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Abstract. Due to the raising level of abstraction in information systems development many activities of this 
process are migrating to its early phases. The same is true for testing – modern CASE tools are undertaking validation 
of software models. In this paper the methodology for checking of conceptual models is proposed as the step-wise pro-
cess during which model elements including integrity constraints are progressively checked for their adequacy to 
values of objects, their relationships and constraints of the corresponding problem domain. The checking process is 
associated with the particular methodology for development of ordered and precise conceptual models (OPCM), which 
brings improvements to their quality: conformity to normal forms and ontological foundations, and to the observed 
reality. The rules for checking of integrity constraints are proposed on the base of taxonomy created in the result of 
analysis of the most promising methods for conceptual modelling. 
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1. Introduction1 

Validation and verification of UML class diagrams 
constrained by OCL invariants is still an open question 
of research and the topic of the great interest. It be-
comes more and more important because of increasing 
complexity of today software systems and highly 
competitive software market requirement to develop 
software systems of high  quality at a reasonable cost 
and time. The software quality can be significantly 
improved by integration of checking of conceptual 
models into the development process. We sustain the 
idea that model and its constraints should be validated 
and verified before the start of its implementation, 
because many design mistakes and implementation 
faults can thus be avoided [1]. Especially for critical 
systems, identification of errors in modelling can 
prevent from failures that may result in serious da-
mages. Easy-to-use checking technique and tool sup-
port for them are the real necessities. We have a great 
number of CASE tools that facilitate modelling, docu-
mentation and even code generation, but there are rare 
cases of support for checking conceptual models 
during design. The advanced CASE tools are already 
supporting augmenting of conceptual models with 
constraints that are intended to ensure correctness of 
data in the implementation in database or program 

code, but a few of them offer their consistency support 
and checking. 

In this paper, we present ideas for checking of 
Ordered and Precise Conceptual Model (OPCM), 
which principles were presented in [2]. The pre-
ciseness means that conceptual model (represented by 
UML class diagram for entities − persistent objects 
whose states are stored in database) is complemented 
with integrity constraints (OCL invariants), and it is 
capable to precisely describe states of the problem do-
main under consideration. The orderliness means that 
the partial order relation exists between entities, which 
are arranged on n levels where entities on the level i 
are dependent on entities of the levels j<i,i=2,…, 
n; j=1,…n-1; entities of level 1 are indepen-
dent. The OPCM development process consists of 
three steps: creation of ordered conceptual model; 
adding integrity constraints; and checking constraints 
with instances of domain objects. The goal of this 
paper is focused to the third step, when conceptual 
models are investigated for ensuring constraints (inva-
riants) that must be satisfied in every state of the 
system, abstracting from state transition constraints 
that should be satisfied for application-specific state 
transitions. Checking of OPCM adhere the same prin-
ciples as its construction: the sequential procedure 
starting from the top level. However, elements brought 
for checking are of the finer granularity as every con-
straint is checked separately: constraints on model ele-
ments (attribute, entity, relationship) and their groups, 
and, finally, on the overall schema. The gradual 
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checking may be integrated with the creation of mo-
del; however, it is not a good practise to elaborate 
precisely a part of a model without viewing a sketch 
of its whole. 

In [2] paper we have demonstrated that the institu-
ted ordering in the development of conceptual models 
has many advantages: it results in an ordered, well-
formed, easy readable model that conforms to normal 
forms and ontological foundations of conceptual mo-
dels. Extending of ordered conceptual model with 
integrity constraints makes model precise and capable 
to ensure that domain semantics is rightly expressed 
[3]. In this paper we propose the process for checking 
of conceptual model supporting its conformance to the 
observed reality and assurance that model is syntacti-
cally, type- and semantically correct. In overall, the 
proposed methodology consisting of earlier mentioned 
three steps brings significantly more quality to con-
ceptual models. 

The rest of the paper is organized as follows. In 
sections 2 and 3 the existing concepts and techniques 
for verifying, validating and testing of data models 
with integrity constrains are investigated in relation 
with the proposed “checking” concept and methodo-
logy. In section 4 rules for checking integrity at the 
model and meta-model level are described. In section 
5 the process for checking of ordered and precise con-

ceptual models is presented. Finally, section 6 con-
cludes paper and discusses the future work. 

