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Abstract. The test can be developed at the functional level of the circuit. Such an approach allows developing the 
test at the early stages of the design process in parallel with other activities of this process. The main problem is the 
achievement of the high quality of the functional test that would be applicable at the gate level implementation of the 
circuit. The paper presents an algorithm of the functional delay test generation and results of its application to the 
benchmark circuits. The algorithm is based on the criteria of the quality assessment of the functional test consisting of 
the pairs of patterns with multiple signal transitions. The criteria are based solely on the primary input values and the 
primary output values of the software prototype. The criteria allow evaluating the robust and the non-robust test 
patterns. The presented experimental results demonstrate that the non-robust test patterns enable to increase the 
transition fault coverage. The use in the pair of test patterns with multiple input transitions enables to decrease the size 
of test set without loss of transition fault coverage. 

 
1. Introduction 

With ever shrinking geometries, growing density 
and increasing clock rate of chips, delay testing is 
gaining more and more industry attention to maintain 
test quality for speed-related failures. The purpose of a 
delay test is to verify that the circuit operates correctly 
at a desired clock speed. The pair of test patterns is 
used to detect delay faults. The first pattern sets the 
initial values on the inputs of the circuit; the second 
pattern launches the transition. Conventional delay 
test generation techniques based on gate level fault 
models are not suitable for circuits whose implemen-
tation details are unavailable. The functional test can 
be constructed for such circuits according to their spe-
cifications. The functional test can be used also to 
detect delay faults, when the test patterns are grouped 
in the pairs. 

Models of physical and fabrication faults are nee-
ded at higher levels of abstraction in order to be able 
to develop test patterns from functional or behavioral 
descriptions. Researchers have experienced that the 
stuck-at fault model works quite well at logic level. 
Many efforts have been devoted to the problem of 
finding behavioral level fault model 0-0. But no such 
fault model has been discovered at behavioral or 
higher level which is universally accepted. 

Behavior level fault models can be broadly clas-
sified into two main categories: 1) fault models related 
to the description code 0-0; 2) black-box fault models 
related to input stimuli and output responses 0-0. 
Testing at higher level of abstraction has a lot in 

common with software testing. Therefore the pattern 
generation methods based on the fault model related to 
the description code can be further classified, namely, 
code oriented methods and fault oriented methods. 
The code oriented methods exploit the most widely 
used metrics developed for automated software 
testing: statement coverage 0, branch coverage 0 and 
path coverage 0. Although there are similarities there 
are also important differences due to different sources 
of errors/faults and models in these two cases. The 
purpose of software validation is to detect design 
errors whereas the purpose of testing is to detect phy-
sical defects and fabrication faults. 

The fault oriented methods use single bit stuck-at 
fault model 0, which was firstly introduced in 0, and 
the variable bit stuck-at fault model 0. The variable 
stuck-at fault model means that the variable is stuck-at 
a particular value. Multiple bit stuck-at faults where 
all bits have a stuck-at fault are equivalent to variable 
stuck-at faults. Together with bit stuck-at fault models, 
a condition stuck-at fault, which means that a 
condition is either stuck-at true or stuck-at false, is 
used 0. These models have been derived from the 
logic level stuck-at fault model but they do not give 
adequate coverage of physical faults. Faults inside ele-
ments that implement operators cannot be modeled in 
this way. To resolve this problem the fault oriented 
methods 0 use the operator mutation fault model. This 
fault model implies that the operator will make a 
miscalculation for a subset of operand values. It is 
obvious that for an operator with a large number of 
inputs, it is practically impossible to enumerate all 
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possible operator mutations and then generate test 
patterns to test them. In practice, an operator, depen-
ding on its design and implementation, can mutate to a 
small set of possible functions. Operator mutation 
fault model is practically useful for high level testing 
if we get some knowledge about the internal design of 
the operator. 

Black-box fault models are more universal as they 
do not depend on the description code; however, such 
black-box fault models are of little use still. Several 
black-box fault models were suggested that do not 
examine the description code, and they are based on 
the input stimuli and the output responses 0-0. The 
most universal is the single coupling fault model 
proposed in 0 and extended in 0, which is defined in 
terms of a single input/output pair, considers the in-
fluence of the input value change to the output value 
change. The definition of coupling fault is realization-
independent 0. The set of all test vectors for a 
coupling fault is called coupling test set. The average 
size of the coupling test set is 2n - 1, where n denotes 
the number of inputs of the module 0. The only 
elementary n-input (gate) functions, i.e. AND, OR, 
NAND, and NOR require n + 1 coupling test. 
Therefore, the coupling test sets are very large even 
for small modules. The number of module inputs in 
the implementation of test generation program 
COTEGE for coupling faults was limited to at most 
20; meanwhile, the number of the inputs of XOR 
function was limited only to 6 0. The presented results 
of efficient test generation using COTEGE can not be 
attributed only to coupling fault model, because 
COTEGE was developed for combinational modular 
circuits whose functional behavior is specified hierar-
chically. COTEGE computed test sets for each module 
separately. Then the test set for the whole circuit was 
generated with respect to the inputs of circuit by using 
high-level techniques 0 based on PODEM 0, which 
has no relation to the coupling fault. After all coupling 
faults are detected, reverse-order fault simulation is 
performed for test compaction purposes, which also 
has no relation to the coupling fault. 

