
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2007, Vol.36, No.2

THE USE OF MODEL CONSTRAINTS AS IMPRECISE SOFTWARE
TEST ORACLES

Šarūnas Packevičius, Andrej Ušaniov, Eduardas Bareiša
Software Engineering Department, Kaunas University of Technology

Studentų St. 50, LT−51368 Kaunas, Lithuania

Abstract. Many software test generation techniques target on generating software test data. Only a few of them
provide automatic way to verify if software behaves correctly using generated test data. We propose a testing
technique, which uses UML modeling language extension OCL as imprecise test oracle. Imprecise OCL constraints
can be viewed as expressions which define expected results within some ranges of possible values. When software is
executed using generated test data the output is verified against imprecise OCL constraints. If output invalidates
imprecise OCL constraints, a tester can assume with some probability that software has bugs.

1. Introduction

High quality software is a desired goal for many
software developers. But high quality software is an
exception; defective software is norm [1]. The soft-
ware testing is the most used way to ensure some level
of software quality [1].

Software developers apply testing in development
process to ensure an adequate level of quality for their
products. In general, software testing consumes 50 or
more percent of software project costs [2, 3]. Auto-
mation is the most popular way to reduce costs of soft-
ware testing. Software developers usually try to auto-
mate in software testing:
• Tests execution.

Tools automate execution of already prepared
tests. Most popular tools are of record-playback
type. They are used for automating user interface
testing [2]. Another popular tools type is a unit
testing framework. They are used for automati-
cally executing created unit tests [4].

• Test data generation.
Test data are generated using software code
(white-box testing [2]) and functional specifica-
tion (black-box testing [2]). There are many tech-
niques which describe how to generate test data.
Popular techniques are: random generation, path-
based generation [5-11], execution based genera-
tion [12], generation using genetic methods [13-
15], generation using formal and informal models
[16-20].

Unfortunately many test generators generate only
test data. They generate only test inputs, which has to
be passed to software under test in order to test it.

Many of these test data generation techniques are tar-
geted to cover as much as possible code lines of soft-
ware under test (code lines coverage) [2].

The full code coverage does not mean that soft-
ware behaves correctly. After execution software with
test data which covers all code we could only assume
that a program works (does not crash). But we can not
be sure that the program has produced a correct
output. In this case the tester has to verify manually if
the program has produced a correct output with given
test data. The tester who decides if software under test
has produced the correct output with given test data is
called oracle [2, 3]. This work is manual and labour
intensive.

2. OCL and tests generation
OCL standard stands for Object Constraint Lan-

guage [21]. It was proposed by OMG organization.
OCL allows UML [22] models to be extended with
constraints. An UML diagram can not reflect all rele-
vant aspects and constraints of a model. OCL standard
has been developed to extend UML models by de-
fining constraints.

For example, an UML class diagram can have an
attribute of type integer. It is not possible to define
limits of that attribute values or define relations with
other attributes in the UML diagram. Let’s suppose we
want that this attribute could have its value within
range of 0 and 100. Using OCL, this constraint could
be implemented. Such constraints are called inva-
riants. They have to be satisfied during all object life-
time.

OCL can also provide constraints for class
methods, such as pre conditions for input values and

246

The Use of Model Constraints as Imprecise Software Test Oracles

post conditions for output values. Let’s consider a
class Rectangle:

class Rectangle
{

public int calcArea(int width, int height);
};

Let’s define constraints for this method:
• Width has to be greater than zero
• Height has to be greater than zero
Let’s define constraints for the result:
• Result is width multiplied by height

Constraints for a method calcArea such as width
and height have to be greater than zero (pre condition)
and the result is width multiplied by height (post
condition) can be expressed in UML model by using
OCL as follows:

context Rectangle::calcArea
 pre: width > 0
 pre: height > 0
 post: result = width * height

The post condition can perfectly serve as an oracle.
The test generator can easily select two input values,
which fall in the range of pre conditions, execute the
unit under test and evaluate if software has calculated
the result, which matches OCL post constraint. If the
result matches, then the test has passed otherwise it
has failed, thus revealing a bug in software.

