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Abstract. In this paper, the diagonal majorization algorithm (DMA) has been investigated. The research focuses on 
the possibilities to increase the efficiency of the algorithm by disclosing its properties. The diagonal majorization 
algorithm is oriented at the multidimensional data visualization. The experiments have proved that, when visualizing 
large data set with DMA, it is possible to save the computing time taking into account several factors: the strategy of 
numbering of multidimensional vectors in the analysed data set and the neighbourhood order parameter. 
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1. Introduction This paper focuses on the diagonal majorization 
algorithm and on the possibilities to increase its 
efficiency by disclosing its properties. At present, computer systems store large amounts 

of data. Data from the real world are often described 
by an array of parameters, i.e., we deal with 
multidimensional data. It is much easier for a human 
to observe, detect, or extract some information from 
the graphical representation of these data (to detect the 
presence of clusters, outliers or various regularities in 
the analysed data) than from raw numbers. 

2. Background for the diagonal majorization 
algorithm 

Multidimensional scaling (MDS) is a group of 
methods that project multidimensional data to a low- 
(usually two-) dimensional space and preserve the 
interpoint distances among data as much as possible. 
Let us have vectors (points) 1 2( , ,..., )i i i i

nX x x x= , 

1,...,i m=  ( i nX R∈ ). The pending problem is to get 
the projection of these n-dimensional vectors iX , 

1,...,i m=  on the plane . The two-dimensional 
vectors  correspond to them. Here 

, 
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m
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..,1( ,i iY y= = . Denote the distance between 

the vectors iX  and jX  by , and the distance bet-
ween the corresponding vectors on the projected space 
(Y  and ) by . In our case, the initial dimen-
sionality is n, and the resulting one is 2. There exists a 
multitude of variants of MDS with slightly different 
so-called stress functions. In our experiments, the raw 
stress (projection error) is minimized: 

*
ijd

i Y j
ijd

One of the most popular methods for graphical 
representation (visualization) of multidimensional data 
is multidimensional scaling (MDS) [5]. It found a lot 
of applications in technology [12], economy, medicine 
[1], psychology [9], etc.  

We face the problems with the standard MDS 
algorithm when we have to project (visualize) a large 
data set, or a new data point among the previously 
mapped points has to be projected. In the standard 
MDS, every iteration requires each point to be com-
pared with all other points and the iteration comp-
lexity is , here m is the number of vectors in 
analysed data set. Thus, the MDS method is unsuitable 
for large data sets: it takes much computing time or 
there is not enough computing memory. Various 
modifications of MDS have been proposed to visua-
lize of large data sets: Steerable multidimensional 
scaling (MDSteer) [16], Incremental MDS, Relative 
MDS [3, 13], Landmark MDS [14], Diagonal majo-
rization algorithm (DMA) [15], etc.  

2(O m )

*

, 1

(
m

2)MDS ij ij ij
i j
i j

E w d
=

<

= −∑ d  (1) 

353 



J. Bernatavičienė, G. Dzemyda, V. Marcinkevičius 

where wij are weights. 
Various types of minimization of the stress 

function are possible (see [5], [11]). In this paper, we 
use the Guttman majorization algorithm (GMA), 
based on iterative majorization and its modification 
so-called diagonal majorization algorithm (DMA) 
[15]. GMA is one of the best optimisation algorithms 
for this type of minimization problem [5], [6]. This 
method is simple and powerful, because it guarantees 
a monotone convergence of the stress function. 

Formula (2) is called the Guttman transform [7]. 
†( ' 1) ( ( ')) ( ')Y t V B Y t Y t+ = , (2) 

where  has the entries: ( ( ))B Y t′
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V is a matrix of weights where V has the entries: 
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†V  denotes the Moore-Penrose pseudoinverse of V.  

In our case =1, therefore ijw † 1
m

=V , here I is an 

identity matrix. 

I

′ ε

This algorithm for MDS can be summarized as 
follows (see details in [5]): 
1. Set the initial values of Y, set t . 0′ =
2. Compute the value of the stress function 

 by (1); here the two-dimensional 
vectors Y  are set in . 

( ( ))MDSE Y t′
0t′ =

3. Increase the iteration counter t  by one. ′

4. Compute the Guttman transform  by (2). ( )Y t′

5. Compute E Y . ( ( ))MDS t′

6. If E Y  or t  is equal 
to the maximum number of iterations, then stop 
(  is a small positive constant), else go to Step 3. 

