
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2007, Vol.36, No.3

GENERATION OF FUNCTIONAL DELAY TEST WITH MULTIPLE
INPUT TRANSITIONS

Vacius Jusas, Kęstutis Motiejūnas
Software Engineering Department, Kaunas University of Technology

Studentų St. 50-404, LT−51368 Kaunas, Lithuania

Abstract. The test can be developed at the functional level of the circuit. Such an approach allows developing the
test at the early stages of the design process in parallel with other activities of this process. The main problem is the
achievement of the high quality of the functional test that would be applicable at the gate level implementation of the
circuit. The paper presents an algorithm of the functional delay test generation and results of its application to the
benchmark circuits. The algorithm is based on the criteria of the quality assessment of the functional test consisting of
the pairs of patterns with multiple signal transitions. The criteria are based solely on the primary input values and the
primary output values of the software prototype. The criteria allow evaluating the robust and the non-robust test
patterns. The presented experimental results demonstrate that the non-robust test patterns enable to increase the
transition fault coverage. The use in the pair of test patterns with multiple input transitions enables to decrease the size
of test set without loss of transition fault coverage.

1. Introduction

With ever shrinking geometries, growing density
and increasing clock rate of chips, delay testing is
gaining more and more industry attention to maintain
test quality for speed-related failures. The purpose of a
delay test is to verify that the circuit operates correctly
at a desired clock speed. The pair of test patterns is
used to detect delay faults. The first pattern sets the
initial values on the inputs of the circuit; the second
pattern launches the transition. Conventional delay
test generation techniques based on gate level fault
models are not suitable for circuits whose implemen-
tation details are unavailable. The functional test can
be constructed for such circuits according to their spe-
cifications. The functional test can be used also to
detect delay faults, when the test patterns are grouped
in the pairs.

Models of physical and fabrication faults are nee-
ded at higher levels of abstraction in order to be able
to develop test patterns from functional or behavioral
descriptions. Researchers have experienced that the
stuck-at fault model works quite well at logic level.
Many efforts have been devoted to the problem of
finding behavioral level fault model 0-0. But no such
fault model has been discovered at behavioral or
higher level which is universally accepted.

Behavior level fault models can be broadly clas-
sified into two main categories: 1) fault models related
to the description code 0-0; 2) black-box fault models
related to input stimuli and output responses 0-0.
Testing at higher level of abstraction has a lot in

common with software testing. Therefore the pattern
generation methods based on the fault model related to
the description code can be further classified, namely,
code oriented methods and fault oriented methods.
The code oriented methods exploit the most widely
used metrics developed for automated software
testing: statement coverage 0, branch coverage 0 and
path coverage 0. Although there are similarities there
are also important differences due to different sources
of errors/faults and models in these two cases. The
purpose of software validation is to detect design
errors whereas the purpose of testing is to detect phy-
sical defects and fabrication faults.

The fault oriented methods use single bit stuck-at
fault model 0, which was firstly introduced in 0, and
the variable bit stuck-at fault model 0. The variable
stuck-at fault model means that the variable is stuck-at
a particular value. Multiple bit stuck-at faults where
all bits have a stuck-at fault are equivalent to variable
stuck-at faults. Together with bit stuck-at fault models,
a condition stuck-at fault, which means that a
condition is either stuck-at true or stuck-at false, is
used 0. These models have been derived from the
logic level stuck-at fault model but they do not give
adequate coverage of physical faults. Faults inside ele-
ments that implement operators cannot be modeled in
this way. To resolve this problem the fault oriented
methods 0 use the operator mutation fault model. This
fault model implies that the operator will make a
miscalculation for a subset of operand values. It is
obvious that for an operator with a large number of
inputs, it is practically impossible to enumerate all

259

V. Jusas, K. Motiejūnas

possible operator mutations and then generate test
patterns to test them. In practice, an operator, depen-
ding on its design and implementation, can mutate to a
small set of possible functions. Operator mutation
fault model is practically useful for high level testing
if we get some knowledge about the internal design of
the operator.

