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Abstract. The aim of this paper is a computer study of the system for simulation and optimization of interbank 
settlements. The system is based on the Poisson-lognormal model of settlement flow and performs iterative simulation 
and optimization of expected transaction costs using randomly generated samples of transaction flows. The results of 
study by Monte-Carlo simulation are given, based on data of the payment and settlement system of the Bank of 
Lithuania. 
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1. Introduction 

Active introductions of the means of electronic 
data transfer in banking and concentration of a great 
part of settlements at the centres of interbank pay-
ments were related with the creation of an automated 
system of clearing. The main purpose of such systems 
is to warrant a fast and rational turnover of settle-
ments, to balance payments, and to reduce the move-
ment of money supply. These systems should provide 
the principles of stability, efficiency, and security. 
Participants of the system must satisfy the require-
ments of liquidity and capital adequacy measures. The 
owner, operator, and supervisor of such a system by 
default are the central bank. It installs a request for the 
participants of the system, conducts supervision over 
their performance and takes measures that guarantee a 
stable system operation. 

The target of this paper is computer study of the 
system for simulation and optimization of interbank 
settlements. The system is based on the Puasson-log-
normal model of settlements flow and performs 
iterative simulation and optimization of expected 
transaction costs using randomly generated samples of 
transaction flows. The main parts of the system are 
described by Bakšys and Sakalauskas, 2007 [1]. The 
results of the system study by Monte-Carlo simulation 
are given based on data of the payment and settlement 
system of the Bank of Lithuania. 

2. A description of simulation and 
optimization system of settlements 

The principal scheme of modelling, simulation, 
and optimization of the settlements system should 
consist of the following parts: 
• the subsystem of analysis and calibration; 
• the subsystem of simulation and optimization. 

In Figure 1, we present the scheme of modelling, 
simulation and optimisation of the settlements system. 

The data are scanned in the part of statistical ana-
lysis. These data are used to calibrate the settlement 
model and compute the parameters. The calibration 
procedures are developed on the base of the Poisson-
lognormal model [1]. 

In the part of generating the settlement flow, a 
fixed number of applications is generated using the 
generator of random numbers by means of the Pois-
son-lognormal model [1]. In the part of simulation of 
the settlement process the time of transactions are 
simulated considering the address of applications and 
liquidity characteristics. In the subsystem of analyses 
of costs and liquidity, the settlement costs and the 
fixed loss of liquidity are computed. In the part of 
optimization, different strategies for management of 
the correspondent account of participants and the cent-
ral bank are explored. In the simulation process a 
continuous net settlement system is realized when 
transactions are booked immediately [3]. 
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Figure 1. The system of modelling, simulation, and optimization of settlements 

2.1. Modelling and simulation of data 

Let us consider the system consisting of J agents, 
who execute payments between themselves. We call 
by agents the participants of a system: banks, foreign 
bank branches, credit unions, and other financial or 
clearing institution members of the payment and 
settlement system. The participants send applications 
to the payment and settlement system. Each applica-
tion is described in the system by the name of a 
sender, name of the addressee, moment of delivery of 
the application, and the volume of transaction. 

The receipt of real data is bound up with a problem 
of confidentiality. Usually the institutions which take 
part in interbanking operations avoid to reveal the data 
of transactions. Exceptionally it is possible to receive 
encoded data. 

We consider anonymous data of the interbank 
settlement session of a typical labour day presented by 
the Bank of Lithuania. These data consist of 74637 
applications of J =11 participants of the Payment and 
Settlement System. The data include the code name 
(number) of a participant of the payment and settle-
ment system, time of delivery of the applications, 
volume of applications, and the flow of applications. 
Further we use the term “payment” instead of “pay-
ment order”, for simplicity. 

According to the transaction model used the sys-
tem generates flows of moments of bilateral payments 
by the Poisson distribution and the corresponding flow 
of payment volumes according to lognormal distribu-
tion. The primary data were obtained from these data 
by an imitative model of generation of payments flow: 
• frequency of submission of applications; 

• average of the value of one transfer; 
• standard deviation of one transfer. 