( ( 1)) ( ( ))MDS MDSt E Y t′ − − < ′

ε
Diagonal majorization algorithm (DMA) was 

proposed in [15]. DMA uses simpler majorization 
function: 

11( ' 1) ( ) ( ) [ ( ( ') )] ( ')
2

Y t Y t diag V B Y t V Y t−′+ = + − . (4) 

DMA attains slightly worse projection error than 
GMA, but computing by the iteration equation (4) is 
faster and there is no need of computing the 

pseudoinverse  matrix. In addition, DMA differs 
from GMA that a large number of entries b  in matrix 
V have zero values. This means that iterative 
computations of two-dimensional coordinates 

, 

†V

1,i

ij

1 2( , )i i iY y y= ...,m=  are based not on all distances 

 between multidimensional points *
ijd iX  and jX . 

This allows to speed up the visualization process and 
to save the computer memory essentially.  

This algorithm, however, remains of O m  
complexity if we use the standard V matrix (3). With a 
view to diminish the complexity of this algorithm, 
Trosset and Groenen [15] recommended to use only a 
part weights of matrix V and propose two ways of 
forming the matrix V: 

2( )

1. The weights are defined by setting 
 for d  and *0.4 /(0.4 )ij ijw d= + * 0.6ij < 0ijw = , 

otherwise. Here d  defines some boundary. 
We do not use this way in our experiments, 
because it is difficult to estimate the number of 
distances  that will be taken into consideration, 
and the sufficient distance boundary for the 
analysed data set.  

*
ij

*
ijd

0.6<

2. The weights are defined by setting  for k 

“cycles” of , e.g., i i

1ijw =
*
ijd 1↔ ± ,…, , etc. 

and 
i i↔ ± k

0ijw = , otherwise. The parameter k defines 

neighbourhood order for point iX  in the list of 
analysed data set vectors. In this case, the 
complexity of DMA algorithm decreases till 

. ( )mO k
Trosset and Groenen [15] however have not deter-

mined how much the result depends on selection of 
the parameter k. 

To compare the obtained visualization results, the 
projection error is calculated: 

* 2 *( ) (
m m

ij ij ij
i j i j

E d d d
< <

= −∑ ∑ 2) . (5) 

The projection error E (5) is used here instead of 
MDSE  (1), because the inclusion of the normalized 

parameter  gives a clear interpretation of 

the image quality that does not depend on the scale 
and the number of distances in an n-dimensional 
space.  

* 2( )
m

ij
i j

d
<
∑

3. Data sets for analysis 

Five data sets were used in our experiments. Four 
of them are artificial, and the last one is real, namely: 
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1. Ellipsoidal[m, n] set, m=3140, n=50; the set 
contains 10 overlapping ellipsoidal-type clusters. 
In the experiments, data set, obtained using the 
ellipsoidal cluster generator [8], is used. This ge-
nerator creates ellipsoidal clusters with the major 
axis of an arbitrary orientation. The boundary of a 
cluster is defined by four parameters: 
• the origin (which is also the first focus); 
• the interfocal distance, uniformly distributed in 

the range [1.0, 3.0]; 
• the orientation of the major axis, uniformly 

located amongst all orientations; 
• the maximum sum of Euclidean distances to 

two foci, belonging to the range [1.05, 1.15] – 
equivalent to the eccentricity ranging from 
[0.870, 0.952]. 

For each cluster, data points are generated at a 
Gaussian-distributed distance from a uniformly 
random point on the major axis, in a uniformly 
random direction, and are rejected if they lie out-
side the boundary. Using this ellipsoidal generator, 
an Ellipsoidal data set is generated.  

2. Gaussian[m, n] set, where m=2729, n=10; it 
contains 10 overlapping clusters. The Gaussian 
data set has been generated, using the Gaussian 
cluster generator. This generator is based on a stan-
dard cluster model using multivariate normal dis-
tributions. See [8] for more details. 

3. Paraboloid[m, n] set, where m=2583, n=3; the data 
set contains 2 non-overlapping clusters. The Para-
boloid data set is also an artificially created data 
set. There are two classes in this data set. The 
vectors are generated as follows: the first two 
coordinates of the vector are randomly generated 
in a predefined area (for the first class it is a circle 
with radius 0.4, for the second class this area is a 
ring, limited by two circles with radii 0.7 and 1.2). 
Then the third coordinate is added using such a 

rule 2
3 11.8 ( ) ( )x x= ⋅ + 2

2x . The created parabo-
loid is rotated to make the classification more 
difficult. 