Black-box fault models are more universal as they
do not depend on the description code; however, such
black-box fault models are of little use still. Several
black-box fault models were suggested that do not
examine the description code, and they are based on
the input stimuli and the output responses 0-0. The
most universal is the single coupling fault model
proposed in 0 and extended in 0, which is defined in
terms of a single input/output pair, considers the in-
fluence of the input value change to the output value
change. The definition of coupling fault is realization-
independent 0. The set of all test vectors for a
coupling fault is called coupling test set. The average
size of the coupling test set is 2n - 1, where n denotes
the number of inputs of the module 0. The only
elementary n-input (gate) functions, i.e. AND, OR,
NAND, and NOR require n + 1 coupling test.
Therefore, the coupling test sets are very large even
for small modules. The number of module inputs in
the implementation of test generation program
COTEGE for coupling faults was limited to at most
20; meanwhile, the number of the inputs of XOR
function was limited only to 6 0. The presented results
of efficient test generation using COTEGE can not be
attributed only to coupling fault model, because
COTEGE was developed for combinational modular
circuits whose functional behavior is specified hierar-
chically. COTEGE computed test sets for each module
separately. Then the test set for the whole circuit was
generated with respect to the inputs of circuit by using
high-level techniques 0 based on PODEM 0, which
has no relation to the coupling fault. After all coupling
faults are detected, reverse-order fault simulation is
performed for test compaction purposes, which also
has no relation to the coupling fault.

Yi and Hayes 0 extend high-level delay fault
models to large modular logic circuits applying a hie-
rarchical approach to delay test generation for modu-
lar circuits. The proposed new fault model, which is
based on the coupling delay fault model 0, imposes
the requirements for robust delay testing on module
implementation and on input pattern pair. The pro-
posed fault model has several drawbacks. Each circuit
is manually partitioned into multiple modules such
that every module output has at most 12 inputs so that
the coupling delay test set for each coupling delay
fault is kept reasonably small. Although the coupling
delay test set for a function z detects all robust path
delay faults in any gate-level realization of z 0, the
module path delay test set (MPDTS) 0 for a modular
realization of z may not detect all such faults. This is
possible either because many path delay faults are not
robustly testable, or because some robust path delay

faults are not detectable by an MPDTS. Since
complete coverage of robust path delay faults is not
guaranteed by MPDTSs, any strong conclusions can-
not be drawn from the proposed model.

 The functional fault models 0 that are named pin
pair (PP) and pin triplet (PT) enable to develop the
functional test on a base of the software prototype at
the early stages of the design process, while the syn-
thesized description of the device is not available yet.
The functional delay test developed on the base of test
for PP faults detects on the average more than 95 per
cent of the transition fault of ISCAS85 circuits 0. The
investigation of delay test development methods based
on PP test showed that the coverage of transition faults
can be increased on the average till 99 per cent 0. The
value of high transition fault coverage is
overshadowed by one disadvantage – a quite enough
big number of test patterns. The delay test patterns
with multiple input transitions decrease the size of test
set significantly and allow reaching the high quality of
functional test with fewer expenses 0. The multiple
input transitions pairs of test patterns expand the
possibilities of detection of transition faults by the
functional test.

2. The significance of functional test

The testing engineer prepares the functional test
according to the specification of the device. The func-
tional test is used to verify the next steps of the design
and it can be used for the development of the manu-
facturing test as well. Such a test usually verifies the
function of the device and it cannot guarantee the full
coverage of the stuck-at faults at the gate level of the
device. Therefore, when the synthesis of the device is
completed, the list of undetected faults is formed, and
the deterministic methods are used to detect the faults
from this list. Any functional test can be used to detect
the delay faults. The pairs of test patterns are formed,
when every test pattern, except the first one and the
last one, is repeated two times. In this case, the pairs
of test patterns are formed in the following way: the
first and the second patterns, the second and the third
patterns, and etc.

During design process the software prototype of
the device is created according to the specification.
The software prototype simulates the functions of the
device, enables to calculate the output values accor-
ding to the input values, and can be regarded as the
black-box model of the device. The functional test can
be generated on the base of the software prototype.

The functional test is based on the function of the
circuit, which can be designed in many ways. The
possible defects of the circuit depend on the imple-
mentation. The test is usually developed according to
the specific implementation and it is devoted to detect
the defects of this particular implementation. The
manufacturing test can be developed only on the base
of the specific implementation. Meanwhile, the
functional test is not related to the particular

260

Generation of Functional Delay Test with Multiple Input Transitions

implementation because it is generated from a circuit’s
specification rather than its gate level implementation.
The implementation independence of functional test
has several advantages over implementation-depen-
dent test. The functional test can be used to correct
testability problems early in the design process 0, to
identify the design errors 0, to test many potential
implementations 0, 0, and to detect hard-to-detect
faults at the gate level implementation 0.