2.2. Simulation of settlement costs 

A successful performance of the payment system is 
guaranteed by keeping sufficient sums in the corres-
pondent accounts. The correspondent account of the 
l th day consists of the correspondent account of the 
previous day, net balance, and the deposited (or with-
drawn) amount of asset of the participant himself. 
Thus, the amount on the correspondent account may 
be computed as follows: 

1max(0, )l l l
i i i

l
iK K δ−= + G+ , (1) 

where,  is the balance, l
iδ l

iK  is the correspondent 

account residue,  is the deposited or withdrawn 
sum of the bank  for day  [1]. 

l
iG

i l
Let us analyze how banks can manage settlement 

costs by depositing (or withdrawing) assets on the 
correspondent account. We consider the policy when 
banks deposit or withdraw certain fixed sums . 
When computing operational costs we have to take 
into consideration that a bank cannot withdraw a sum 
larger than that present in the corresponding account. 
Thus, after simple considerations, we have that the 
deposited or withdrawn amount is as follows: 

iX

( )1 1max , max ,0l lG X Ki i i iδ − −= − + 
 

l . (2) 

Insufficient sums of the clearing accounts cannot 
satisfy the credit obligations, because this fact desta-
bilizes interbank payments and sets gridlocks in the 
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payment and settlement system. The Central bank 
allows borrowing overnight loans and installs reserve 
requirements to the settlement system participants in 
order to prevent the illiquidity in the payment system. 
Therefore the Central bank establishes reserve require-
ments  for the participants of the settlement sys-
tem. The reserve requirements depend on liabilities of 
a participant. 

iRR

( ) ( ,
1

1 ,
N

i i x i i i n
n

Q X D X
N

δ
=

= ∂∑ )

)

. (8) 

Denote the vector of agent impact on its cor-
respondent account as 1,( , JX X X= K . The quality 
of the settlement system can be defined by the general 
expected cost 

( ) (
1

J
L X L Xi i

i
=

=
∑% % ) . (9) In order to study the policies of credit and liquidity 

risk control, we consider operational costs of settle-
ments. The total cost of settlements of the i th agent 
during one period consists of several parts: 

During the simulation the sampling variance can 
be computed  

( )( )22

1

1( )
N n

N n
d X D L X

N =
= −∑ % , (10) i i i i iD RE F B TT AC= + + + + i

D

)

 (3) 

where  is the premium for deposit,  is the pay 
of nonconformity of reserve requirements,  is the 
cost of short-term loans, TT  is the indirect bank 
losses due to the freeze of the deposited amount of 
assets (or possible profit of withdrawal) in the corres-
pondent account, and  is the operation cost. The 
main parts of the total costs of settlements are 
described by Bakšys and Sakalauskas, 2007 [1] 

iRE iF

iB

i

iAC

where , 1 . ( ), ,
1

J
nD D Xi i i n

i
δ=

=
∑ n N≤ ≤

3. Statistical optimisation of settlement costs 

The payment and settlement system is 
characterised by total settlement costs  

1

J
D i

i
=

=
∑ , (4) 

We develop a statistical optimization procedure for 
minimizing the costs using the approach of stochastic 
nonlinear programming by the Monte-Carlo estima-
tors [5]. Let some initial vector of agents deposits 

( )0 0 0
1 2, , , 0

JX X X X= K  be given, and a random 

sample of income and outcome vectors be generated. 
Let the initial sample size be N0. Now, the Monte-
Carlo estimators of the gradient of expected costs are 
computed according to (9). Next, an iterative 
stochastic procedure of gradient search could be 
introduced: 

Let us calculate the average costs of service by 
simulating a few periods of settlements.  

Denote the cost of transactions during one period 
by ( iiii XDD δ,=

),,,( 21 T
iii δδδ K=

, which is a random function in 
general, depending on the deposit  and the vector 
of balances of the correspondent account 

. Let us denote the expected cost 
during one period by  

iX

iδ

( )ii
tt XQXX ⋅−=+ ρ1 , (11) 

where 0>ρ  is a certain step-length multiplier.  

( ) ( ,i i i i iL X ED X )δ= . (5) 

We choose the sample size at each next iteration 
inversely proportional to the square of the gradient 
estimator from the current iteration:  

( , , )1
1( ) ( ( )) ( ( )) '

tn Fish n N ntN
t t tQ X A X Q X

γ

ρ

⋅ −+ =
−⋅ ⋅ ⋅

, (12) 
Using the formulas of stochastic differentiation 

[6], we can compute the subgradients ( ),x i i iD X δ∂ . 
It is easy to make sure that expectation of the sub-
gradient of the cost function yields the gradient of 
expected costs [4]: 

( ) ( iiix
i

ii XDE
dX

XdL
δ,∂= ) . (6) 

where  is the ),,( nNnFish t −γ γ -quintile of the 

Fisher distribution with ( degrees of 
freedom. 