2. What is checking of conceptual model? 

Traditionally, the database design process may be 
defined as made up of sequences of schema trans-
formations between conceptual, logical and physical 
models [4], where logical design includes transforma-
tions for schema simplification, optimization and 
translation into structures compliant to database 
management systems. It is worth to mention that seve-
ral equivalent representations of the same problem 
domain may exist on every of these levels as several 
logical models may be obtained from the same 
conceptual model, and vice versa [5]. Hence, several 
paths are available for going from the higher to the 
lower levels (Figure 1). Though it is impossible to 
discover the best and unique representation of the 
particular problem domain, all representations on dif-
ferent abstraction levels should adequately describe 
the same objects of the real world and their semantics. 
Another important requirement is that these transfor-
mations should not lose information between layers. 
Consequently, the base criterion of the quality of con-
ceptual model should be its capability to represent 
precisely semantics of the real world, and the purpose 
of checking is to examine this. 
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Figure 1. Transformations from the real world to a physical database 

For constructing and checking the conceptual mo-
del we should have some set of real life instances and 
known set of actual business rules that we want to 
implement in our software system. These instances 
and rules may be obtained from the expert of the prob-
lem domain or constructed specially for this purpose. 
Furthermore, we argue as in [6] that checking of 
conceptual model should combine validation and 
verification. In practice, terms “validation” and “veri-
fication” are often incorrectly used as interchangeable. 

Verification and validation definitions used in this 
paper are adopted from the 1998 AIAA Guide [7], 
though the similar definitions are met in other sources 
as well: 
• Verification is the process of determining that a 

model implementation accurately represents the 
designer’s conceptual description of the model 
and the solution to the model. 
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• Validation is the process of determining the de-
gree to which the model is an accurate represen-
tation of the real world from the perspective of 
the intended uses of the model. 

In short, verification addresses the question "Have 
we built the model right?", and validation considers 
the question "Have we built the right model?". These 
two steps must be taken if we have ascertained whe-
ther the model implements the assumptions correctly 
(model verification) and whether the assumptions 
which have been made are reasonable with respect to 
the real system (model validation).  

Verification and validation do not replace or in-
clude testing, but may be used to determine if testing 
has been performed correctly [8]. The goal of veri-
fication and validation of conceptual models is to 
assure model correctness and to test conformance of 
model semantics to the real world from the perspec-
tive of the intended uses of the model. Therefore 
verification and validation cannot prove that a model 
is correct and accurate for all possible conditions and 
scenarios; the verification and validation process is 
completed when the required sufficiency is reached. 

In our proposed methodology we define the con-
cept “checking of conceptual model” as a process that 
determines if the conceptual model is syntactically and 
type- correct, well formed, and adequate to the obser-
ved reality. The syntax check verifies a specification 
against the grammar of the specification language (in 
our case, UML and OCL). The type-check makes sure 
that every OCL expression is described correctly using 
only types that exist in the conceptual model. Well-
formedness check examines if rules of the conceptual 
data model (defined similarly as UML well-formed-
ness rules) are satisfied. The adequacy check consi-
ders if model is one enabling to correctly represent all 
feasible states of problem domain (i.e. sets of data 
objects of problem domain), and forbidding to repre-
sent unfeasible states. 

Different verification and validation techniques 
address slightly different quality criteria. Structured 
reviews assure correctness arguments such as comp-
leteness, robustness, and optimality of design deci-
sions. Cook and Skinner [9] consider the following six 
correctness arguments: validity, traceability, optimali-
ty, robustness, well formedness, and consistency. In 
overall, we give priority for the following elements of 
quality criterion that are covering the most important 
concerns raised with respect to the quality of 
conceptual models: 
• Well-formedness is mainly concerned with a cor-

rect use of notations to describe conceptual mo-
dels and satisfy additional rules (specified as OCL 
constraints). The part of well-formedness rules is 
defined in UML meta-model specification, but 
there are additional rules for precise conceptual 
data models. For example, it is required for mar-
king the primary identifier for every entity; other-
wise an independent identifier is accepted as the 

primary identifier by default. Such requirements 
are not raised in “imprecise” conceptual model-
ling techniques.   

• Robustness deals with handling of abnormal or 
exceptional situations. It deals with questions that 
should focus on detecting omissions and gaps in 
the model: what are the normal conditions under 
which the system operates? What are the excep-
tional and abnormal conditions related to the 
system operation? Are they handled correctly? 
Robustness is addressed during creation of OPCM 
when use cases and their steps are analyzed and 
all objects required as inputs and outputs are iden-
tified. Robustness is checked by applying model 
to describe collections of correct and incorrect 
instances of data objects. 