The already known models of the functional faults
enable to develop the functional test, which detects
more than 99% of stuck-at faults of any implemen-
tation of the circuit function 0. However such a
functional test is several times longer than the test
developed for the particular implementation of the
circuit. The functional test must be minimized accor-
ding to the particular implementation when it is used
as the base for the manufacturing test. Furthermore,
the functional test can be augmented according to un-
detected faults of the particular implementation. The
main advantage of the functional test is that it can be
developed at the early stages of the design according
to the software prototype in parallel with synthesis
process. Meanwhile, the minimization of the functio-
nal test after synthesis according to the particular
implementation doesn’t require the long hours and it
has a weak impact on the overall time of the design.

The main problem, which we are facing during the
development of the functional test, is the quality
assessment of the functional test when the particular
implementation is not available yet. Bareiša et al 0
presented the new criteria for the quality assessment
of the functional test. These criteria allow evaluating
the robust and non-robust test patterns. In this paper,
we will present the functional delay test generation
algorithm, which is based on these criteria, and results
of its application to the benchmark circuits.

3. An overview of the method

Two test patterns are needed in order to detect the
delay faults. The delay test can be single input tran-
sition (SIT) or multiple input transitions (MIT) 0.
Only the value transitions on the inputs that invoke the
value transitions on the outputs can detect the delay
faults. The value transitions from the inputs are propa-
gated to the outputs along the paths of the circuit. In
order to generate the functional test it is necessary to
determine which input signal transition influences the
particular output signal transition. Therefore, it would
be rational to examine the influence of the blocking of
separate input signal transitions to the output signal
transitions. The signal transitions on the inputs have to
be blocked one by one keeping the value in the second
pattern the same as the value in the first one.

 Let’s use an example to explain in details the
concept of the blocking of the input signal transition.
Let’s say, there exists the pair of input patterns {1010,
0111}, where the signal transitions are observed on the
first, the second, and the fourth inputs. When the

transition is blocked on the first input, the pair of pat-
terns becomes the following: {1010, 1111}. When the
transition is blocked on the second input, the pair of
patterns becomes the following: {1010, 0011}. When
the transition is blocked on the fourth input, the pair of
patterns becomes the following: {1010, 0110}. The
transition blocking on the input may disable the
transitions on some outputs. If such a case is observed,
it means that the blocked transition on the input di-
rectly influences the transition on the output where the
transition was disabled. Therefore, such a pair of pat-
terns is the functional robust detection of the delay
faults. The other case is possible, when the delay
faults are detected in the functional non-robust man-
ner. Such a situation arises when the blocked transi-
tion on the input invokes the transition on the output
that had no transition before. The considered transition
on the input blocked the influence of the transition on
some other input, and, when this transition was dis-
abled, the additional transition appeared on the output,
on which it was not observed before.

 In general, let’s say, there exist two input patterns:
P1=<p1

1, p2
1, …, pi

1, …, pn
1>, and P2=<p1

2, p2
2, …,

pi
2, …,pn

2> where n is the number of inputs, and their
responses: R1=<r1

1, r2
1, …, rj

1, …, rm
1>, and R2=<r1

2,
r2

2, …, rj
2, …, rm

2>, where m is the number of outputs.
The detection of the functional delay faults can be
represented by the detection matrix ||X||2nx4m. The
input i is represented by two rows: 2i-1, and 2i in the
matrix. The row 2i-1 corresponds to the signal
transition 0→1 on the input, and the row 2i cor-
responds to the signal transition 1→0 on the input.
The output j is represented by four columns. The
column 4j-3 stands for the functional robust detection
when the signal transition 0→1 is on the output. The
column 4j-2 stands for the functional robust detection
when the signal transition 1→0 is on the output. The
column 4j-1 stands for the functional non-robust
detection when the signal transition 0→1 is on the
output. The column 4j stands for the functional robust
detection when the signal transition 1→0 is on the
output. The corresponding entry of the matrix X is set
to 1 if the disabled signal transition on the input
invokes or disables the signal transition on the output.