), nNn t −

The step length ρ  could be chosen experimental-
ly. We introduce minimal and maximal values Nmin  
and Nmax are to avoid great fluctuations of sample size 
in iterations. Usually Nmin ~500-1000 and Nmax chosen 
from the conditions on the permissible confidence 
interval of estimates of the objective function [1].  

Let N periods of settlement performance be 
simulated and random vectors of incomes and 
outcomes ni,δ , , 1 n N≤ ≤ 1 i J≤ ≤ , be generated. 
Thus, the statistical estimate of settlement costs are 
the average cost:  

( ) ( ,
1

1 ,
N

i i i i nin
L X D X

N
δ

=
= ∑% ) . (7) 

It is convenient to test the hypothesis of equality to 
zero of the gradient by means of the well-known 
multidimensional Hotelling T2-statistics [2]. Hence, 
the optimality hypothesis could be accepted for some The Monte-Carlo estimator of gradient (6) is 

obtained by virtue of: 
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point tX  with the significance value µ−1 , if the fol-
lowing condition is satisfied: 

),,(/))(())(())(()( 1 nNnFishnXQXAXQnN ttttt −≤⋅⋅⋅− − µ .(13) 

Next, we decide that the objective function is 
estimated with a permissible accuracy ε , if its confi-
dence bound does not exceed this value:  

εηβ ≤⋅ tt
N NXd t /)( , (14) 
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Figure 3. Dependence of the average settlement costs of the 
9th participant on the number of iteration 

where βη  is the β  -quintile of the standard normal 
distribution, and the standard deviation  is de-

fined by (10). Thus, the procedure (11) is iterated 
adjusting the sample size according to (12) and testing 
conditions (13) and (14) at each iteration. If the latter 
conditions are met at some iteration, then there are no 
reasons to reject the hypothesis on the optimality of 
the current solution. Therefore, there is a basis to stop 
the optimization and make a decision on the optimum 
finding with a permissible accuracy. If at least one 
condition in (13), (14) is violated, then the next 
sample is generated and the optimization is continued. 
As follows from the previous section, the optimization 
should stop after generating a finite number of Monte-
Carlo samples. 
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Figure 4. Dependence of the average settlement costs of the 
10th participant on the number of iteration 4. Results of simulation and optimization 

In this section, we present some Monte-Carlo 
simulation results, which were obtained using the 
proposed model calibrated with respect to real data. 
The parameters of the Poisson-lognormal model were 
taken from Bakšys and Sakalauskas [1]. Figures 2-4 
illustrate the dependencies of the average settlement 
costs on the number of iteration for the 1st, 9th, and 
10th participants. Analogous dependences are similar 
for other agents. In Figure 5, the dependence of the 
average total settlements costs on the number of 
iteration is presented. Figure 6 shows dynamics of the 
Monte-Carlo sample size during the optimization. In 
Figure 7, we give a histogram of the iteration number 
needed for algorithm termination. 
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Figure 5. Dependence of the average total settlement costs 
on the number of iteration 
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Figure 6. Dependence of the average sample size on the 
number of iteration 

17700

17800

17900

18000

18100

18200

18300

18400

18500

18600

1 5 9 13 17 21 25
Number of iteration

A
ve

ra
ge

 o
f s

et
tle

m
en

ts
 c

os
ts

Figure 2. Dependence of the average settlement costs of the 
1st participant on the number of iteration 
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The outcome of the performed simulation shows 
that, by applying the given model of the income of a 
Clearinghouse as well as information technologies, it 
is possible to optimize the parameters for management 
of risks of the credit, liquidity, and operational costs.  
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Figure 7. Histogram of the iteration numbers  
for algorithm termination 

Simulation and optimization of transaction costs 
illustrate an opportunity for banks to maximize the 
future profit. In this situation, it is especially important 
to study the strategies of management by banks of 
their correspondent accounts in the Clearinghouse. 
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