Unfortunately, OCL constraints are not always
available for all software units. Some constraints are
not as precise as the one given in the example. In the
given example, post condition completely reassembles
the implementation of the method. When a post con-
dition reassembles method implementation (provides
full implementation) the constraint can be automati-
cally transformed into software implementation [23].
In this case no testing could be needed. C. Philippe
and R. Roger [24] proposed the idea how to convert
OCL constraints directly to the code implementation
in this way removing the need for testing of imple-
mentation, because implementation correctly repre-
sents the model. Constraints have to be precise in
order to perform such automatic implementation gene-
ration. But it is not so common situation.

Aichenger and Salas [25] proposed a method for
tests generation using OCL constraints. Their method
relies on OCL specification mutation. In this method,
inputs are selected that could detect changes in OCL
specification. Such inputs passed to software under
test could detect bugs in implementation too.

Korel and Al-Yami [26] presented a similar me-
thod, which injects constraints into software code.
These constraints serve as an oracle inside code and
allow verifying if some method implementation vari-
ables are within defined ranges.

Tracey et al. [27] presented a similar method for
detecting bugs. They have analyzed “exceptions” fea-

ture of programming languages. Their method tried to
calculate the required input, which would force to
raise an exception, when the input is passed to soft-
ware under test. If it is not possible to calculate such
input, the software under test is bug free.

3. Test case generation using imprecise OCL
constraints

OCL [21] constraints usually are imprecise, be-
cause it is easier to define imprecise constraints or
even derive them form other model elements. We
propose a test case generation technique using UML
models and imprecise OCL constraints.

3.1. Imprecise constraint
Imprecise OCL constraint is a constraint, which

defines the post or pre conditions not by exact formu-
la, but by some boundaries or by a formula defining
approximate result value. For example, in the previous
example we could replace the post condition with the
new imprecise one:

 post: result > 0

This modification makes the OCL constraint im-
precise. Despite the fact that such type of constraint is
easier to define or derive, this constraint does not
allow to verify if the computation was performed
correctly. For example, we are testing an implemen-
tation of the method calcArea:

class Rectangle
{

public int calcArea(int width, int height)
{

 return width/height;
 };
};
There is usual mistyping in the given above imple-

mentation. The division ‘/’ is used instead of multipli-
cation ‘*’. Let’s say data set (2, 3) was generated for
input parameters width and height, respectively. The
unit under test returns a value equal to 0.666. Using a
precise constraint would reveal an error, but imprecise
constraint does not.

We have another implementation with a bug, for
example

class Rectangle
{

public int calcArea(int width, int height)
{

 return width-height;
};

};
The error is misplaced subtraction operator in the

given above code. Instead of the multiplication ‘*’
symbol, subtraction ‘-‘symbol was typed. When the
test data (2, 3) are passed to the method, it returns -1.
This value does not satisfy model constraint, and we
have found the bug.

247

Š. Packevičius, A. Ušaniov, E. Bareiša

Imprecise OCL constraints can be deduced from
other model elements. For example, we have the class
Rectangle which represents geometrical shape and it
extends the class Shape. Shape is a generic class and
serves as an interface for all geometric figures. The
Class Shape could define a method calcArea and have
an OCL constraint associated with it. The OCL const-
raint defines that an area is always greater than zero or
is equal zero. So this constraint has to be valid for all
classes, which extend the Shape base class. The const-
raint for the Rectangle class is derived from the base
Shape class in this example.

3.2. Testing procedure
During software testing using imprecise OCL

constraints, we generate test data for each class me-
thod using some selected test data generation tech-
nique. Generated test data are filtered if they match
input OCL constraints, thus reducing test execution
time. The test data which satisfy OCL input const-
raints are passed to software under test and a software
output is received. The received output is verified
against OCL constraints. If the output does not satisfy
OCL constraints, then we have detected a bug and the
test has failed. If the output satisfies OCL constraints,
then the test has passed.