Let’s consider an example of the 3-input function z
= ac’ + a’c + bc (0) 0. The coupling delay test set is
presented in 0 0. This is an ideal test set, because it
covers all the paths in the circuit realization only once.
The problems of the coupling delay test generation
were enumerated in Introduction. The generation of
the functional delay test can be carried out according
to the ideas presented in this section. Let’s say, only
the single transition is allowed on the inputs of the
circuit. It is worth to pay attention that in the case of
single transition the functional non-robust detection is
not possible. The corresponding functional delay
patterns are presented in 0. As we compare this test set
with ideal test set, we see that the functional delay test
set does not include two test patterns, namely t8 and t9.
The answer to this problem is in the detection matrix

261

V. Jusas, K. Motiejūnas

X, which is presented in 0. The input c is included into
3 minterms what means that 6 test patterns are needed
but the matrix X for the relationship between input c
and output has only 4 entries that are devoted for
marking the robust fault detection. So, no more than 4
test patterns for input c can be generated when
generation is based on the matrix X and single
transition. Finally, the lack of two patterns means that
some delay faults will be uncovered.

 z
 c

 b

 a 1

 1

 &

 &

 &

 1

Figure 1. A realization of function z = ac’ + a’c + bc

Table 1.Coupling delay test set

t1 <010, 110> t2 <110, 010>
t3 <101, 001> t4 <001, 101>
t5 <101, 111> t6 <111, 101>
t7 <000, 001> t8 <001, 000>
t9 <010, 011> t10 <011, 010>
t11 <101, 100> t12 <100, 101>

Table 2. Functional delay test with single transition

t1 <010, 110> t2 <110, 010>
t3 <101, 001> t4 <001, 101>
t5 <101, 111> t6 <111, 101>
t7 <000, 001>
 t10 <011, 010>
t11 <101, 100> t12 <100, 101>

Let’s generate functional delay test patterns with
multiple transitions. The corresponding functional de-
lay test patterns are presented in 0, and the detection
matrix X is presented in 0. As we can see, the robust
detection includes 9 test patterns, while non-robust
detection includes 6 test patterns. The numeration of
test patterns has no any relation to 0 or 0. The robust
detection was divided in two parts: single input
transition and multiple input transitions.

This simple example shows that the multiple
transitions do not exclude entirely the single transi-
tion. In general, the number of test patterns is increa-
sed. These test patterns already cover all the paths of
the circuit realization. That shows that the generation
based on the detection matrix X and multiple
transitions is preferable than the generation based on
the detection matrix X and single transition. Not all
the paths are covered robustly but nevertheless all the

paths are covered. That has another advantage. The
non-robust delay test is effective in reducing test size
0.

Table 3. Detection matrix X for single transition

Output Inputs
Robust
detection

Non-robust
detection

1 1 0 0 Input a
1 1 0 0
1 0 0 0 Input b
0 1 0 0
1 1 0 0 Input c
1 1 0 0

Table 4. Functional delay test with multiple transitions

Robust detection
SIT

t1 <000, 001> t2 <011, 010>
t3 <100, 000> t4 <010, 110>
t5 <101, 100> t6 <101, 001>

MIT
t7 <000, 111> t8 <110, 101>
t9 <011, 101>

Non-robust detection
t10 <001, 100> t11 <110, 011>
t12 <111, 001> t13 <010, 101>
t14 <001, 111> t15 <101, 000>

Table 5. Detection matrix X for multiple transitions

Output Inputs
Robust
detection

Non-robust
detection

1 1 1 1 Input a
1 1 1 1
1 0 0 1 Input b
0 1 1 0
1 1 1 1 Input c
1 1 1 1

4. Test generation

In this section, we present a new functional delay
test generation algorithm based on the ideas intro-
duced in the previous section. The algorithm (0) has
the following input parameters: n – the number of the
primary inputs of the circuit; m – the number of the
primary outputs of the circuit; L – the number of the
randomly generated patterns. The parameter L defines
the size of the set from which a pair of test patterns is
selected.

262

Generation of Functional Delay Test with Multiple Input Transitions

1. To read the functional delay test from the file and to count the number of test patterns tk.
2. X=||xi,j:=0||2n x 4m;
3. tp:=1; // index of test patterns in the test set
4. DO WHILE (tp≠tk)
5. DO t:=tp, tk, 2; // Filling up the matrix X
6. P1:=Pt; R1:=function(P1);
7. P2:=Pt+1; R2:=function(P2);
8. DO i: =1, n, 1;
9. P3: =P2;
10. d:=1- p1

i;
11. IF (p1

i≠p2
i) THEN

12. p3
i:=1- p2

i; R3=function(P3);
13. DO j: =1, m, 1;
14. c:=3- r1

j;
15. IF (r3

j≠r2
j) THEN

16. IF(r2
j≠r1

j) THEN x2i-d,4j-c:=1;
17. ELSE x2i-d,4j-c+2:=1;
18. ENDIF;
19. ENDIF;
20. ENDDO;
21. ENDIF;
22. ENDDO;
23. ENDDO;
24. tp:=tk; h:=tk+1; // index for a new test pattern that has to be included into the test set
25. SKM:=0; // random 2 patterns generation and selection of the best pair from L generated
26. DO k:=1, L, 1;
27. P1:= (p1