Yi and Hayes 0 extend high-level delay fault 
models to large modular logic circuits applying a hie-
rarchical approach to delay test generation for modu-
lar circuits. The proposed new fault model, which is 
based on the coupling delay fault model 0, imposes 
the requirements for robust delay testing on module 
implementation and on input pattern pair. The pro-
posed fault model has several drawbacks. Each circuit 
is manually partitioned into multiple modules such 
that every module output has at most 12 inputs so that 
the coupling delay test set for each coupling delay 
fault is kept reasonably small. Although the coupling 
delay test set for a function z detects all robust path 
delay faults in any gate-level realization of z 0, the 
module path delay test set (MPDTS) 0 for a modular 
realization of z may not detect all such faults. This is 
possible either because many path delay faults are not 
robustly testable, or because some robust path delay 

faults are not detectable by an MPDTS. Since 
complete coverage of robust path delay faults is not 
guaranteed by MPDTSs, any strong conclusions can-
not be drawn from the proposed model. 

 The functional fault models 0 that are named pin 
pair (PP) and pin triplet (PT) enable to develop the 
functional test on a base of the software prototype at 
the early stages of the design process, while the syn-
thesized description of the device is not available yet. 
The functional delay test developed on the base of test 
for PP faults detects on the average more than 95 per 
cent of the transition fault of ISCAS85 circuits 0. The 
investigation of delay test development methods based 
on PP test showed that the coverage of transition faults 
can be increased on the average till 99 per cent 0. The 
value of high transition fault coverage is 
overshadowed by one disadvantage – a quite enough 
big number of test patterns. The delay test patterns 
with multiple input transitions decrease the size of test 
set significantly and allow reaching the high quality of 
functional test with fewer expenses 0. The multiple 
input transitions pairs of test patterns expand the 
possibilities of detection of transition faults by the 
functional test. 

2. The significance of functional test 

The testing engineer prepares the functional test 
according to the specification of the device. The func-
tional test is used to verify the next steps of the design 
and it can be used for the development of the manu-
facturing test as well. Such a test usually verifies the 
function of the device and it cannot guarantee the full 
coverage of the stuck-at faults at the gate level of the 
device. Therefore, when the synthesis of the device is 
completed, the list of undetected faults is formed, and 
the deterministic methods are used to detect the faults 
from this list. Any functional test can be used to detect 
the delay faults. The pairs of test patterns are formed, 
when every test pattern, except the first one and the 
last one, is repeated two times. In this case, the pairs 
of test patterns are formed in the following way: the 
first and the second patterns, the second and the third 
patterns, and etc.  

During design process the software prototype of 
the device is created according to the specification. 
The software prototype simulates the functions of the 
device, enables to calculate the output values accor-
ding to the input values, and can be regarded as the 
black-box model of the device. The functional test can 
be generated on the base of the software prototype.  

The functional test is based on the function of the 
circuit, which can be designed in many ways. The 
possible defects of the circuit depend on the imple-
mentation. The test is usually developed according to 
the specific implementation and it is devoted to detect 
the defects of this particular implementation. The 
manufacturing test can be developed only on the base 
of the specific implementation. Meanwhile, the 
functional test is not related to the particular 
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implementation because it is generated from a circuit’s 
specification rather than its gate level implementation. 
The implementation independence of functional test 
has several advantages over implementation-depen-
dent test. The functional test can be used to correct 
testability problems early in the design process 0, to 
identify the design errors 0, to test many potential 
implementations 0, 0, and to detect hard-to-detect 
faults at the gate level implementation 0. 

The already known models of the functional faults 
enable to develop the functional test, which detects 
more than 99% of stuck-at faults of any implemen-
tation of the circuit function 0. However such a 
functional test is several times longer than the test 
developed for the particular implementation of the 
circuit. The functional test must be minimized accor-
ding to the particular implementation when it is used 
as the base for the manufacturing test. Furthermore, 
the functional test can be augmented according to un-
detected faults of the particular implementation. The 
main advantage of the functional test is that it can be 
developed at the early stages of the design according 
to the software prototype in parallel with synthesis 
process. Meanwhile, the minimization of the functio-
nal test after synthesis according to the particular 
implementation doesn’t require the long hours and it 
has a weak impact on the overall time of the design. 