The testing procedure is represented in the Figure
1. The procedure generates testing result as a set TR of
records. Each record specifies the class C, the method
M, the Boolean flag R (which defines does it contain
bugs or not R), and the probability P of an inaccuracy
of flag R.
Input. A set of classes, a set of methods in each
class, a set of OCL input constraints associated
with each method, a set of OCL output constraints
associated with each method.
Output. The set TR of records <C, M, R, P>
1. While there are untested classes
2. Do select class C1
3. While there are untested methods in class C1
4. Do select method M1
5. Select OCL constraint OCLI for
 method M1 input
6. While can generate test data (the
 required coverage criteria has not
 been yet met)
7. Generate test data TD
8. If TD matches OCL input
 constraint OCLI then
9. Execute M1 with test data TD
 and get result MER
10. Select OCL constraint OCLR for
 method M1 output
11. If MER does not satisfy OCLR
 then
12. add <C1, M1, FAIL, 100%> to TR
13. go to step 3
14. Else
15. Discard test data TD
16. add <C1, M1, PASS,
 EVALUATEPROBABILITY()> to TR

Figure 1. Testing procedure

Test generation can be performed for selected me-
thod until the bug is found or until we have reached
some defined coverage criteria. For example, if we
selected all path criteria then testing continues by
generating test input data until the input which forces
method to produce invalid output is found (input does

not satisfy OCL constraint) (lines 11, 12). Testing can
also be finished when all paths in the method are
executed and no inputs which have invalidated const-
raints have been found or no more new test data can
be generated (line 14). If test passes, the EVALUATE-
PROBABILITY function is called which has to
calculate the correctness of the testing result. If, using
some test data, software under test produced an output
which does not satisfy OCL constraints, then we defi-
nitely can say that the test has failed. If the output
satisfies OCL constraints then we can only predict that
test has passed. The EVALUATEPROBABILTY func-
tion calculates the probability that the test has passed.
The probability depends on the number of test data
executed. The probability is required because the OCL
constraints are imprecise. Using imprecise constraints
we cannot be sure completely if software calculated
value is correct despite the fact that constraints are
satisfied.

3.3. Testing framework
Software testing framework implementing our me-

thod is presented in Figure 2. Its main parts are: the
test data generator, the oracle and models. The test
data generator generates test inputs for software under
test. The generated inputs are passed to software under
test, which is executed using those inputs. Software
under test produces some output.

Test data generator

Software under test

UML+ OCL

Testing report

Oracle

Inputs

Outputs

Constraints

PASS/FAIL

Figure 2. Testing framework

The oracle takes the produced output and evaluates
its correctness against the UML+OCL model. It eva-
luates if the produced output satisfies provided OCL
constraints and produces the testing report. If the
output satisfies OCL constraints the PASS record is
added to the testing report and the probability of the
likelihood that test has passed is calculated. If the
output does not satisfy the OCL constraint, the FAIL
record is added to the testing report.

3.4. Test data generation
In order to generate test data for software under

test any test data generation technique can be used.
For test data generation random generation technique,
genetic algorithms, symbolic execution [28, 29],

248

The Use of Model Constraints as Imprecise Software Test Oracles

chaining approach [12], simulated annealing [30],
variable dependence analysis [31], evolutionary algo-
rithms [32] and other white box testing techniques
could be used. The techniques could target to some
code coverage criteria. For example, all paths criteria
could be used as a mean for determining the test
success probability.

OCL constraints can filter some generated test data
and reduce testing time by doing that. For example,
when we are generating test inputs for method
calcArea, the random test generator chooses values
from range -32K and +32K. Using OCL constrains
values ranging from -32K to 0 can be removed be-
cause they do not satisfy pre conditions. By removing
them the testing time is reduced.