1,p1
2,...,p1

i,...,p1
n), p1

i:=Random(0,1); R1:=function(P1);
28. P2:= (p2

1,p2
2,...,p2

i,...,p2
n), p2

i:=Random(0,1); R2:=function(P2);
29. SK1:=0;SK2:=0;
30. DO i: =1, n, 1;
31. P3: =P2;
32. d:=1- p1

i;
33. IF (p1

i≠p2
i) THEN

34. p3
i:=1- p2

i; R3=function(P3);
35. DO j: =1, m, 1;
36. c:=3- r1

j;
37. IF (r3

j≠r2
j) THEN

38. IF(r2
j≠r1

j) THEN
39. IF (x2i-d,4j-c=0)
40. THEN SK1:= SK1+1;ENDIF;
41. ELSE IF (x2i-d,4j-c+2=0)
42. THEN SK2:= SK2+1; ENDIF;
43. ENDIF;
44. ENDIF;
45. ENDDO;
46. ENDIF;
47. ENDDO;
48. IF ((SK1+SK2)>SKM) THEN SKM:=SK1+SK2; P1M:=P1;P2M:=P2; ENDIF;
49. ENDDO;
50. IF (SKM>0) THEN Ph:=P1M; Ph+1:=P2M;h:=h+2; tk:=h; ENDIF;
51. ENDWHILE;

Figure 2. Delay test generation algorithm

The algorithm can be divided into three major
parts: reading the test patterns from the file (line 1),
filling up the detection matrix X (lines 5-23), and ran-
dom 2 test patterns generation (lines 25-50). The
second and the third parts of the algorithm are joined
together by the outer loop (line 4), which terminates

the calculation when no more pair of patterns is selec-
ted from L randomly generated ones. The filling up of
the detection matrix X is done according to the input
patterns from the set P and their responses R on the
outputs. Initially, before the outer loop, the matrix X is
filled up with zeros. The responses are calculated for

263

V. Jusas, K. Motiejūnas

Table 6. The parameters of the non-redundant ISCAS’85
benchmark circuits

the pair of input patterns (lines 6 and 7). The loop is
repeated for every primary input of the circuit. The
value of the input is complemented and assigned to
the variable d (line 10). The interest is only for the
pair of values which differ. The signal transition is
blocked, and the response is calculated (line 12). Next,
all the values on the outputs are checked. The interest
is only for the values which indicate the difference
between the fault-free and the faulty pattern. The
control statement in the line 16 indicates what detec-
tion is: robust (line 16) or non-robust (line 17). The
use of the variables d and c allows writing indices for
the matrix entries in the compact form.

Circuit Gates
Input

n
Output

m
Kmax

No of
transition

faults

C432 160 36 7 540 1412
C499 202 41 32 5184 3430
C880 383 60 26 1326 2396

C1355 546 41 32 5184 3350
C1908 880 33 25 3004 4848
C2670 1193 157 64 3320 5646
C3540 1669 50 22 2588 8960
C5315 2307 178 123 10540 13816
C6288 2406 32 32 3068 14422
C7552 3512 206 107 12188 19160

The third part of the algorithm selects 2 test
patterns from 2xL randomly generated ones. The value
of L defines the size of randomly generated test set.
The 2 best patterns are selected from this set. The best
are those ones, which cover the biggest number of the
entries of the detection matrix. No difference is made
between robust and non-robust test patterns. The part
of the algorithm that selects 2 test patterns is similar to
the part of the algorithm that fills up the detection
matrix X, but it has some extra lines. Firstly, it uses
the variables SK1, SK2, SKM for choosing the best
pair of test patterns. Next, only unoccupied entries of
the matrix are counted for a new generated pair of test
patterns (lines 39-42). When the loop that generates L
pairs of test patterns is over, if a pair of patterns was
selected, then it is copied to the set of test patterns,
and the outer loop continues (line 50). If no pair of
patterns was selected the algorithm terminates.

Table 7. Robust and non-robust detection

Number of non-zero entries
Circuit Test

size Robust
detection

Non-robust
detection

%

C432 284 345 345 64
C499 446 907 1258 25
C880 274 606 599 46

C1355 612 1518 1313 29
C1908 632 1001 1027 34
C2670 518 1758 1512 53
C3540 806 1672 1664 65
C5315 602 4992 4772 47
C6288 244 2346 2354 77
C7552 922 5236 5087 43

We will investigate the relation between the quali-
ty assessment of the functional test and the transition
fault coverage at the gate level in the next section.