• Adequacy deals with checking of obtained arte-
facts to ensure their conformance to data of the 
observed reality. This kind of checking requires 
the sufficient amount of model instances enabling 
to evaluate model capability to correctly represent 
them. The model instance is a snapshot of the 
state of the problem domain at the particular mo-
ment of time (a particular set of object instances 
and links between them); it is presented with 
object diagram. Instances of models can be comp-
lete, incomplete and inconsistent. A complete 
model instance is one in which at least one 
instance of each model element is included. In-
complete model instance includes instances of 
part of model elements, but in either case it must 
be consistent. A consistent model instance repre-
sents the consistent state in which all constraints 
intended and specified by designer are obeyed 
[10]. It is enough to obtain one complete model 
instance to evaluate the feasibility of the con-
ceptual model, but it is possible to determine its 
suitability for various situations only having a 
sufficient amount of model instances. In general, 
there is a problem of having this set of required 
model instances. One possibility is to rely on 
assumption that the expert of the problem domain 
can provide it. The other choice is to use empi-
rical methods for creation of model instances that 
are offered by methods for testing data models or 
databases. Such methods are described, for 
example, in [11], implemented by USE tool, 
Alloy Analyzer, AGENDA etc.   

In our methodology, the concept “checking of con-
ceptual model” is used, which includes verification 
and validation, and is very similar to testing, because 
we are using “checking cases” − sets of domain ins-
tances for validation of models; we are making che-
cking plans where sufficient number of “successful” 
and “unsuccessful” cases are introduced; we are using 
“checking units” – model elements, which are com-
bined into larger units; model walkthroughs, inspec-
tions and other testing techniques should be used 
before checking, and so on. Moreover, the goals of 
checking are the same as of testing: to assure that 
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conceptual model operates correctly according to its 
purpose. The same process and instances of problem 
domain may be used for checking conceptual model 
and testing its implementation in a database or prog-
ram code.   

However, we are not willing to relate to “testing” 
because testing is defined as “assurance that software 
performs correctly” and term “model testing” is not 
defined anywhere. “Model-based testing”, a known 
term, has a different meaning referring to software 
testing where test cases are automatically generated on 
the base of models and usually is used for confor-
mance testing [12].  

“Incremental testing” should be mentioned here 
also as it can lead to confusion in relation with our 
method. The method presented in [13] is associated 
with increasing effectiveness of methods, implemen-
ted in database for checking constraints at run-time, by 
checking only part of constraints, which are potential 
for causing violations of database states. Our method 
is “incremental” in another sense as it is making che-
cking of part of constraints starting from the top level. 
However, the purpose of our method is to check the 
conceptual model in the requirement analysis phase. 
Also, “checking of conceptual model” should not be 
confused with “model checking” – state machine-
based verification techniques.  

3. Related work 

Many of different techniques have been developed 
for model checking, but we would like to focus on 
approaches that analyze UML class diagrams with 
OCL invariants and are supported by tools. Currently 
there are only a few tools specifically designed for 
analyzing UML models and OCL constraints. Prob-
ably, this is mostly due to the lack of a precise standar-
dized formal semantics of UML and OCL. A well-
defined semantics is a prerequisite for building tools 
offering sophisticated analysis features [1].  

One of the first tools dedicated to check UML 
class models together with OCL invariants is USE 
(UML Specification Environment) tool [14]. The tool 
takes UML class diagram with OCL expressions and 
makes them machine-analyzable. The model is veri-
fied performing syntax, type and semantic checking. 
Validation is performed with user-provided test cases 
by means of object diagrams. The tool enables crea-
ting and changing object diagrams and automatically 
gives responses about their validity against the inva-
riants and pre- and post conditions specified in the 
model. USE system has snapshot generator that allows 
manipulation in more flexible way not only by crea-
ting and destroying objects, inserting and removing 
links between objects and setting attributes values of 
objects. 

This approach requires less efforts from designer 
since models can be directly used as input for analysis, 
but creating of procedures for automation of snapshot 

generation requires the special training in ASSL (A 
Snapshot Sequence Language); manual production of 
test cases is the time-consuming work that has to be 
done by domain expert. The technique is quite intui-
tive and no rules are defined for selecting data struc-
tures for verification and validation. 