3.5. Oracle
OCL post conditions serve as test oracles. Methods

are executed using generated test data, and the output
is checked against post conditions. If the function
output does not satisfy post conditions, the test has
failed and the bug is found. But if the result value
satisfies the post condition, we can only predict with
some likelihood that the test actually has passed and
there are no errors in the implementation. The
probability that the test has passed could be calculated
using some of coverage techniques. For example, we
have calculated that software under test has n paths in
the code and using one of test data generation tech-
niques, we have generated test data which covers m
paths (0 < m <= n) of the code. After the execution we
could get that all generated outputs satisfy OCL
constraints and we have to calculate the success
probability. Using all-paths coverage criteria, we can
assume that p = m / n * a. Here p is the probability of
accuracy of the testing result, m – the number of the
covered paths with test data, n – the number of total
paths in software under test, a – a constant (0 <= a
<=1) which defines the imprecision level of OCL
constraints. Here 1 could mean that OCL constrains
are precise, and 0 could mean that we have no OCL
constraints at all.

4. Example
We used our method for testing the Shapes

example. Example software is represented as a UML
class diagram in Figure 2. The base class Shape de-
fines an interface for all child classes. For the simp-
licity and clarity of example, this class defines only
one method for calculating the area size of the shape.
There are two classes which implement this interface:
Circle and Triangle. The Circle class has only one
attribute r – the radius of the circle and one method
SetR for setting the radius of the circle.

The class Triangle has three attributes: a, b and c.
These attributes represent edge lengths of the triangle.
The class under test has a method SetABC, which
specifies edge lengths of the triangle. The Class
Triangle extends the class Shape and implements its

abstract method GetArea. The method GetArea
calculates the area size of the shape.

Figure 3. UML class diagram for the example system

The model has the following OCL constraints:
1. context: Shape::GetArea
2. post: result >= 0
3. context Triangle::SetABC(a,b,c)
4. pre: a > 0
5. pre: b > 0
6. pre: c > 0
7. contect Circle::SetR(r)
8. pre: r > 0

The constraint on the line 1 specifies that GetArea
method have to return a result, which is a positive
number. This constraint is automatically applied to
classes Triangle and Circle through the class inheri-
tance. The constraints on lines 4-6 and 8 define that
input values have to be positive numbers.

The area size of triangle is calculated using the
following formula:

S = b * c * cos (asin(b*b + c * c – a * a) / (2 * b * c))

The area of circle is calculated using the following
formula

S = Pi * r * r

Assume that the developer has provided an incor-
rect implementation of the Trinagle::GetArea method
(asin function was replaced with acos function in this
implementation):
class Triangle extends Shape
{

public float GetArea()
{

 return 0.5 * b * c * Math.cos(Math.acos((b
* b + c * c - a * a) / (2*b*c)));
 };
};
The developer has provided a correct implementation
for the Circle::GetArea method:
class Circle extends Shape
{
 public float GetArea()
 {
 Return Math.PI * r * r;
 };
};

249

Š. Packevičius, A. Ušaniov, E. Bareiša

The automatic test generator has generated some
random inputs, software was executed using that input
and the calculated software result was validated
against OCL constraints. The testing results are given
in Table 1.

Table 1. Testing results of the method Triange::GetSize

No. a b c Output Result
1. 3 3 3 2.24 PASS

2. 4 3 3 0.5 PASS
3. 5 3 3 -1.75 FAIL

Using the last set of test data we have found an
error. The implementation has calculated the -1.75
values, which does not satisfy the OCL constraint, and
we can say that using the third set of input data, the
test has failed. But the first and the second test data
sets have provided the results which have obeyed OCL
constraints and the test have passed. Therefore despite
the fact that tests have passed, the calculated values
are incorrect. In order to detect a fault in the imple-
mentation, the test generator has to generate a suffi-
cient amount of test data. If the generator has managed
to generate an input, which invalidates constraint, we
have found a bug.

The random test data generator was also used for
testing the Circle class. Class methods were executed
using generated test data. The testing results are
provided in Table 2.

Table 2. Testing results of the method Circle::GetSize

No. r Output Result
1. 1 3.14 PASS
2. 2 12.56 PASS
3. 3 28.26 PASS

Using generated test data, we have not found any
inputs which could force the implementation to
produce an output which could invalidate OCL const-
raints. Thus we can assume that the implementation is
bug free.