The main problem, which we are facing during the 
development of the functional test, is the quality 
assessment of the functional test when the particular 
implementation is not available yet. Bareiša et al 0 
presented the new criteria for the quality assessment 
of the functional test. These criteria allow evaluating 
the robust and non-robust test patterns. In this paper, 
we will present the functional delay test generation 
algorithm, which is based on these criteria, and results 
of its application to the benchmark circuits. 

3. An overview of the method 

Two test patterns are needed in order to detect the 
delay faults. The delay test can be single input tran-
sition (SIT) or multiple input transitions (MIT) 0. 
Only the value transitions on the inputs that invoke the 
value transitions on the outputs can detect the delay 
faults. The value transitions from the inputs are propa-
gated to the outputs along the paths of the circuit. In 
order to generate the functional test it is necessary to 
determine which input signal transition influences the 
particular output signal transition. Therefore, it would 
be rational to examine the influence of the blocking of 
separate input signal transitions to the output signal 
transitions. The signal transitions on the inputs have to 
be blocked one by one keeping the value in the second 
pattern the same as the value in the first one. 

 Let’s use an example to explain in details the 
concept of the blocking of the input signal transition. 
Let’s say, there exists the pair of input patterns {1010, 
0111}, where the signal transitions are observed on the 
first, the second, and the fourth inputs. When the 

transition is blocked on the first input, the pair of pat-
terns becomes the following: {1010, 1111}. When the 
transition is blocked on the second input, the pair of 
patterns becomes the following: {1010, 0011}. When 
the transition is blocked on the fourth input, the pair of 
patterns becomes the following: {1010, 0110}. The 
transition blocking on the input may disable the 
transitions on some outputs. If such a case is observed, 
it means that the blocked transition on the input di-
rectly influences the transition on the output where the 
transition was disabled. Therefore, such a pair of pat-
terns is the functional robust detection of the delay 
faults. The other case is possible, when the delay 
faults are detected in the functional non-robust man-
ner. Such a situation arises when the blocked transi-
tion on the input invokes the transition on the output 
that had no transition before. The considered transition 
on the input blocked the influence of the transition on 
some other input, and, when this transition was dis-
abled, the additional transition appeared on the output, 
on which it was not observed before. 

 In general, let’s say, there exist two input patterns: 
P1=<p1

1, p2
1, …, pi

1, …, pn
1>, and  P2=<p1

2, p2
2, …, 

pi
2, …,pn

2> where n is the number of inputs, and their 
responses: R1=<r1

1, r2
1, …, rj

1, …, rm
1>,  and R2=<r1

2, 
r2

2, …, rj
2, …, rm

2>, where m is the number of outputs. 
The detection of the functional delay faults can be 
represented by the detection matrix ||X||2nx4m. The 
input i is represented by two rows: 2i-1, and 2i in the 
matrix. The row 2i-1 corresponds to the signal 
transition 0→1 on the input, and the row 2i cor-
responds to the signal transition 1→0 on the input. 
The output j is represented by four columns. The 
column 4j-3 stands for the functional robust detection 
when the signal transition 0→1 is on the output. The 
column 4j-2 stands for the functional robust detection 
when the signal transition 1→0 is on the output. The 
column 4j-1 stands for the functional non-robust 
detection when the signal transition 0→1 is on the 
output. The column 4j stands for the functional robust 
detection when the signal transition 1→0 is on the 
output. The corresponding entry of the matrix X is set 
to 1 if the disabled signal transition on the input 
invokes or disables the signal transition on the output. 

Let’s consider an example of the 3-input function z 
= ac’ + a’c + bc (0) 0. The coupling delay test set is 
presented in 0 0. This is an ideal test set, because it 
covers all the paths in the circuit realization only once. 
The problems of the coupling delay test generation 
were enumerated in Introduction. The generation of 
the functional delay test can be carried out according 
to the ideas presented in this section. Let’s say, only 
the single transition is allowed on the inputs of the 
circuit. It is worth to pay attention that in the case of 
single transition the functional non-robust detection is 
not possible. The corresponding functional delay 
patterns are presented in 0. As we compare this test set 
with ideal test set, we see that the functional delay test 
set does not include two test patterns, namely t8 and t9. 
The answer to this problem is in the detection matrix 
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X, which is presented in 0. The input c is included into 
3 minterms what means that 6 test patterns are needed 
but the matrix X for the relationship between input c 
and output has only 4 entries that are devoted for 
marking the robust fault detection. So, no more than 4 
test patterns for input c can be generated when 
generation is based on the matrix X and single 
transition. Finally, the lack of two patterns means that 
some delay faults will be uncovered.  