Another approach for automating analysis of UML 
class diagram is to use formal specifications with pre-
cise semantics based on Alloy (a formal object-orien-
ted modelling language founded on first-order logic) 
[15]. In ref. [16] rules are presented for mapping 
between UML&OCL and Alloy elements. Alloy 
models are analyzed with the Alloy Analyzer, which 
allows automatic generation of all valid snapshots and 
counterexamples within a given scope, satisfying mo-
del constraints. The scope for validation can be gra-
dually increased by the user enlarging the number of 
elements for each basic type. Besides, this analysis 
supports checking of assertions by searching a snap-
shot that refuses the asserted property. 

The validation processes in USE and Alloy Ana-
lyzer differ in that USE tool offers the evaluation of 
user-provided snapshots of models while Alloy 
Analyzer offers the automatic simulation by searching 
for instances satisfying given constraints. However, 
Alloy is a light-weight formal language and is not able 
to reflect all semantics of UML and OCL. So the 
priority should be given for tools like USE. 

In the sources [17], [18] an approach for testing 
database applications is developed and AGENDA 
tool-set is implemented to facilitate this approach. 
AGENDA performs testing at physical database 
schema level and takes as input the database schema 
of the database on which the application runs, the 
application source code, and ‘sample-value files’ con-
taining suggested values for attributes. The tester can 
select test heuristics and provide information about 
expected behaviour of test cases. Differently from 
USE and Alloy Analyzer, AGENDA performs valida-
tion of model implementation populating the database 
with meaningful data satisfying constraints (currently 
AGENDA can handle just uniqueness, not-null and 
referential constraints, and semantic constraints invol-
ving simple expressions). Generating inputs to the 
application and executing the application for those 
inputs AGENDA performs checking if the resulting 
database state and application output is valid accor-
ding to the expected behaviour indicated by the tester.  

Integration of informal and formal methods is one 
of the corner stones of the KeY approach [19], [20]. 
The KeY tool provides automatic support for creating 
formal specifications. It has a uniform user interface 
for modelling, specification, implementation, and veri-
fication of software and may be used for the entire 
development process. Formal specifications can be 
introduced and verified incrementally. However, the 
KeY tool is devoted for checking Java implementation 
and does not have capabilities for validating models. 

The most promising methodologies for checking 
UML models are implemented in OCLE [21] and 
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MagicDraw tools. Differently from analyzed earlier, 
they allow users to define rules at model and meta-
model level and use them for validating chosen mo-
dels. In OCLE, OCL specifications are defined in 
separate files; in MagicDraw – in stereotyped vali-
dation packages. These tools will analyze the loaded 
model and evaluate the corresponding OCL expres-
sions on each model element. Thus, if a rule is defined 
for a class in the model, it will be evaluated for all its 
instances and all the instances of any of its child 
classes. If a rule is defined in the context of meta-class 
Class, it will be evaluated for each class and associa-
tion class in the model. If such a rule evaluates to false 
or if it cannot be evaluated for some reason, the model 
is considered faulty − either the model contains errors 
or it is not adequate.  

OCLE also helps in debugging models and OCL 
specifications. Both tools perform syntax and type 
checking – OCLE during typing OCL expression, and 
MagicDraw – during validation (only partial syntax 
checking is done in MagicDraw during writing ex-
pressions). Besides the capabilities to create class ins-
tances provided by the model browser and snapshot 
diagrams, OCLE allows to import instances from files 
generated by other tools. Currently, two state-of-the-
art tools are supported: the USE open-source project 
and the ModelRUN commercial tool. This functionali-
ty is very useful for evaluation of business constraints, 
because it requires concrete objects (instances) to set 
the context for certain rules. 

To reveal the presence of errors in the OPCM and 
to check its conformance to the observed reality, we 
will embrace verification and validation capabilities 
offered by MagicDraw and check models using the 
representative collection of domain objects. The main 
difference of our proposal from aforementioned me-
thods is that we institute the order of checking by 
adhering the same principles as model construction: 
the sequential procedure starting from model elements 
of the top level. Validation of model elements against 
valid states of problem domain described by object 
diagrams containing instances of validated elements 
and elements under validation is performed in a gra-
dual way, by the order arising from a problem domain. 
Object diagrams with validated instances are incre-
mentally complemented with new instances for vali-
dation in a natural way understandable for users. In 
addition, the gradual checking has performance advan-
tages against other model verification and validation 
techniques. Another important point of the proposed 
method for checking conceptual models is in that we 
are giving taxonomy and recommendations what types 
of integrity constraints and under what circumstances 
should be analyzed and applied [22], [23].  