5. Experimental results

The experiments were carried out on ISCAS85
benchmark circuits. The parameters of circuits are pre-
sented in 0. It is worth to pay attention to the fifth
column under name “Kmax”. This column shows the
highest number of non-zero entries of the detection
matrix X for robust detection. These values were taken
from 0. They express the quality of the functional test
at the functional level. The values for non-robust
detection are not known but they can not exceed the
given values. To obtain the maximal value Kmax for the
functional test according to the software prototype is
quite a complex task, because not all the inputs have
influence to the outputs, and the impact may propa-
gate trough the even and/or uneven number of the
inversions. The determination of the maximal value
Kmax of the non-zero entries is complicated in any
case, even when the structure of the circuit is known,
because the impact of the input can not be propagated
along all the paths that connect the input and the
outputs. Therefore Kmax for the functional test can be
obtained only analytically.

The relationship between the quality assessment of
the functional test and the transition fault coverage has
to be determined. During the first experiment, the
transition fault test that was generated automatically at
the gate level by TetraMAX and that has 100% tran-
sition fault coverage was taken for the investigation.
The value of the criterion that shows the number of
non-zero entries of the detection matrix X was calcu-
lated for robust and non-robust detection separately
(0). The last column of 0 presents the per cent of the
number of non-zero entries for robust detection to the
maximal value (0, column under name “Kmax”). As we
can see, the obtained values are far enough from the
maximal value. The maximal value of the non-robust
detection is unknown. One can expect that it can not
exceed the maximal value of the robust detection but
no one can be sure that it always can be reached. The
results in 0 show that the obtained value of the non-

264

Generation of Functional Delay Test with Multiple Input Transitions

Table 9. Multiple and single transition robust detection is comparable with the obtained value
of the robust detection. Multiple transition Single transition

Circuit Test size % Test size %

C432 514 96 610 91.22
C499 3888 94.64 10302 99.65
C880 1242 92.61 1920 96.08
C1355 3738 94.33 10292 99.01
C1908 2188 83.56 4612 94.76
C2670 1538 99.17 3584 96.48
C3540 1708 96.90 2954 84.30
C5315 3896 100 9604 98.18
C6288 962 100 2064 99.75
C7552 7920 94.46 11602 96.52

Aver. 2759 95.16 5754 95.59

On the base of the experiment, we can state that
the quality assessment of the test that is generated at
the gate level and that detects all the transition faults
does not reach the maximal value of the criterion at
the functional level. Such a result can be explained by
the method of test generation that does not target to
generate the test patterns for the sensitization all the
paths between the inputs and the outputs. The path is
sensitized only from the target fault to the output of
the circuit. Meanwhile, the functional delay test tar-
gets to propagate the effects of transition faults along
all the paths of the circuit. Such an objective allows
propagating the effects of transition faults by longer
paths.

Table 8. The influence of robust and non-robust detection

Robust Non-robust Total
Circuit

Num. % Num. % Num. %

C432 74 26 80 28 26 9
C499 220 49 172 38 30 6
C880 56 20 42 15 10 2

C1355 302 49 266 43 92 15
C1908 290 45 276 43 190 30
C2670 120 23 128 24 44 8
C3540 192 23 176 21 66 8
C5315 36 5 20 3 6 1
C6288 4 1 8 3 2 1
C7552 148 16 134 14 50 5

The functional test has 100% coverage of matrix X
at the functional level, except the circuits C2670 and
C7552. The circuit C2670 had only 87% coverage of
the detection matrix X, meanwhile the transition fault
coverage of this circuit is very high (99.17%). The
circuit C7552 had 94% coverage of the detection
matrix X, and the transition fault coverage of this
circuit is almost the same (94.46%). The problem that
did not allow achieving the full coverage at the
functional level is the large number of primary inputs,
and, consequently the large number of combinations
of random patterns. The value of parameter L for these
circuits was increased till 1000000, but still it did not
allow covering the detection matrix fully. The full
coverage of transition faults was obtained for the cir-
cuits C5315 and C6288. It is a very good result. The
results for the columns under name “Single transition”
are taken from 0 and included for the comparison
purposes. The denomination “Single transition” shows
that the patterns in the pair differ only by a single
value. As we can see, the size of test, which is based
on multiple transitions, is always smaller than the size
of test, which is based on single transition. For some
circuits, like C499, C1355, C5315, C6288, the size of
test is smaller several times. But the transition fault
coverage is comparable in both cases.