4. Abalone[m, n] set, where m=4177, n=8 which 
contains 29 clusters. This data set is taken from the 
UCI repository [4]. Each vector is described by 8 
parameters of abalone:  – length (the longest 

shell measurement),  – diameter (perpendicular 
to the length),  – height (with meat in the shell), 

 – the whole weight of abalone, 

1x

2x

3x

4x 5x  – shucked 
weight (the weight of meat), 6x  – viscera weight 
(gut weight after bleeding), 7x  – shell weight after 
being dried, and 8x  – rings. The data set samples 
are highly overlapping. Since the scales of 
parameters are different, it is necessary to 
normalize them: to calculate the average jx  and 

variance 2
jσ  of each parameter; the values of each 

parameter ijx  are normalized by the formula: 

( )jx x / jij − σ . 

X

400k ≥

0.04E
0.21 9E =

4. Selection of the parameter k 

As it is mentioned above, parameter k defines 
neighbourhood order for point i  in the list of 
analysed data set vectors. 

Selection of the parameter k in the diagonal 
majorization algorithm (DMA) has a great influence 
on the projection error (5) and obtained map. It has 
been investigated how the projection error is varying 
by increasing the parameter k, the computing time and 
number of iterations being fixed. The vectors of the 
initial analysed data set were mixed at random in each 
experiment so that there were less similar points in the 
list of analysed data points. Having done 50 experi-
ments for each k, when k varied from 100 to 1000, by 
step 100, the averages of errors were computed. The 
initial two-dimensional vectors were initiated in GMA 
and DMA algorithms by the method of principal 
component analysis (PCA) [2], [10].  

The experiment has shown (see Figures 1 and 2) 
that, for  and under the fixed computing time, 
already after 300 iterations one can get quite an 
accurate result. Projection error increases less than 
1 % comparing with GMA algorithm. With an increase 
in the number of iterations, the error changes but 
slightly. By increasing k considerably, the computing 
time also increases, while the result approaches that 
obtained by GMA algorithm (  for 
abalone data and 

3497=
010  for ellipsoidal data).  
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Figure 1. Dependence of the projection error on the neighbourhood order parameter k (for abalone data set) 
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Figure 2. Dependence of the projection error on the neighbourhood order parameter k (for ellipsoidal data set) 

This experiment has also illustrated that for too 
small k increasing number of iterations, in many cases 
the error does not decrease but, vice verse, increases 
(see Figures 1 and 2, ). 50k =

5. Results of comparative analysis 

Carrying out the experiments with different data 
sets, it has been established that the projection error is 
influenced a great deal by formation of set of multidi-
mensional points, i.e., numbering of vectors in ana-
lysed data set. To corroborate this fact, the following 
investigation was performed. The initial set of multi-
dimensional data was made up using three different 
strategies of points numbering of the set: 
1. (Strategy I). At the beginning of algorithm opera-

tion, the points of analysed multidimensional data 
set are mixed up at random (one random numbe-
ring). 

2. (Strategy II). The points of multidimensional data 
set and two-dimensional vectors, corresponding to 
these multidimensional points, and whose coordi-
nates have been calculated in the previous itera-
tions, are randomly mixed up in the operation of 
the algorithm at the beginning of the each iteration 
(random numbering before each iteration). 

3. (Strategy III). Using the method of the principal 
component analysis (PCA) [10], multidimensional 
vectors are projected onto a straight line, thus 
establishing the similarity of this point, and multi-
dimensional data are numbered in this order 
(closer points should have similar order numbers). 
Using Strategies I and II for multidimensional 

vector numbering, 50 experiments have been done 

with each k, varying it from 50 to 1000, the data have 
been visualized, the averages of projection error and 
standard deviation as well as computing time has been 
recorded. Since the previous experiments have shown 
that the error changes insignificantly after more than 
300 iterations, the algorithms have been iterated 300 
times each in this experiment (Strategy I is used, 
Figures 1 and 2). 

Using Strategy II, even after 100 iterations rather 
good results have been obtained and by increasing the 
number of iterations they almost do not change. Using 
this strategy, the least error is obtained, when these 
three strategies were compared. The projection error 
varies insignificantly by increasing k (Figures 3, 4, 
and 5). 