4. Rules for Checking Conceptual Models 

In our previous work [22] the taxonomy of integ-
rity constraints relevant for making semantically mea-
ningful model was proposed on the base of analysis of 

types of constraints adressed in the most promising 
conceptual modelling methods (ER, Extended ER 
(EER), UML, eXexutable UML (xUML), and ORM). 
We have applied these types of constraints for creation 
of ordered and precise conceptual models. The ca-
pabilities of UML to accurately express all important 
types of constraints in terms of UML metamodel and 
its extension mechanisms of stereotypes, tagged 
values and constraints were presented in the paper 
[23]. There are alternative options for representation 
of constraints using UML: natural language or OCL 
expressions in notes, but stereotypes are useful as 
patterns not only for discovering constraints, but also 
for succeeding generation of implementation code as 
properties and constraints of stereotypes may be 
mapped to the functionality of database management 
systems. Hence, there are several possibilities to de-
fine integrity constraints in UML: 
• Specify constraints on model elements; 
• Specify constraints on model elements using 

constraint patterns; 
• Specify constraints on stereotypes; 
• Specify constraints on elements of UML meta-

model. 
The first possibility is the simplest one, but in such 

case every modeller must directly create constraints on 
each element requiring for constraints. Specification 
of constraints using patterns defined for stereotypes of 
constraints, releases modellers from repetitive efforts 
for defining typical constraints. Predefined constraint 
patterns can be instantiated for constrained elements 
without having deep knowledge about OCL syntax. 
Specification of constraints on stereotypes is even 
more effective way because stereotypes may be re-
used. Applying stereotype for model element the 
modeller wouldn’t have to worry about writing 
constraints because they will be defined in advance on 
meta-model elements. However, the possibilities to 
validate constraints on stereotypes are much more 
restrictive in current implementations of CASE tools. 
Only simple constraints may be validated in the mean-
time. And there are some kinds of constraints that 
should not be specified using stereotypes, for 
example, association between entities A and B with 
multiplicities “0..*” and “1” means that instances of 
class A always must have values for an attribute 
referring to class B. Seeking for reusability these 
constraints should be specified on elements of UML 
meta-model. By all means, modelling of domain-spe-
cific integrity constraints may require for specifying 
constraints inherent only for that domain. For 
example, such are constraints on derived values. How-
ever, stereotypes and patterns are capable to conside-
rably reducing of these efforts. 

Let’s consider rules for checking constraints spe-
cified directly on model elements, stereotypes and 
meta-model elements using example in Figure 2. Here 
the part of OPCM-type model is given with 
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   not self.department.oclIsUndefined() constraints of different complexity represented by 
appropriate stereotypes.  

 

Primary identifier constraint. The stereotype 
<<P>> is used for representation of primary identifiers 
(analogous to primary keys in relational databases) for 
data objects. An attribute or a group of attributes with 
stereotype <<P>> comprise the primary identifier for 
unique identification of instances of the class. It 
requires that the identifying attribute or the group of 
attributes always should have values and these values 
should be unique. 

The model-level constraint for Department pri-
mary identifier denoted with stereotype <<P>> is 
simply expressed as OCL invariant: Figure 3. Primary identifier constraint specified on 

stereotype  Context Department inv unique: 

   self.allInstances()-> 
The corresponding meta-model level constraint 

will check all properties representing association ends 
and having multiplicities “1” or “1..*”:  

      isUnique(d:Department|d.code) 

  

context Property inv meta_mandat_assoc: 

 if not self.association.oclIsUndefined() 

  and self.association.lowerValue=1 then 

  let r:String=self.association.name in  

 self.classifier.allInstances().slot-> 

  select(s|s.definingFeature.name = 

    self.name)->forAll     

  (p|p.concat(‘.‘).concat(r).value=p.value) 

     else false endif 
Fragment of UML meta-model on which this 

constraint was defined is represented in Figure 4, 
where upperValue and lowerValue elements are 
inherited by StructuralFeature element from 
MultiplicityElement: 