In order to determine the influence of the robust
and non-robust detection to the selection of the test
patterns the second experiment was performed (0).
The transition fault test (0) that has 100% transition
fault coverage at the gate level was taken for the
investigation. The columns of 0 next to the first
column are grouped in pairs. The first column of the
pair shows the number of the test patterns that were
not selected according to the criterion, meanwhile the
second column of the pair expresses this value in per
cent. As we can see, the per cent of the lost test
patterns is quite high when criteria were considered
separately. The results are much better when the
selection is based on the unified criterion which
considers the robust and non-robust detection. The
latter result amplifies the value of the non-robust
detection.

The basic algorithm of test generation can be mo-
dified in several ways. Firstly, the random generation
can be modified. There is a meaning to make the
transitions only on the inputs of the circuit from which
the transitions can be propagated along the paths to
the outputs of the circuit. Such inputs are usually
called active inputs. So, when the second pattern of
the pair is generated randomly, the possibility to pro-
pagate the transition on every input can be checked,
and transitions should be generated only on the active
inputs of the circuit. Secondly, the experiments show
that pseudorandom test length can be reduced if
adjacent patterns are generated 0. So, when the pair of
patterns is selected, the adjacent patterns could be

During the third experiment, the functional test
was constructed according to the detection matrix X
and the obtained test was evaluated at the gate level
for transition faults (0).

265

V. Jusas, K. Motiejūnas

generated for it. Thirdly, the robust and non-robust
detections are evaluated equally in the basic algo-
rithm. The coefficients could be introduced that would
provide the different influence for robust and non-
robust detections.

The test generation mode of the basic algorithm
was modified in two different ways: 1) the second
pattern of the pair was generated randomly; the active
inputs were identified, and their values were comple-
mented in the first pattern of the pair; 2) firstly, the
only robust test was generated, then it was augmented
by the non-robust test. The results are presented in 0.

Table 10. Different generation modes

Active inverted Robust before
Circuit Test size % Test size %

C432 386 88.81 824 97.75
C499 1814 91.31 5608 100
C880 918 90.65 2116 99.25
C1355 1914 92.33 5622 97.25
C1908 1560 83.93 3944 94.62
C2670 978 90.74 2540 99.42
C3540 1354 88.68 3592 99.03
C5315 2264 97.96 7902 100
C6288 582 98.70 1548 99.97
C7552 3370 94.34 10414 94.88

Aver. 1514 91.75 4411 98.22

The distinguished feature of the first modification
was that there was no circuit that would reach the full
coverage of detection matrix X. Consequently, the
transition fault coverage was lower than in the other
two generation modes. The best quality of transition
fault coverage was obtained in the third generation
mode, when robust test patterns were generated in the
beginning of test generation, and then the test patterns
were augmented by the non-robust test patterns. Such
a result emphasizes the higher value of robust test
patterns but it acknowledges the fact that non-robust
test patterns contribute to the transition fault coverage
as well.

6. Conclusion

The functional delay test can be developed in
parallel with the other stages of the design and that
does not increase the time-to-market. The quality of
the functional delay test can be assessed in the initial
stages of the design according to the software pro-
totype of the device. The assessment of the quality is
based on the relationship of the values on the primary
outputs to the values on the primary inputs. The
relationship is expressed in two different modes:
functional robust and functional non-robust. The delay

test generation based on this relationship emphasizes
the higher value of robust test patterns but it acknow-
ledges the fact that non-robust test patterns contribute
to transition fault coverage as well. The use in the pair
of test patterns with multiple input transitions enables
to decrease the size of test set without loss of transi-
tion fault coverage.

References
 [1] F. Corno, P. Prinetto, M. Sonza Reorda. Testability

analysis and ATPG on behavioral RT-level VHDL.
Proceedings of IEEE International. Test Conference,
October 1997, 753-759.

 [2] S. Chiusano, F. Corno, P. Prinetto. A Test Pattern
Generation Algorithm Exploiting Behavioral Infor-
mation. Proceedings of Seventh Asian Test Symposium
(ATS'98), Singapore, December 1998, 480-485.

 [3] E.M. Rudnick, R. Vietti, A. Ellis, F. Corno, P.
Prinetto, M. Sonza Reorda. Fast Sequential Circuit
Test Generation Using High-Level and Gate-Level
Techniques. Proceedings of IEEE Design, Automation
and Test in Europe, Feb. 1998, 570-576.

