
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2007, Vol.36, No.3

BUSINESS RULES MANIPULATION MODEL1

Liudas Motiejūnas, Rimantas Butleris
Kaunas University of Technology

 Studentų St. 50, LT51368 Kaunas, Lithuania

Abstract. Business rules approach is quite new and oriented at software systems in which the rules are separated,
logically and physically, from other aspects of the system. In this paper some of the methods for description of the
business are discussed. Business rules activation from database triggers is presented. Implemented prototype and
algorithms are discussed.

1. Introduction Other way is to implement business rules as data-
base triggers. There is no united opinion about using
the data base triggers for the implementation of the
business rules. Some authors state that database trig-
gers are used to implement certain types of business
rules, such as facts, constraints, actions, enablers and
derivations [8]. Other opinions declare that business
rules have absolutely nothing to do with program-
ming, database triggers or expert systems [2]. In our
opinion, business rules should not be implemented as
database triggers and must be kept in business rules
repository separately in a declarative form.

Business rules are precise statements that describe,
constrain and control the structure, operations and the
strategy of a business. They can be found everywhere
in a raw, unstructured form. The business rules are the
most changing part of the business. We can describe a
business rule as "a statement that defines or constrains
some aspect of the business. It is intended to assert
business structure or to control or influence the beha-
vior of the business" [9].

1.1. Describing business rules Another way of describing business rules is OCL.
Often simple rules in plain English require several
lines of OCL code to represent [1]. Trying to use OCL
to describe a business rule written in several para-
graphs of plain English text would be extremely
complex. OCL is based on first-order predicate logic
[18]. Business people would hardly understand this
kind of language. Anyway, OCL can be used for both:
writing assertions and describing business rules.
However, for OCL to act as a language for writing
business rules, it would have to be the perfect syntax
for all the business situations, but we cannot unam-
biguously say that this is true. OCL should concentrate
on the primary purpose, and get that right, before
trying to be general-purpose business rule syntax.

There are a few main ways for describing business
rules. One of them is to store rules in objects. Five
design principles for checking business rules in
objects are presented below [12]:
 1. Business rule checking occurs when objects

change state.
 2. The object changing its state invokes business

rule checking.
 3. Business rule checking invokes logic that may or

may not reside in the affected object’s implemen-
tation.

 4. Business rule checking must be flexible enough
to allow selective bypassing by trusted services.

 5. Business rule checking is separate from logic rule
checking.

Rule mark-up languages will be the vehicles for
using rules on the Web and in distributed systems.
They allow deploying, executing, publishing and com-
municating rules on the Web [17]. They are also con-
verging towards a lingua franca for exchanging rules
between different systems and tools. In a narrow
sense, a rule mark-up language is concrete (XML-
based) rule syntax for the Web. In a broader sense, it

However, business rules are not independent and
they belong to objects. Business rules should be asso-
ciated to entities and events. Business rules should be
kept in separate business rules repository and mana-
ged separately from applications’ code.

1 The work is supported by Lithuanian State Science and Studies Foundation according to High Technology Development

Program Project "VeTIS" (Reg. No. B-07042)

295

L. Motiejūnas, R. Butleris

should have an abstract syntax as a common basis for
defining various concrete sublanguages that serve
different purposes. The goal of RuleML is to permit
reusability and interchange at a higher level. Anyway,
RuleML raises similar problems like XML: it requires
an investment from the rule engine vendors to
implement, and it requires an additional investment
from the software developers and architects to add
disambiguating information in the condition of the
rules to guarantee the expected behavior.

1.2. Business rules repository

Physically, rule repository is an autonomic busi-
ness rule collection which can be altered at any time
using relatively easy tools [4]. These are two solutions
to storing rules:
 1. Parameter driven approach. In this case rules are

stored in the database where they are characte-
rized by the values of various attributes. It has
been shown by different researchers that rule re-
pository could be designed as an independent
database [14] or as a part of the main logical mo-
del [13]. However, the first solution offers more
flexibility and more options for the storage of
complicated business rules.

 2. Independent process-driven approach. This app-
roach is similar to the traditional methodologies
where rules are implemented directly in the prog-
ram code, only in this case the code, representing
rules, is stored independently from other layers of
the IS and therefore rules are expressed only once
in the system.

Business rules repository is a database that stores
all the data about business rules and all the necessary
metadata about entities, attributes and relationships
that are included in the data model. Probably it is
impossible to create an universally accepted business
rules repository structure, because various organiza-
tions or business rules researchers define different
types of business rules and ways that the rules are de-
scribed [3, 10, 15]. In our case we use the first
solution to store business rules.