Slot

InstanceSpecification

1

*

+owningInstance
1

+slot*

FeatureClassifier

0..*
+classifier

0..*

*0..*
+/feature

*
+/featuringClassifier

0..*

AssociationProperty
0..12..*

+association

0..1
+memberEnd

2..*

0..1

*

+classifier
0..1

+/attribute
*

ValueSpecification

StructuralFeature
1

+definingFeature

1

0..1

0..1

+lowerValue
0..1

0..10..1

0..1

+owningUpper
0..1

+upperValue
0..1

+owningLower

 

Figure 2. Example of stereotypes for representation of 
integrity constraints 

However, such simple constraints must be speci-
fied for every attribute having the stereotype <<P>>, 
while the same constraint specified for stereotype will 
check the uniqueness of slots of all attributes having 
the stereotype <<P>> (Figure 3): 
context P inv meta_unique: 

   self.classifier.allInstances().slot-> 

      select( 

      s|s.definingFeature.name=self.name)-> 

      isUnique(s|s.value) 

Mandatory association constraint. Mandatory con-
straint on an attribute representing link to the asso-
ciated object (association end) is used to indicate that 
this attribute must have a value. In UML mandatory 
constraint on association is denoted by multiplicities 
“1” or “1..*”. The model-level mandatory constraint 
on the property (attribute) representing association end 
is defined by a simple invariant expression:  

Figure 4. UML meta-model elements on which constraint 
for mandatory association is specified 

Context Manager inv mandatory_association:  



Checking of Conceptual Models with Integrity Constraints 

291 

context GeneralizationSet inv meta_complete:  Generalization constraints. Generalization in 
UML may have several generalization sets, where 
every set means the particular specialization of the 
same super-type. For example, all animals may have 
generalization set G1, in which they are specialized to 
flying and cursorial according to their motion, and 
generalization set G2, in which they are specialized to 
mammals, reptilians, etc., according to their feed. 
Generalization constraints are defined on generali-
zation sets. {complete} means that a set of in-
stances of the super-type in a given generalization set 
is fully covered by instances of its subtypes. 
{disjoint} constraint means that sets of instances 
of subtypes in a given generalization set do not over-
lap. In general, four types of generalization are pos-
sible: complete, disjoint; incomplete, dis-
joint; complete, overlapping; incomp-
lete, overlapping (default is {incomplete, 
disjoint}). However, such constraints are not en-
forced in UML CASE tools. {incomplete} and 
{overlapping} generalizations do not require 
constraints. For ensuring {complete} and {dis-
joint} constraints on generalization relationship in 
Figure 2 having generalization set GenSet1 with 
{complete} and {disjoint} constraints, the 
model-level checking rules may be specified: 

   if self.isCovering = true then 

self.generalization.specific-> 

   collect(p|p.allInstances())->includesAll 

(self.generalization.general.allInstances()) 

   else false endif  

context GeneralizationSet inv meta_disjoint: 

if self.isDisjoint = true then 

   self.generalization.specific-> 

collect(p|p.allInstances()).asSet()->size()= 

self.generalization.general.allInstances()-> 

size())else false endif 

context Person inv complete: 

not self.oclAsType(Manager).oclIsUndefined() 
or  

not self.oclAsType(Worker).oclIsUndefined() 

context Person inv disjoint: 

if (not 
self.oclAsType(Manager).oclIsUndefined()) 
then 

Equal set constraint on path of relationships. 
Equal set and subset constraints on path of relation-
ships comprising loops are the most complicated 
constraints and are not considered in most popular 
conceptual modelling methods [24]. These constraints 
indicate that not all instances of object type can parti-
cipate in appropriate relationship but just instances 
participating in set of constrained relationships. For 
example, in Figure 2 the equal set constraint denoted 
by stereotype <<equ>> is defined for property of class 
Worker representing association with Manager and 
means that the set of instances selected by traversing a 
loop in one direction (Worker.Department) must be 
the same as the set of instances selected by traversing 
the loop in the opposite direction (Worker. 
Manager.Department), according to the rules and 
policies of the domain. Model-level equality con-
straint on relationship loop: 
context Worker inv loop:  

   department = manager.department 
self.oclAsType(Worker).oclIsUndefined() else For definition of this constraint on meta-model 