The testing report is provided in Table 3.

Table 3. Testing results of the example classes.

No. Method Result Probability
1. Triangle::GetArea FAIL 100%
2. Circle::GetArea PASS 67%

The provided probability specifies that if we have
failed test we are 100% sure that we have found the
bug. When we have passed the test we can only say
that the test result is accurate with some probability.
The probability rises from imprecise model const-
raints. Because constraints define the method result
imprecisely, the result of the passed test is imprecise
as well. We can only evaluate approximately if the
calculated value is really correct. The testing result is
as precise as precise is the OCL constraint. The prob-
ability is less then or equal 100%. The probability de-
pends on the number of test data executed. For

example, if we decided to use all paths coverage cri-
teria and have exercised all paths, the probability is
quite high. If we have exercised only a few paths, the
probability is low. All paths have been exercised
during the testing of the Circle class, so the probability
has to be high. If we assume that OCL constraint pre-
cision constant a is 0.67 the probability could be
calculated as p = m/n * a * 100% = 1 / 1 * 0.67 *
100% = 67%. m and n equals 1 because the method
has one path and the test generator has generated test
data which allowed to cover all paths.

5. Experiments
In order to verify the efficiency of our testing

method we have performed the testing on some bench-
mark programs. We have generated some mutants for
each selected benchmark program. Mutations were
created by substituting one operator with another in
the code, changing constants values to other ones and
by removing some statements from the code.

After performing mutations, we have performed
the testing on mutated programs and have calculated
what percentage of mutants our method can detect.

5.1. Benchmarks
For evaluating method besides the Triangle class,

which was presented in Section 4, we have selected
several popular benchmarks used by other authors
[26]. The selected benchmarks and associated const-
rains are presented Table 4.

Table 4. Benchmarks for evaluation of the testing method

No. Benchmark Description Constraint
1. Triangle::GetArea Calculates

the area size
of the shape

result > 0

2. MinMax Returns min
and max
values from
the array of
numbers

result.min
<= any
random
input value
& result.max
>= any
random
input value

3. Average Returns the
calculated
average
value of the
array of
numbers

result >=
min & result
<= max

4. RestrictedAverage Returns the
calculated
average
value of the
array of
numbers
excluding
some values.

result >=
min & result
<= max

5. Concat Joins two
strings a and
b.

Result.length
= a.length +
b.length

250

The Use of Model Constraints as Imprecise Software Test Oracles

5.2. Evaluation criteria Triangle

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 100 1000

Test data

M
ut

an
ts

The percentage of killed mutants for each bench-
mark was selected as an evaluation criterion. The
more mutants the method is able to kill the better it is.
We also measured how many test data inputs we need
to generate in order to kill mutants.

5.3. Results
During the evaluation of our technique we have

used the random test data generation technique. Gene-
rated test data were submitted to mutated programs
and the produced output was evaluated against OCL
constraints. If the output produced by one mutant has
not satisfied the OCL constraint we have marked that
mutant as killed. Finally, we have calculated what
percentage of mutants was killed for the selected prog-
ram. The percentage of the killed mutants for each
benchmark is provided Table 5.

Figure 4. Test data input count needed for killing mutants of
the class Triangle

Average

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 100 1000

Test data

M
ut

an
ts

Table 5. Killed mutants for the benchmark

No. Benchmark Mutants
count

Killed

1. Triangle::GetArea 9 89%
2. MinMax 10 78%
3. Average 9 100%
4. RestrictedAverage 11 100%
5. Concat 11 100%

Figure 5. Test data input count needed for killing mutants of
the class Average During mutants generation some mutants appeared

to be identical correct programs. Such mutants were
removed from the set of mutants we were trying to
kill. For example, such a mutant could be a program
with removed variable initialization with zero value.
In languages like Java each declared variable gets a
default value of zero if it is of number type.