 [4] F. Ferrandi, F. Fummi, D. Sciuto. Test Generation
and Testability Alternatives Exploration of Critical Al-
gorithms for Embedded Applications. IEEE Transac-
tions on Computers, Vol.51, Issue 2, 2002, 200–215.

 [5] C.H. Cho and J. R. Armstrong. B-algorithm: a Be-
havioral Test Generation Algorithm. Proceedings of
International Test Conference, October 1994, 968–
979.

 [6] G. Buonanno, F. Ferrandi. L. Ferrandi. F. Fummi,
D. Sciuto. How an “Evolving” Fault Model Improves
the Behavioral Test Generation. Proceedings of Great
Lakes Symposium on VLSI, 1997, 124–130.

 [7] M. Psarakis, D. Gizopoulos, A. Paschalis. Test gene-
ration and fault simulation for cell fault model using
stuck-at fault model based test tools. Journal of
Electronic Testing, Vol.13, 1998, 315-319.

 [8] J. Yi, J.P. Hayes. A Fault Model for Function and De-
lay Testing. Proc. of the IEEE European Test Work-
shop, ETW'01, 2001, 27-34.

 [9] J. Yi, J.P. Hayes. The Coupling Model for Function
and Delay Faults. Journal of Electronic Testing: The-
ory and Applications, Vol.21, No.6, 2005, 631–649.

[10] H. Kim, J.P. Hayes. Realization-Independent ATPG
for Designs with Unimplemented Blocks. IEEE Trans.
on CAD, Vol.20, No.2, 2001, 290–306.

[11] P. Goel. An Implicit Enumeration Algorithm to Gene-
rate Tests for Combinational Logic Circuits. IEEE
Trans. on Computers, Vol. C-30, No.3, 1981, 215–222.

[12] J. Yi, J.P. Hayes. High-Level Delay Test Generation
for Modular Circuits. IEEE Transactions on Compu-
ter-Aided Design of Integrated Circuits and Systems,
Vol.25, No.3, March 2006, 576-590.

[13] E. Bareisa, V. Jusas, K. Motiejunas, R. Seinauskas.
The Realization-Independent Testing Based on the
Black Box Models. INFORMATICA, Vilnius, Institute
of Mathematics and Informatics, Vol.16, No.1, 2005,
19-36.

266

Generation of Functional Delay Test with Multiple Input Transitions

267

[14] E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas.
Application of Functional Delay Tests for Testing of
Transition Faults and Vice Versa. Information Tech-
nology And Control, Kaunas, Technologija, 2005, Vol.
34, No.2, 95 - 101.

[15] E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas.
Transition Test Supplement. Elektronika ir elektro-
technika = Electronics and electrical engineering.
ISSN 1392-1215, Kaunas, Technologija, 2006, No.
3(67), 19–24.

[16] E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas.
Functional Delay Test Construction Approaches.
Elektronika ir elektrotechnika = Electronics and elect-
rical engineering. ISSN 1392-1215. Kaunas, Techno-
logija, 2007, No. 2(74), 49 - 54.

[17] I. Pomeranz, S.M. Reddy. On Testing Delay Faults
in Macro-based Combinational Circuits. Proc. Int.
Conf. Computer-Aided Dsign, San Jose, CA, 1994,
332-339.

[18] F. Ferrandi, F. Fummi, G. Pravadelli, D. Sciuto.
Identification of Design Errors Through Functional
Testing. IEEE Transactions On Reliability, Vol.52,
No.4, December 2003, 400-412.

[19] F. Ferrandi, F. Fummi, D. Sciuto. Implicit Test Ge-
neration for Behavioral VHDL Models. Proceedings
of International Test Conference, 18-23 October 1998,
587-596.

[20] E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas.
Functional Digital Systems Testing. ISBN 9955-25-
008-9, Kaunas, Technologija, 2006, 281.

[21] E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas,
Functional Delay Test Quality Assessment at High
Level of Abstraction. Information Technology And
Control, Kaunas, Technologija, 2007, Vol.36, No.1, 7-
15.

[22] M. Michael, S. Tragoudas. ATPG Tools for Delay
Faults at the Functional Level. ACM Transactions on
Design Automation of Electronics Systems, Vol.7,
No.1, January 2002, 33-57.

[23] J. Sosnowski, T.Wabia, T.Bech. Path Delay Fault
Testability Analysis. Proceedings of IEEE DFT Int.
Symposium on DFT in VLSI Systems, 2000, 338-346.

Received June 2007.