level, the property of stereotype (tag) should be used. 
Like a class, a stereotype may have properties, which 
may be referred to as tag definitions (Figure 6). When 
a stereotype is applied to the model element, the 
properties of stereotype are referred to as tags, and the 
values of these properties are referred to as tagged 
values. For example, in Figure 2 the aforementioned 
equal set constraint is marked with stereotype 
<<equ>> having tags “left_side” and 
“right_side” of type String used for the definition 
of the loop: department = manager.department. 
For defining the equal set constraints on the meta-
model level the following constraint on stereotype 
<<equ>> should be used: 

not (self.oclAsType(Worker).oclIsUndefined()) 
endif 

As it can be seen, the dependence to a generaliza-
tion set is not reflected on model-level generalization 
constraints. Reusable {complete} and {disjoint} 
constraints should be defined on meta-model level 
(Figure 5); it is considerable to define them on UML 
meta-model element GeneralizationSet, because 
the constraint expression is the simplest in this case. 

GeneralizationSet
isCovering : Boolean
isDisjoint : Boolean

PackageableElement
(from Kernel)

general

Classifier

0..*

0..1

+powertypeExtent

0..*

+powertype
0..1

Generalization

*

*

+generalizationSet

*

+generalization
*

1
*+specific

1 +generalization
*

11

 

context Property inv meta_loop: 

   if self.classifier.allInstances()-> 

      forAll(p|p.concat(left_side).value= 

      p.concat(right_side).value) 

   then true else false endif  

In the similar way meta-model-level constraints 
and/or constraints on stereotypes were created for all 
integrity constraints from taxonomy [22], [23], com-
prising the <<OPCM profile>> that was proposed 

Figure 5. UML meta-model elements on which 
generalization constraints are defined 
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5. Checking Process for development and checking of conceptual models. 
Besides aforementioned constraints, we have consi-
dered constraints on values of attributes; disjunctive 
mandatory, coexistence, exclusion, subset, uniqueness 
constraints restricting groups of optional attributes or 
relationships; acyclic, ireflexive, symmetric, intransi-
tive, antisymetric constraints for reflexive relation-
ship, and others. This profile may be applied on the 
top of existing facilities of UML CASE tools, for 
example, MagicDraw. MagicDraw tool provides vali-
dation profile for validating UML models: stereotypes 
<<validationRule>> for turning constraints into 
validation rules and supplementing them with error 
messages; stereotype <<validationSuite>> for 
creation of validation rule sets, and supports automatic 
validation of sets of constraints against UML models 
and instances. There are even validation rule suites in-
cluding a part of UML meta-model constraints, how-
ever, these rule suites are still incomplete with regards 
to UML models, and they are rather unforeseen for 
checking of conceptual models.  

The methodology for creating conceptual models 
presented in [2] institutes the sequence of analysis 
steps and results in the ordered conceptual schema, 
where classes are arranged to levels starting from in-
dependent (top level) ones. Classes on the next levels 
are dependent on the classes of the higher levels. For 
example, the fragment of conceptual model presented 
in Figure 2 is ordered because partial order relation-
ship exists between its elements, which are arranged 
on three levels: Department and Person are inde-
pendent entities, Manager on the second level is 
dependent on these independent entities, and the third 
level contains the Worker entity dependent on 
Manager from the second level and Department 
from the first level.   

The algorithm for checking of ordered and precise 
conceptual models (OPCM) is presented in Figure 7. 
It is based on the iterative process similar to its 
construction. The procedure starts from checking the 
object diagram composed of objects of the top level 
elements. In the next steps objects are  gradually 
added for entities of lower levels dependent on already 
analyzed ones. 

 

 

Figure 6. Stereotype with tag definitions and constraint 

Using MagicDraw tool, OPCM rule sets are ap-
plied to conceptual models complemented with object 
diagrams presented by the domain expert. The domain 
expert should create object diagrams that represent 
adequate and not-adequate states of problem domain. 
MagicDraw tool, using these rule sets, will check ob-
jects diagrams helping to find out if there are reason-
able object diagrams that do not satisfy checking 
rules, or if there are undesirable system states that 
satisfy them. The first case may indicate that const-
raints are too strong or the model is not adequate in 
general. The second case may indicate possibility that 
constraints may be too weak. Therefore, in both cases 
the model must be revised, e.g., by relaxing or making 
more restrictive constraints. The revised model having 
refined object types, relationships and constraints is 
checked again until an appropriate assumption is 
reached about the correctness of the model with res-
pect to the analyzed states of the problem domain 
represented in object diagrams. 