6. Conclusions and future work
We have presented a method for performing

software testing using imprecise OCL constraints. Im-
precise OCL constraints are easier to define and derive
from UML models. In order to detect an incorrect
implementation we have to generate a sufficient
amount of test data. By executing tests, we evaluate a
software calculated output against OCL constraints. If
constraints are not satisfied, we have established the
fact of the existence of a bug in the implementation.
The test data generation can be stopped at this point.

The percentage of the killed mutants shows that
using imprecise OCL constraints is not enough to kill
all mutants. But the percentage of the killed mutants is
quite high. We are planning to extend the technique by
adding one or two test cases with an actual input and
the expected output values. This addition could in-
crease testing accuracy and only slightly increases
testing costs. Out future work is targeted to developing a method

for measuring the probability of passed tests more
precisely. Also we are willing to determine what kinds
of faults our method can detect. We are also thinking
about extending this method in order to define new
testing criteria. The criteria should define when to stop
generating test cases and finish testing when we have
not found any errors. We are interested in comparison
of imprecise models with constraints versus models
with precise OCL constraints in the testing aspect.

We have also measured how much test data are
required to kill mutants for a specific benchmark. For
example, during the Triangle class testing there were
enough to generate only 10 inputs in order to kill
mutants.

The number test data inputs used to kill Triangle
class mutants is presented in Figure 3. The graph
shows that a relatively small number of generated test
data inputs is required for killing mutants and genera-
ting more additional data does not give better results.
There is no difference if we have generated 1000 or 10
test data inputs the number of killed mutants remains
the same for the Triangle class.

References
 [1] J. A. Whittaker, J.M. Voas. 50 years of software:

key principles for quality. IT Professional, Vol.4, 28-
35, 2002.

The same results could be observed and for Ave-
rage program in Figure 4.

 [2] B. Beizer. Software testing techniques. 2nd ed. New
York: Van Nostrand Reinhold, 1990.

251

Š. Packevičius, A. Ušaniov, E. Bareiša

252

 [3] R. V. Binder. Testing Object-Oriented Systems: Mo-
dels, Patterns, and Tools. Boton: Addison Wesley Pro-
fessional, 2000.

 [4] E.N. Robert, H.P. Richard. Unit testing frameworks.
Proceedings of the 33rd SIGCSE technical symposium
on Computer science education, Cincinnati, Kentucky:
ACM Press, 2002.

 [5] G. Neelam, P.M. Aditya, S. Mary Lou. Automated
test data generation using an iterative relaxation me-
thod. Proceedings of the 6th ACM SIGSOFT interna-
tional symposium on Foundations of software enginee-
ring, Lake Buena Vista, Florida, United States: ACM
Press, 1998.

 [6] G. Arnaud, B. Bernard, R. Michel. Automatic test
data generation using constraint solving techniques.
Proceedings of the 1998 ACM SIGSOFT international
symposium on Software testing and analysis. Clea-
rwater Beach, Florida, United States: ACM Press,
1998.

 [7] S. Nguyen Tran, D. Yves. Consistency techniques for
interprocedural test data generation. Proceedings of
the 9th European software engineering conference
held jointly with 11th ACM SIGSOFT international
symposium on Foundations of software engineering.
Helsinki, Finland: ACM Press, 2003.

 [8] B. Korel, M. Harman, S. Chung, P. Apirukvorapi-
nit, R. Gupta, Q. Zhang. Data Dependence Based
Testability Transformation in Automated Test
Generation. 16th IEEE International Symposium on
Software Reliability Engineering (ISSRE'05) 2005.

 [9] W.E. Wong, L. Yu, M. Xiao. Effective generation of
test sequences for structural testing of concurrent
programs. 10th IEEE International Conference on En-
gineering of Complex Computer Systems (ICECCS'05)
2005.

[10] D. Beyer, A.J. Chlipala, R. Majumdar. Generating
tests from counterexamples. 26th International
Conference on Software Engineering (ICSE'04) 2004.

[11] A. Gotlieb, T. Denmat, B. Botella. Goal-oriented test
data generation for programs with pointer variables.
29th Annual International Computer Software and
Applications Conference (COMPSAC'05), 2005.