1.3. Business rules engines

The system-wide enforcement of stored rules is
managed by the special rule interpretation mechanism
called business rules engine. Such an engine is con-
sidered as a monolithic mechanism [11], however, the
task of enforcing or implementing rules can be carried
out by more or less independent services.

The business rules engine calls business rules from
business rules repository and performs actions descri-
bed by the rule. Business rules engine can be imple-
mented in various ways [16, 19], the same as business
rules repository, because its architecture depends on
business rules repository (the form that business rules
are stored in it). A wider overview of the business
rules engines is presented in [7]. It doesn’t matter in

which way the business rules engine is implemented -
it must ensure that business rules are performed cor-
rectly.

2. Business Rules Repository model

We used business rules repository which is based
on repository model introduced by Plotkin [14]. This
business rules repository is flexible and easily exten-
dable; it gives a possibility to store various types of
the business rules. The main improvement of Plotkin’s
repository is metadata about logical data structure in-
corporation with repository. Connecting business rules
with data through metadata makes rules more indepen-
dent. Next improvement of the repository is possibility
to store functions which are performed by the business
rules. Actions that are needed to perform these func-
tions are also stored in the repository. This business
rules repository is presented in [5, 6].

3. Activation of Business Rules

Because business rules are kept in the business
rules repository separate from the program code, they
are declarative and implicate no control logic, they
have to be called and executed by business rules en-
gine. Every rule rejects, produces or projects some
type of actions or data. Also each rule is associated
with particular data. Until the user does not take any
action, business rules are not called from the business
rules repository. But when some action occurs, the
business rules engine must verify business rules and
evaluate that action. Generally, the business rules en-
gine starts working on the three basic events –
INSERT, DELETE and UPDATE. Business rules that
respond these events are similar to data base triggers;
however they are kept separately from the database.
Either way when the user makes an attempt to insert,
delete or update data, the business rules engine must
fire business rules that are associated with data that the
user wants to change. It is like a monitoring process –
business rules engine is inactive and comes to action
only when some changes in data are noticed. Business
rules of this type must be fired at least on two separate
events.

But there can be other kinds of business rules in a
system. That means, business rules are fired in other
situations, not only when the user attempts to change
data. This kind of rules is not associated with the data
control; they can create data themselves. As an
example, business rules of SELECT or CALCULA-
TION type could be pointed out. The result of such
business rules is derivative data that can be stored in a
file, shown on the screen or printed in a report. These
rules usually are called by specific events, which can
depend on user's actions (button click) or simply on
the timer. Business rules of this type do not have to be
fired at least on two events, because they do not
ensure the consistency of data, they can create data
themselves.

296

Business Rules Manipulation Model

297

4. Invoking Business Rules from Database
Triggers

5. Invoking Business Rules by Specific Events

Some business rules can be activated by specific
situations in business systems. These situations de-
pend on user’s actions and are not related with data
control. Such business rules cannot be activated from
database triggers, but by appropriate events occurring
in a business application (Click(), ValueChange(),
etc.). Specific code line is needed which activates
business rules engine in the application:

One of the main problems in business rules sys-
tems is to activate business rules and bring them to
life. “Data control” business rules serve the same pur-
pose as database triggers. These rules are responsible
for data that are kept in the database. They even react
to the same events as database triggers. Business rules
differ from database triggers, because they reside in
business rules repository and they must be activated
by some particular action. Usually it is difficult to
capture different events that can activate business rule.
In the following example database triggers are used
because reaction to events INSERT, DELETE and
UPDATE is already implemented. We only need to
extend a database trigger with appropriate line that
activates business rules engine:

 CallEngineSE(Event, F_Action_ID)

Formally we can describe requirements for the busi-
ness rules activating as follows:
1. Each rule must have an event that activates it:

∀ x (Rule(x)) → ∃ z (Event(z) ∩ Activates(z, x))

2. Each rule must have a related function of action:
 ∀ x (Rule(x)) → ∃ y (F_Action_ID(y)

 ∩ Related(y, x)) CREATE TRIGGER [Trigger_Name]
ON Table_Name

The third requirement is mandatory only for “data
control” business rules that are activated by the
database triggers.

FOR {[INSERT] [,] [UPDATE] [,]
 [DELETE]} AS
BEGIN

3. Each rule that is activated from database triggers
must have a related table:

 declare
@tablename int,

∀ x (Rule(x)) → ∃ z (Table(z) ∩ Related(z,x)) @rowsAffected int,
@nullRows int,
@validRows int, 6. Business Rule Processing
 select @rowsAffected = @@rowcount
call Event(tablename, rowsAffected,
 nullRows, validRows, rowcount)

A number of actions is performed in the business
rules system when some user-defined action occurs.
Actions have to be performed in an appropriate prio-
rity. The sequence diagram showing these actions is
presented in Figure 1.