Increasing parameter k from 300 to 1000, the 
projection error decreases by the rule 

0.0002ln( )E k C= − + , here C is a constant. It means 
that in this case, the projection error will be decreased 
till 0.08% approximately. 

The experiments done have illustrated that num-
bering of multidimensional data (Strategy III) worsens 
the visualizations results (Figures 3 and 4). If we 
employ the DMA algorithm, we need close and distant 
points side by side, because taking them into consi-
deration the coordinates of two-dimensional vectors 
are computed. Mixing of multidimensional vectors at 
each iteration implies that when calculating the 
coordinates of a two-dimensional point, more and 
various neighbors are regarded, which results in a 
more accurate projection (Strategy II) and it suffices 
less iterations (100 is enough) (Figure 5). 
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Figure 3. Dependence of the projection error on the neighbourhood order parameter k (for abalone data set),  

using different numbering strategies 
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Figure 4. Dependence of the projection error on the neighbourhood order parameter k (for ellipsoidal data set),  

using different numbering strategies 
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Figure 5. Dependence of the projection error on the neighbourhood order parameter k (ellipsoidal data set),  

using different numbering strategies (Strategies I and II) and different number of iterations 

Table 1. Projection error, standart deviation of the projection error and computing time for both algorithm  

GMA(100 iter.) DMA (Strategy I, 300 iter., k=400) DMA (Strategy II, 100 iter., k=400) 
Data 

Error time, s Average of 
Error 

St. deviation 
of Error time, s Average of 

Error 
St. deviation 

of Error time, s

abalone 0.043497 151.82 0.043493 0.000065 29.10 0.043726 0.000015 21.96 
paraboloid 0.208653 22.40 0.217755 0.004121 16.98 0.214324 0.002012 9.74 
ellipsoidal 0.210109 105.27 0.210794 0.000145 23.44 0.210501 0.000059 15.81 
gaussian 0.283866 109.28 0.285405 0.000290 28.60 0.284212 0.000039 19.10 

 
 

 
Figure 6. Projection of the ellipsoidal data obtained by GMA 

algorithm: t=94.22s, E=0.210109 

 
Figure 7. Projection of the ellipsoidal data obtained by DMA 

algorithm: k=400, t=13.84s, E=0.210848 
 

Also the GMA and DMA algorithms have been 
compared with respect to time and projection error. 
The results are presented in Table 1. After the 
experiments with four different data sets, it has been 
established that the projection error, obtained by 
GMA, is slightly smaller, while using DMA, the 

computing time is considerably shorter. The larger the 
set, the more distinct the computing time difference is. 
By comparing visualization results obtained by GMA 
and DMA, we notice no great difference between the 
obtained projections, since the difference between 
errors is very little ( 1%≤  for abalone, gaussian and 
ellipsoidal data sets, and  for paraboloid data 4%≤
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set). Figures 6 and 7 present the ellipsoidal data pro-
jections, obtained by GMA and DMA. 100 iterations 
have been performed in both cases. The DMA 
employed Strategy II for numbering of a multidimen-
sional data set. In both Figures 6 and 7 the data struc-
ture is sufficiently clear, though errors are slightly 
different. However, the difference between computing 
times is distinct, the projection has been obtained by 
DMA 7 times quicker. This difference of computing 
time decreases by increasing the amount of vectors in 
the analysed data set and decreasing parameter k, 
because data preprocessing for iteration process, using 
Strategy II, requires more calculations. 

6. Conclusions 

The experiments in this paper have proved that 
when visualizing large data set, the diagonal majori-
zation algorithm (DMA) is efficient in saving the 
computing time when a good visualization quality is 
required, however, this is influenced by several fac-
tors: the strategy of numbering of multidimensional 
vectors in the analysed data set and the neighbourhood 
order parameter k. The projection error by DMA is a 
little worse than that obtained by GMA, however, by 
selecting the parameter , rather low error is 
obtained. 

400k ≥

We have established the dependence of DMA 
efficiency on the numbering of points of the analysed 
set, therefore several strategies of numbering are offe-
red, the usage of which resulted in low visualization 
errors for the smaller neighbourhood order parameter 
k and has saved time considerably. 

Renumbering of multidimensional points of the 
analysed data set before each iteration has turned to be 
particularly efficient, because, in this case, almost all 
the points of the analysed set actually take part in the 
calculation of each multidimensional point projection. 
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