 z 
 c 

 b 

 a  1 

 1 

 & 

 & 

 & 

 1 

 
Figure 1. A realization of function  z = ac’ + a’c + bc 

Table 1.Coupling delay test set  

t1 <010, 110> t2 <110, 010> 
t3 <101, 001> t4 <001, 101> 
t5 <101, 111> t6 <111, 101> 
t7 <000, 001> t8 <001, 000> 
t9 <010, 011> t10 <011, 010> 
t11 <101, 100> t12 <100, 101> 

Table 2. Functional delay test with single transition  

t1 <010, 110> t2 <110, 010> 
t3 <101, 001> t4 <001, 101> 
t5 <101, 111> t6 <111, 101> 
t7 <000, 001>   
  t10 <011, 010> 
t11 <101, 100> t12 <100, 101> 

Let’s generate functional delay test patterns with 
multiple transitions. The corresponding functional de-
lay test patterns are presented in 0, and the detection 
matrix X is presented in 0. As we can see, the robust 
detection includes 9 test patterns, while non-robust 
detection includes 6 test patterns. The numeration of 
test patterns has no any relation to 0 or 0. The robust 
detection was divided in two parts: single input 
transition and multiple input transitions. 

This simple example shows that the multiple 
transitions do not exclude entirely the single transi-
tion. In general, the number of test patterns is increa-
sed. These test patterns already cover all the paths of 
the circuit realization. That shows that the generation 
based on the detection matrix X and multiple 
transitions is preferable than the generation based on 
the detection matrix X and single transition. Not all 
the paths are covered robustly but nevertheless all the 

paths are covered. That has another advantage. The 
non-robust delay test is effective in reducing test size 
0.  

Table 3. Detection matrix X for single transition 

Output Inputs 
Robust 
detection 

Non-robust 
detection 

1 1 0 0  Input a 
1 1 0 0 
1 0 0 0  Input b 
0 1 0 0 
1 1 0 0  Input c 
1 1 0 0 

 
Table 4. Functional delay test with multiple transitions  

Robust detection 
SIT 

t1 <000, 001> t2 <011, 010> 
t3 <100, 000> t4 <010, 110> 
t5 <101, 100> t6 <101, 001> 

MIT 
t7 <000, 111> t8 <110, 101> 
t9 <011, 101>   

Non-robust detection 
t10 <001, 100> t11 <110, 011> 
t12 <111, 001> t13 <010, 101> 
t14 <001, 111> t15 <101, 000> 

 
Table 5. Detection matrix X for multiple transitions 

Output Inputs 
Robust 
detection 

Non-robust 
detection 

1 1 1 1  Input a 
1 1 1 1 
1 0 0 1  Input b 
0 1 1 0 
1 1 1 1  Input c 
1 1 1 1 

4. Test generation 

In this section, we present a new functional delay 
test generation algorithm based on the ideas intro-
duced in the previous section. The algorithm (0) has 
the following input parameters: n – the number of the 
primary inputs of the circuit; m – the number of the 
primary outputs of the circuit; L – the number of the 
randomly generated patterns. The parameter L defines 
the size of the set from which a pair of test patterns is 
selected. 
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1. To read the  functional delay test from the file and to count the number of test patterns tk. 
2. X=||xi,j:=0||2n x 4m; 
3. tp:=1;         // index of test patterns in the test set 
4. DO WHILE (tp≠tk)  
5.   DO t:=tp, tk, 2;    // Filling up the matrix X 
6.    P1:=Pt; R1:=function(P1); 
7.     P2:=Pt+1; R2:=function(P2); 
8.    DO i: =1, n, 1; 
9.      P3: =P2; 
10.      d:=1- p1

i; 
11.     IF (p1

i≠p2
i) THEN 

12.       p3
i:=1- p2

i; R3=function(P3); 
13.      DO j: =1, m, 1; 
14.        c:=3- r1

j; 
15.       IF (r3

j≠r2
j) THEN  

16.        IF(r2
j≠r1

j) THEN x2i-d,4j-c:=1; 
17.         ELSE x2i-d,4j-c+2:=1; 
18.        ENDIF; 
19.       ENDIF; 
20.      ENDDO; 
21.     ENDIF; 
22.    ENDDO; 
23.   ENDDO; 
24.    tp:=tk; h:=tk+1; // index for a new test pattern that has to be included into the test set 
25.   SKM:=0;           // random 2 patterns generation and selection of the best pair from L generated 
26.   DO k:=1, L, 1; 
27.    P1:= (p1