[12] F. Roger, K. Bogdan. The chaining approach for
software test data generation. ACM Trans. Softw. Eng.
Methodol., Vol.5, 1996, 63-86.

[13] F. Corno, E. Sanchez, M.S. Reorda, G. Squillero.
Automatic test program generation: a case study.
Design & Test of Computers, IEEE, Vol.21, 2004,
102-109.

[14] H. Harmanani, B. Karablieh. A hybrid distributed
test generation method using deterministic and genetic
algorithms. Fifth International Workshop on System-
on-Chip for Real-Time Applications (IWSOC'05)
2005.

[15] P. Kalpana, K. Gunavathi. A novel specification
based test pattern generation using genetic algorithm
and wavelets. 18th International Conference on VLSI
Design held jointly with 4th International Conference
on Embedded Systems Design (VLSID'05), 2005.

[16] P. Amit. Case studies on fault detection effectiveness
of model based test generation techniques. Procee-
dings of the first international workshop on Advances
in model-based testing. St. Louis, Missouri: ACM
Press, 2005.

[17] P. Alexander. Model-based testing. Proceedings of
the 27th international conference on Software engi-
neering. St. Louis, MO, USA: ACM Press, 2005.

[18] O.E. Mir, G. Hassan. Model-based testing for appli-
cations derived from software product lines. Procee-
dings of the first international workshop on Advances
in model-based testing. St. Louis, Missouri: ACM
Press, 2005.

[19] S.K. Kim, L. Wildman, R. Duke. A UML approach
to the generation of test sequences for Java-based
concurrent systems. 2005 Australian Software Engi-
neering Conference (ASWEC'05) 2005.

[20] W. Xin, C. Zhi, L. Qi Shuhao. An optimized method
for automatic test oracle generation from real-time
specification. 10th IEEE International Conference on
Engineering of Complex Computer Systems
(ICECCS'05), 2005.

[21] J. Warmer, A. Kleppe. The Object Constraint Lan-
guage Second Edition: Getting your models ready for
MDA. Adisson-Wesley, 2003.

[22] M. Fowler, K. Scott. UML Distilled. Addison-Wesley,
1997.

[23] C. Philippe, R. Roger. Towards Efficient Support for
Executing the Object Constraint Language. Procee-
dings of the Technology of Object-Oriented Lan-
guages and Systems: IEEE Computer Society, 1999.

[24] A.M. Brian, M.V. Jeffrey. Programming with Asser-
tions: A Prospectus. IT Professional, Vol.6, 2004, 53-
59.

[25] B.K. Aichernig, P.A.P. Salas. Test case generation by
OCL mutation and constraint solving. Fifth Internatio-
nal Conference on Quality Software, 2005.

[26] B. Korel, A.M. Al-Yami. Assertion-oriented auto-
mated test data generation. Proceedings of the 18th
international conference on Software engineering.
Berlin, Germany: IEEE Computer Society, 1996.

[27] N. Tracey, J. Clark, K. Mander, J. McDermid.
Automated test-data generation for exception condi-
tions. Software: Practice and Experience, Vol.30,
2000, 61-79.

[28] J. King. A new approach to program testing. Interna-
tional Conference on Reliable Software, 1975.

[29] J. King. Symbolic execution and program testing.
Communications of ACM, Vol.19, 1976, 385-394.

[30] S. Kirkpatrick, C.D.G. Jr, M.P. Vecchi. Optimiza-
tion by Simulated Annealing. Science, Vol.220, 1983,
671-680.

[31] M. Harman, C. Fox, R. Hierons, H. Lin, S. Danicic,
J. Wegener. VADA: a transformation-based system
for variable dependence analysis. Second IEEE Inter-
national Workshop on Source Code Analysis and
Manipulation, 2002.

[32] T. Back, F. Hoffmeister, H. Schwefel. A Survey of
Evolution Strategies. Fourth International Conference
on Genetic Algorithms, San Diego, CA, 1991.

Received May 2007.