End
Call callengine(temp_table)
GO

Figure 1. Sequence diagram of business rule processing

When a user attempts to change the data, database
trigger detects an event and calls a business rules en-

gine. The Business rules engine defines what kind of
event it was. For event INSERT existing data is not

L. Motiejūnas, R. Butleris

298

made copied, for other two events (DELETE,
UPDATE) data must be copied. Then user-defined ac-
tions (changes to existing data) are accepted and busi-
ness rules engine selects appropriate business rule
from business rule repository according to given
parameters. The test described by the rule is perfor-
med. If the test fails, the initial data are restored,
otherwise changes to data are accepted.

7. Business rules engine implementation

During research we assume that business rule set
used for experiment is logically correct and we do not

analyze data specification. Abstract service ordering
process was implemented for testing described
algorithms. The set consisting of 15 business rules was
entered into business rules repository in order to check
possibility to enter different types of rules. The
fullness of the business rules repository was checked
using rules classification presented by GUIDE Project.

All implemented functions and procedures are
shown in Figure 2. The structure of the code matches
diagram hierarchy shown in this figure.

Figure 2. Function hierarchy diagram

Figure 3. Architecture of the developed prototype integration into information system

Business Rules Manipulation Model

Functions and procedures are executed according
to the hierarchical structure of the given diagram. Two
procedures and five functions were implemented du-
ring experiment.

A detailed architecture of the developed prototype
integration into an information system is shown in Fi-
gure 3.

Algorithms of the two main procedures in the busi-
ness rules engine are shown in Figure 4 and Figure 5.

Figure 4. Algorithm of the procedure Event()

After invoking procedure Event() from database
trigger in the first step the values of variables are
determined:
• Table name – @tablename;
• Column ID – @rowsAffected; Figure 5. Algorithm of the procedure CallEngine()
• Event ID – Insert, Update, Delete;

As the table shows, number of code lines needed
for different rules can vary a lot. However, storing
business rules in the repository and using proposed
business rules engine, there is significant reduction of
work that is needed to accomplish the same tasks. But
it has to mentioned that the designer or programmer
will have to enter business rules into rules repository,
therefore reduction of work won’t be as significant as
it is shown in table 1.

• Changed record attribute – @nullRows,
@validRows;

• Changed record count of elements - @rowCount.
In the second step temporal table TEMP_TABLE

is created, which consists of the following columns:
Row_ID, Change (mark is set if the field was chan-
ged), Event_ID (common for all fields), Range_Nr
(matches predicted number of cycles). In the next step
appropriate data are set by the given fields and table
TEMP_TABLE is populated. If this table was popu-
lated succsesfully, then value TRUE is returned. 8. Conclusions

The algorithm of the procedure CallEngine() is
shown in Figure 5.

Metadata are already used in different DBMS.
Resumptive metadata storage model is independent of
particular database management system. Metadata
allow navigating in the logical database without any
additional programmed operations and identifying
data elements that are impacted by particular business
rules. Relating business rules with data not directly,
but through metadata, better business rules indepen-
dence is achieved.

In the next step of the experiment abstract service
ordering process was implemented, but only in a
traditional way – business rules were buried in the
code.

Table 1 shows the difference between numbers of
code lines, when business rules are implemented in
traditional way and using the proposed business rules
engine model.

299

L. Motiejūnas, R. Butleris

Table 1. Difference between numbers of code lines

Number of code lines
Business rule

Coding Using BR

Client must have last name, first name, address and age 11

Client type must be only one of the following: Golden, Silver, Usual 4

Age of the client must be greater than 18 2

Additional actions 16

7

Order can be entered only by manager 6

If client ordered services for more than 7.000lt, then client type is Golden 19

Additional actions 2

6

Total number: 60 13

The proposed business rules engine model gives us

several advantages. Here are the main ones:
 1. Differently from systems where rules are imple-

mented as database triggers, in this work triggers
are used only to invoke business rules. That’s why
during business rules implementation there is no
need to have specific programming skills.

 2. There is no need to indicate particular business
rules, which have to be managed, because accor-
ding to passed parameters needed business rule or
rules set is invoked depending on situation.

A big part of design and development process is
automated using business rules, especially developing
transactions and applications logic coding. Data struc-
ture is created using traditional DBMS; however,
some of the restrictions and constraints can be de-
scribed by business rules, connecting them with meta-
data about logical database. This gives to a program-
mer a possibility to enter needed changes without
changing data structure.