1,p1
2,...,p1

i,...,p1
n),  p1

i:=Random(0,1); R1:=function(P1); 
28.      P2:= (p2

1,p2
2,...,p2

i,...,p2
n),  p2

i:=Random(0,1); R2:=function(P2); 
29.    SK1:=0;SK2:=0;  
30.    DO i: =1, n, 1; 
31.      P3: =P2; 
32.      d:=1- p1

i; 
33.     IF (p1

i≠p2
i) THEN 

34.       p3
i:=1- p2

i; R3=function(P3); 
35.      DO j: =1, m, 1; 
36.        c:=3- r1

j; 
37.       IF (r3

j≠r2
j) THEN  

38.        IF(r2
j≠r1

j) THEN 
39.          IF (x2i-d,4j-c=0)  
40.           THEN SK1:= SK1+1;ENDIF; 
41.         ELSE IF (x2i-d,4j-c+2=0) 
42.           THEN SK2:= SK2+1; ENDIF; 
43.        ENDIF; 
44.       ENDIF; 
45.      ENDDO; 
46.     ENDIF; 
47.    ENDDO; 
48.    IF ((SK1+SK2)>SKM) THEN SKM:=SK1+SK2; P1M:=P1;P2M:=P2; ENDIF; 
49.   ENDDO; 
50.   IF (SKM>0) THEN Ph:=P1M; Ph+1:=P2M;h:=h+2; tk:=h; ENDIF; 
51.  ENDWHILE; 

Figure 2. Delay test generation algorithm 

The algorithm can be divided into three major 
parts: reading the test patterns from the file (line 1), 
filling up the detection matrix X (lines 5-23), and ran-
dom 2 test patterns generation (lines 25-50). The 
second and the third parts of the algorithm are joined 
together by the outer loop (line 4), which terminates 

the calculation when no more pair of patterns is selec-
ted from L randomly generated ones. The filling up of 
the detection matrix X is done according to the input 
patterns from the set P and their responses R on the 
outputs. Initially, before the outer loop, the matrix X is 
filled up with zeros. The responses are calculated for 
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Table 6. The parameters of the non-redundant ISCAS’85 
benchmark circuits  

the pair of input patterns (lines 6 and 7). The loop is 
repeated for every primary input of the circuit. The 
value of the input is complemented and assigned to 
the variable d (line 10). The interest is only for the 
pair of values which differ. The signal transition is 
blocked, and the response is calculated (line 12). Next, 
all the values on the outputs are checked. The interest 
is only for the values which indicate the difference 
between the fault-free and the faulty pattern. The 
control statement in the line 16 indicates what detec-
tion is: robust (line 16) or non-robust (line 17). The 
use of the variables d and c allows writing indices for 
the matrix entries in the compact form. 

Circuit Gates 
Input 

n 
Output 

m 
Kmax 

No of 
transition 

faults 

C432 160 36 7 540 1412 
C499 202 41 32 5184 3430 
C880 383 60 26 1326 2396 

C1355 546 41 32 5184 3350 
C1908 880 33 25 3004 4848 
C2670 1193 157 64 3320 5646 
C3540 1669 50 22 2588 8960 
C5315 2307 178 123 10540 13816 
C6288 2406 32 32 3068 14422 
C7552 3512 206 107 12188 19160 

The third part of the algorithm selects 2 test 
patterns from 2xL randomly generated ones. The value 
of L defines the size of randomly generated test set. 
The 2 best patterns are selected from this set. The best 
are those ones, which cover the biggest number of the 
entries of the detection matrix. No difference is made 
between robust and non-robust test patterns. The part 
of the algorithm that selects 2 test patterns is similar to 
the part of the algorithm that fills up the detection 
matrix X, but it has some extra lines. Firstly, it uses 
the variables SK1, SK2, SKM for choosing the best 
pair of test patterns. Next, only unoccupied entries of 
the matrix are counted for a new generated pair of test 
patterns (lines 39-42). When the loop that generates L 
pairs of test patterns is over, if a pair of patterns was 
selected, then it is copied to the set of test patterns, 
and the outer loop continues (line 50). If no pair of 
patterns was selected the algorithm terminates. 

 
Table 7. Robust and non-robust detection  

Number of non-zero entries 
Circuit Test 

size Robust 
detection 

Non-robust 
detection 

% 

C432 284 345 345 64 
C499 446 907 1258 25 
C880 274 606 599 46 

C1355 612 1518 1313 29 
C1908 632 1001 1027 34 
C2670 518 1758 1512 53 
C3540 806 1672 1664 65 
C5315 602 4992 4772 47 
C6288 244 2346 2354 77 
C7552 922 5236 5087 43 

We will investigate the relation between the quali-
ty assessment of the functional test and the transition 
fault coverage at the gate level in the next section. 

