109–118.

[12] A. Morrison, G. Ross, and M. Chalmers. Fast multi-
dimensional scaling through sampling, springs and
interpolation. Information Visualization, Vol.2, No.1,
2003, 68–77.

[13] A. Naud. Visualization of high-dimensional data
using a association of multidimensional scaling to
clustering. Proceedings of the 2004 IEEE Conference
on Cybernetics and Intelligent Systems, Vol.1, 2004,
252–255.

[14] V. de Silva, J.B. Tenenbaum. Global versus local
methods for nonlinear dimensionality reduction. In S.
Becker, S. Thrun,, K. Obermayer (Eds.), Advances in
Neural Information Processing Systems, Vol. 15, MIT
Press, Cambridge, MA, 2003, 721–728.

[15] M.W. Trosset, P.J.F. Groenen. Multidimensional
scaling algorithms appear. In Computing Science and
Statistics, 2005, CD-ROM.

[16] M. Williams, T. Munzner. Steerable, Progressive
Multidimensional Scaling. Information Visualization,
2004. INFOVIS 2004. IEEE Symposium on 10-12 Oct.
2004, 57–64.

Received September 2007.

358