Instead of rewriting transactions or recoding appli-
cation code, appropriate business rules can be imple-
mented and automatically executed. Programmer
needs only once to relate business rules with data, that
are impacted by the rule and this rule will be always
invoked when appropriate data are changed. Business
rules are invoked from database triggers; therefore
there is no need to write additional code for this task.

Business rules repository acts as a common point
of communication for both users and IT professionals.
The advantages of developing systems using business
rules are as follows:
• Rules are represented in a format that is under-

standable by users. Users can help enter and
manipulate the rules.

• Rules are represented in a format that can be used
by IT professionals as a system design document.

• Entered business rules can be immediately veri-
fied in the system.

A key difference between the traditional communi-
cation process and the business rules-based communi-
cation process is that the information in the repository
can be understood and used by users. The only poten-
tial communication breakdown in this environment is
during entering business rules into the repository.
Since it is possible verify entered rules almost imme-
diately, users can quickly interact with the system and
evaluate whether or not the business rules have been
accurately represented.

In the future work business rules editing interface
will be improved in order to have business rules de-
bugging features and business rules engine will be
expanded with clear and thorough messages shown to
user when business rule is violated.

References
 [1] T. Beale. OCL 2.0 Review. 2003,

http://www.deepthought.com.au/it/ocl_review.html.
 [2] Blaze Advisor. Ruling a self-service world, 2001,

http://www.qualitywriter.com/Samples/advisor_selfser
vice.pdf.

 [3] Business Rules Group. Response to MDC/Microsoft
Business Rules Metamodel. 1999, http://www.
businessrulesgroup.org/brg-mdc/BRG-MDC.pdf .

 [4] R. Butleris, K. Kapocius. The Business Rules Repo-
sitory for Information Systems Design. 6th East-
European Conference ADBIS'2002", Research Com-
munications, Bratislava: STU, 2002, Vol.2, 64 –77.

300

Business Rules Manipulation Model

 [5] R. Butleris, L. Motiejūnas. A Framework for Busi-
ness Rules Storing and Activating. 7th International
Baltic Conference on Databases&Information Sys-
tems’2006, 252 – 263.

 [6] R. Butleris, L. Motiejūnas. Metadata for business
rules integration with database schema. IADIS Vir-
tual Multi Conference on Computer Science and In-
formation Systems (MCCSIS 2005), 263-270.

 [7] R. Butleris, L. Motiejūnas. Veiklos taisyklių mani-
puliavimo mechanizmų analizė. Informacinės tech-
nologijos 2003, XIV-82 – XIV-90.

 [8] E. Gottesdiener. Business Rules. Show Power, Pro-
mise. Application Development Trends, Vol.4, No.3.
1997,
http://www.ebgconsulting.com/Pubs/Articles/Business
RulesShowPowerPromise-Gottesdiener.pdf.

 [9] Guide Business Rules Project, Final Report, 95/11.
http://www.businessrulesgroup.org/brgactv.htm.

[10] P. Kardasis, P. Loucopoulos. Expressing and organi-
sing business rules. Information and Software
Technology, 2004, Vol.4, No.11, 701-718.

[11] C. Mariano C. Bornhövd, A. P. Buchmann. Moving
Active Functionality from Centralized to Open Distri-
buted Heterogeneous Environments. Lecture Notes in
Computer Science, 2001, Vol. 2172, 195-211.

[12] J. Nicola, M. Mayfield, M. Abney. Putting business
rules into business objects. 2007, http://www.
streamlinedmodeling.com/papers/business_rules.pdf.

[13] A. Perkins. Business Rules Are Meta Data. Business
Rules Journal, 2002, Vol., No.1,
http://www.BRCommunity.com/a2002/b097.html.

[14] D. Plotkin. Business Rules Everywhere. Intelligent
Enterprise Magazine, 1999, 2 – 4,
http://www.iemagazine.com.

[15] R.G. Ross. The business Rule Book (2nd ed.). Busi-
ness Rule Solutions, 1997.

[16] R.G. Ross. Principles of the Business Rule Approach.
2003.

[17] G. Wagner, S. Tabet, H. Boley. MOF-RuleML: The
Abstract Syntax of RuleML as a MOF Model. OMG's
INTEGRATE 2003. Boston, Massachusettss 2003,
http://omg.org/docs/br/03-10-02.pdf.

[18] J.B. Warmer, K. Anneke. The object constraint lan-
guage: precise modelling with UML, 2000.

[19] K.D. Wilson. Business Rules, Platforms, and Inferen-
cing. Business Rules Journal, 2003, Vol. 4, No.10.
http://www.BRCommunity.com/a2003/b169.html.

Received July 2007.