5. Experimental results 

The experiments were carried out on ISCAS85 
benchmark circuits. The parameters of circuits are pre-
sented in 0. It is worth to pay attention to the fifth 
column under name “Kmax”. This column shows the 
highest number of non-zero entries of the detection 
matrix X for robust detection. These values were taken 
from 0. They express the quality of the functional test 
at the functional level. The values for non-robust 
detection are not known but they can not exceed the 
given values. To obtain the maximal value Kmax for the 
functional test according to the software prototype is 
quite a complex task, because not all the inputs have 
influence to the outputs, and the impact may propa-
gate trough the even and/or uneven number of the 
inversions. The determination of the maximal value 
Kmax of the non-zero entries is complicated in any 
case, even when the structure of the circuit is known, 
because the impact of the input can not be propagated 
along all the paths that connect the input and the 
outputs. Therefore Kmax for the functional test can be 
obtained only analytically. 

The relationship between the quality assessment of 
the functional test and the transition fault coverage has 
to be determined. During the first experiment, the 
transition fault test that was generated automatically at 
the gate level by TetraMAX and that has 100% tran-
sition fault coverage was taken for the investigation. 
The value of the criterion that shows the number of 
non-zero entries of the detection matrix X was calcu-
lated for robust and non-robust detection separately 
(0). The last column of 0 presents the per cent of the 
number of non-zero entries for robust detection to the 
maximal value (0, column under name “Kmax”). As we 
can see, the obtained values are far enough from the 
maximal value. The maximal value of the non-robust 
detection is unknown. One can expect that it can not 
exceed the maximal value of the robust detection but 
no one can be sure that it always can be reached. The 
results in 0 show that the obtained value of the non-
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Table 9. Multiple and single transition   robust detection is comparable with the obtained value 
of the robust detection. Multiple transition Single transition 

Circuit Test size % Test size % 

C432 514 96 610 91.22 
C499 3888 94.64 10302 99.65 
C880 1242 92.61 1920 96.08 
C1355 3738 94.33 10292 99.01 
C1908 2188 83.56 4612 94.76 
C2670 1538 99.17 3584 96.48 
C3540 1708 96.90 2954 84.30 
C5315 3896 100 9604 98.18 
C6288 962 100 2064 99.75 
C7552 7920 94.46 11602 96.52 

Aver. 2759 95.16 5754 95.59 

On the base of the experiment, we can state that 
the quality assessment of the test that is generated at 
the gate level and that detects all the transition faults 
does not reach the maximal value of the criterion at 
the functional level. Such a result can be explained by 
the method of test generation that does not target to 
generate the test patterns for the sensitization all the 
paths between the inputs and the outputs. The path is 
sensitized only from the target fault to the output of 
the circuit. Meanwhile, the functional delay test tar-
gets to propagate the effects of transition faults along 
all the paths of the circuit. Such an objective allows 
propagating the effects of transition faults by longer 
paths. 
  
Table 8. The influence of robust and non-robust detection   

Robust Non-robust Total 
Circuit 

Num. % Num. % Num. % 

C432 74 26 80 28 26 9 
C499 220 49 172 38 30 6 
C880 56 20 42 15 10 2 

C1355 302 49 266 43 92 15 
C1908 290 45 276 43 190 30 
C2670 120 23 128 24 44 8 
C3540 192 23 176 21 66 8 
C5315 36 5 20 3 6 1 
C6288 4 1 8 3 2 1 
C7552 148 16 134 14 50 5 

The functional test has 100% coverage of matrix X 
at the functional level, except the circuits C2670 and 
C7552. The circuit C2670 had only 87% coverage of 
the detection matrix X, meanwhile the transition fault 
coverage of this circuit is very high (99.17%). The 
circuit C7552 had 94% coverage of the detection 
matrix X, and the transition fault coverage of this 
circuit is almost the same (94.46%). The problem that 
did not allow achieving the full coverage at the 
functional level is the large number of primary inputs, 
and, consequently the large number of combinations 
of random patterns. The value of parameter L for these 
circuits was increased till 1000000, but still it did not 
allow covering the detection matrix fully. The full 
coverage of transition faults was obtained for the cir-
cuits C5315 and C6288. It is a very good result. The 
results for the columns under name “Single transition” 
are taken from 0 and included for the comparison 
purposes. The denomination “Single transition” shows 
that the patterns in the pair differ only by a single 
value. As we can see, the size of test, which is based 
on multiple transitions, is always smaller than the size 
of test, which is based on single transition. For some 
circuits, like C499, C1355, C5315, C6288, the size of 
test is smaller several times. But the transition fault 
coverage is comparable in both cases.  