Figure 7. The algorithm for checking of ordered and precise 
conceptual models 

Firstly, constraints on independent elements and 
associations between them are checked. For this pur-
pose an object diagram must be created with desirable 
and undesirable objects of independent entities. 
Checking of OPCM, presented in Figure 2, will start 
from the object diagram shown in Figure 8 having 
valid and invalid objects of entity Department. The 
result of MagicDraw validation of entity Department 
is presented in Figure 9 where invalid objects viola-
ting primary identifier constraint on department code 
or mandatory constraint on department name are 
presented in the red rectangular shapes with thickened 
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borders. Continuing procedure the accepted elements 
are included as valid and not analyzable in the next 
steps of checking process. In our case checked 
Department object with department code “1” 
satisfies all requirements of problem domain and will 
be used in further checking. In the same way the entity 
Person is checked and two different objects satis-
fying all constraints on Person are picked for further 
checking of generalization subtypes. 

 
Figure 8. The object diagram for checking the entity 

“Department” 

 
Figure 9. The resulting object diagram after the first 

step 

The next step of the algorithm validates objects of 
entities dependent upon checked entities and associa-
tions between entities of currently analyzed level and 
the previous one. These steps are repeated till any un-
studied level or entity exists. In our example, during 
the second step of the algorithm we have to check if 
model accepts only objects of Manager entity (sub-
typed from Person) related with the existing depart-
ment and not violating primary identifier constraint on 
the attribute code. Finally, the Worker entity is 
checked using object diagram presented in Figure 10 
where valid object of Person entity sub-typed into 
Worker object is rejected because it is associated with 
the Manager object having link with a different de-
partment than Worker object (and violates the equa-
lity constraint). The generalization constraints also are 
checked; they are satisfied in the current object diag-
ram because the manager and the worker are different 
persons. 

 
Figure 10. Object diagram for checking Worker entity 

 In our little example at least three instances (of 
Department, Manager and Worker) are needed for 
checking; they comprise one complete instance of the 
overall model (Figure 11). One complete instance of a 
model obeying all integrity constraints can confirm 

the feasibility of that model (the absence of syntax and 
type errors, well-formedness and adequacy to problem 
domain). However, much more instances are required 
to check the relevance of models for all intended 
scenarios of their usage. 

 
Figure 11. The complete instance tested for the adequacy to 

the problem domain 

In [2] it is shown that the same structure of comp-
lete instances of conceptual model would be obtained 
applying methods of Formal Concept Analysis (FCA) 
[25], [26]. 

6. Conclusion and Further Work 

Many activities of information systems develop-
ment including checking of their correctness and 
adequacy to the problem domain may be made on the 
conceptual level. Currently it seems that checking of 
conceptual models is the much more difficult problem 
than their development and cannot be done without 
automation. The real possibilities to check conceptual 
models already exist in advanced UML&OCL CASE 
tools like OCLE and MagicDraw, but comprehensive 
methods offering practical checking rules and che-
cking processes are not elaborated. In the current 
paper we have discussed the rules required for che-
cking of conceptual data models and investigated the 
possibilities to define them using elements of such 
models, stereotypes and meta-model elements.  

We have proposed reusable checking rules for 
taxonomical integrity constraints inherent for precise 
conceptual models, and tried the incremental checking 
process executing it on the top of facilities of existing 
CASE tool. The orderliness of conceptual models, as 
well as processes of their development and checking, 
have demonstrated their additional quality and perfor-
mance advantages and may be easily applied by mo-
dellers without training in formal methods. However, 
the problem of generating instances for investigation 
of the sufficient set of cases of intended usages of mo-
dels still remains under the responsibility of domain 
experts. This task may be only partially automated − 
as well as creation of conceptual models.      

Our future work is addressed to looking for possi-
bilities to using the OPCM profile, containing intro-
duced stereotypes and integrity constraints, in genera-
tion of the full-fledged database schema when the 
consistent conceptual model created and checked 
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using OPCM profile should be automatically trans-
formed into statements of structured query language 
and/or program code containing data structures and 
constraints, therefore reducing time and avoiding addi-
tional errors in model implementation. 
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