In order to determine the influence of the robust 
and non-robust detection to the selection of the test 
patterns the second experiment was performed (0). 
The transition fault test (0) that has 100% transition 
fault coverage at the gate level was taken for the 
investigation. The columns of 0 next to the first 
column are grouped in pairs. The first column of the 
pair shows the number of the test patterns that were 
not selected according to the criterion, meanwhile the 
second column of the pair expresses this value in per 
cent. As we can see, the per cent of the lost test 
patterns is quite high when criteria were considered 
separately. The results are much better when the 
selection is based on the unified criterion which 
considers the robust and non-robust detection. The 
latter result amplifies the value of the non-robust 
detection.  

The basic algorithm of test generation can be mo-
dified in several ways. Firstly, the random generation 
can be modified. There is a meaning to make the 
transitions only on the inputs of the circuit from which 
the transitions can be propagated along the paths to 
the outputs of the circuit. Such inputs are usually 
called active inputs. So, when the second pattern of 
the pair is generated randomly, the possibility to pro-
pagate the transition on every input can be checked, 
and transitions should be generated only on the active 
inputs of the circuit. Secondly, the experiments show 
that pseudorandom test length can be reduced if 
adjacent patterns are generated 0. So, when the pair of 
patterns is selected, the adjacent patterns could be 

During the third experiment, the functional test 
was constructed according to the detection matrix X 
and the obtained test was evaluated at the gate level 
for transition faults (0).  
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generated for it. Thirdly, the robust and non-robust 
detections are evaluated equally in the basic algo-
rithm. The coefficients could be introduced that would 
provide the different influence for robust and non-
robust detections. 

The test generation mode of the basic algorithm 
was modified in two different ways: 1) the second 
pattern of the pair was generated randomly; the active 
inputs were identified, and their values were comple-
mented in the first pattern of the pair; 2) firstly, the 
only robust test was generated, then it was augmented 
by the non-robust test. The results are presented in 0. 
 
Table 10. Different generation modes 

Active inverted Robust before 
Circuit Test size % Test size % 

C432 386 88.81 824 97.75 
C499 1814 91.31 5608 100 
C880 918 90.65 2116 99.25 
C1355 1914 92.33 5622 97.25 
C1908 1560 83.93 3944 94.62 
C2670 978 90.74 2540 99.42 
C3540 1354 88.68 3592 99.03 
C5315 2264 97.96 7902 100 
C6288 582 98.70 1548 99.97 
C7552 3370 94.34 10414 94.88 

Aver. 1514 91.75 4411 98.22 

The distinguished feature of the first modification 
was that there was no circuit that would reach the full 
coverage of detection matrix X. Consequently, the 
transition fault coverage was lower than in the other 
two generation modes. The best quality of transition 
fault coverage was obtained in the third generation 
mode, when robust test patterns were generated in the 
beginning of test generation, and then the test patterns 
were augmented by the non-robust test patterns. Such 
a result emphasizes the higher value of robust test 
patterns but it acknowledges the fact that non-robust 
test patterns contribute to the transition fault coverage 
as well. 

6. Conclusion 

The functional delay test can be developed in 
parallel with the other stages of the design and that 
does not increase the time-to-market. The quality of 
the functional delay test can be assessed in the initial 
stages of the design according to the software pro-
totype of the device. The assessment of the quality is 
based on the relationship of the values on the primary 
outputs to the values on the primary inputs. The 
relationship is expressed in two different modes: 
functional robust and functional non-robust. The delay 

test generation based on this relationship emphasizes 
the higher value of robust test patterns but it acknow-
ledges the fact that non-robust test patterns contribute 
to transition fault coverage as well. The use in the pair 
of test patterns with multiple input transitions enables 
to decrease the size of test set without loss of transi-
tion fault coverage. 

References 
 [1] F. Corno, P. Prinetto, M. Sonza Reorda. Testability 

analysis and ATPG on behavioral RT-level VHDL. 
Proceedings of IEEE International. Test Conference, 
October 1997, 753-759. 

 [2] S. Chiusano, F. Corno, P. Prinetto. A Test Pattern 
Generation Algorithm Exploiting Behavioral Infor-
mation. Proceedings of Seventh Asian Test Symposium 
(ATS'98), Singapore, December 1998, 480-485. 

 [3] E.M. Rudnick, R. Vietti, A. Ellis, F. Corno, P. 
Prinetto, M. Sonza Reorda. Fast Sequential Circuit 
Test Generation Using High-Level and Gate-Level 
Techniques. Proceedings of IEEE Design, Automation 
and Test in Europe, Feb. 1998, 570-576. 

 [4] F. Ferrandi, F. Fummi, D. Sciuto. Test Generation 
and Testability Alternatives Exploration of Critical Al-
gorithms for Embedded Applications. IEEE Transac-
tions on Computers, Vol.51,  Issue 2, 2002, 200–215. 

 [5] C.H. Cho and J. R. Armstrong. B-algorithm: a Be-
havioral Test Generation Algorithm. Proceedings of 
International Test Conference, October 1994, 968–
979. 

 [6] G. Buonanno, F. Ferrandi. L. Ferrandi. F. Fummi, 
D. Sciuto. How an “Evolving” Fault Model Improves 
the Behavioral Test Generation. Proceedings of Great 
Lakes Symposium on VLSI, 1997, 124–130. 

 [7] M. Psarakis, D. Gizopoulos, A. Paschalis. Test gene-
ration and fault simulation for cell fault model using 
stuck-at fault model based test tools. Journal of 
Electronic Testing, Vol.13, 1998, 315-319. 

 [8] J. Yi, J.P. Hayes. A Fault Model for Function and De-
lay Testing. Proc. of the IEEE European Test Work-
shop, ETW'01, 2001, 27-34. 

 [9] J. Yi, J.P. Hayes. The Coupling Model for Function 
and Delay Faults. Journal of Electronic Testing: The-
ory and Applications, Vol.21, No.6, 2005, 631–649. 

[10] H. Kim, J.P. Hayes. Realization-Independent ATPG 
for Designs with Unimplemented Blocks. IEEE Trans. 
on CAD, Vol.20, No.2, 2001, 290–306. 

[11] P. Goel. An Implicit Enumeration Algorithm to Gene-
rate Tests for Combinational Logic Circuits. IEEE 
Trans. on Computers, Vol. C-30, No.3, 1981, 215–222. 

[12] J. Yi, J.P. Hayes. High-Level Delay Test Generation 
for Modular Circuits. IEEE Transactions on Compu-
ter-Aided Design of Integrated Circuits and Systems, 
Vol.25, No.3, March 2006, 576-590. 

[13] E. Bareisa, V. Jusas, K. Motiejunas, R. Seinauskas. 
The Realization-Independent Testing Based on the 
Black Box Models. INFORMATICA, Vilnius, Institute 
of Mathematics and Informatics, Vol.16, No.1, 2005,  
19-36. 

266 



Generation of Functional Delay Test with Multiple Input Transitions 

267 

[14] E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas. 
Application of Functional Delay Tests for Testing of 
Transition Faults and Vice Versa. Information Tech-
nology And Control, Kaunas, Technologija, 2005, Vol. 
34, No.2, 95 - 101. 

[15] E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas. 
Transition Test Supplement. Elektronika ir elektro-
technika = Electronics and electrical engineering. 
ISSN 1392-1215, Kaunas, Technologija, 2006, No. 
3(67), 19–24. 

[16] E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas. 
Functional Delay Test Construction Approaches.  
Elektronika ir elektrotechnika = Electronics and elect-
rical engineering. ISSN 1392-1215. Kaunas, Techno-
logija, 2007, No. 2(74), 49 - 54. 

[17] I. Pomeranz, S.M. Reddy. On Testing Delay Faults 
in Macro-based Combinational Circuits. Proc. Int. 
Conf. Computer-Aided Dsign, San Jose, CA, 1994,  
332-339. 

[18] F. Ferrandi, F. Fummi, G. Pravadelli, D. Sciuto. 
Identification of Design Errors Through Functional 
Testing. IEEE Transactions On Reliability, Vol.52, 
No.4, December 2003, 400-412. 

[19] F. Ferrandi, F. Fummi, D. Sciuto. Implicit Test Ge-
neration for Behavioral VHDL Models. Proceedings 
of International Test Conference, 18-23 October 1998, 
587-596.  

[20] E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas. 
Functional Digital Systems Testing. ISBN 9955-25-
008-9, Kaunas, Technologija, 2006, 281. 

[21] E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas, 
Functional Delay Test Quality Assessment at High 
Level of Abstraction. Information Technology And 
Control, Kaunas, Technologija, 2007, Vol.36, No.1, 7-
15. 

[22] M. Michael, S. Tragoudas. ATPG Tools for Delay 
Faults at the Functional Level. ACM Transactions on 
Design Automation of Electronics Systems, Vol.7, 
No.1, January 2002, 33-57. 

[23] J. Sosnowski, T.Wabia, T.Bech. Path Delay Fault 
Testability Analysis. Proceedings of IEEE DFT Int. 
Symposium on DFT in VLSI Systems, 2000, 338-346. 

Received June 2007. 


