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Abstract. Many software test generation techniques target on generating software test data. Only a few of them 
provide automatic way to verify if software behaves correctly using generated test data. We propose a testing 
technique, which uses UML modeling language extension OCL as imprecise test oracle. Imprecise OCL constraints 
can be viewed as expressions which define expected results within some ranges of possible values. When software is 
executed using generated test data the output is verified against imprecise OCL constraints. If output invalidates 
imprecise OCL constraints, a tester can assume with some probability that software has bugs. 

 
 

1. Introduction 

High quality software is a desired goal for many 
software developers. But high quality software is an 
exception; defective software is norm [1]. The soft-
ware testing is the most used way to ensure some level 
of software quality [1]. 

Software developers apply testing in development 
process to ensure an adequate level of quality for their 
products. In general, software testing consumes 50 or 
more percent of software project costs [2, 3]. Auto-
mation is the most popular way to reduce costs of soft-
ware testing. Software developers usually try to auto-
mate in software testing: 
• Tests execution. 

Tools automate execution of already prepared 
tests. Most popular tools are of record-playback 
type. They are used for automating user interface 
testing [2]. Another popular tools type is a unit 
testing framework. They are used for automati-
cally executing created unit tests [4]. 

• Test data generation. 
Test data are generated using software code 
(white-box testing [2]) and functional specifica-
tion (black-box testing [2]). There are many tech-
niques which describe how to generate test data. 
Popular techniques are: random generation, path-
based generation [5-11], execution based genera-
tion [12], generation using genetic methods [13-
15], generation using formal and informal models 
[16-20].    

Unfortunately many test generators generate only 
test data. They generate only test inputs, which has to 
be passed to software under test in order to test it. 

Many of these test data generation techniques are tar-
geted to cover as much as possible code lines of soft-
ware under test (code lines coverage) [2]. 

The full code coverage does not mean that soft-
ware behaves correctly. After execution software with 
test data which covers all code we could only assume 
that a program works (does not crash). But we can not 
be sure that the program has produced a correct 
output. In this case the tester has to verify manually if 
the program has produced a correct output with given 
test data. The tester who decides if software under test 
has produced the correct output with given test data is 
called oracle [2, 3]. This work is manual and labour 
intensive. 

2. OCL and tests generation 
OCL standard stands for Object Constraint Lan-

guage [21]. It was proposed by OMG organization. 
OCL allows UML [22] models to be extended with 
constraints. An UML diagram can not reflect all rele-
vant aspects and constraints of a model. OCL standard 
has been developed to extend UML models by de-
fining constraints.  

For example, an UML class diagram can have an 
attribute of type integer. It is not possible to define 
limits of that attribute values or define relations with 
other attributes in the UML diagram. Let’s suppose we 
want that this attribute could have its value within 
range of 0 and 100. Using OCL, this constraint could 
be implemented. Such constraints are called inva-
riants. They have to be satisfied during all object life-
time. 

OCL can also provide constraints for class 
methods, such as pre conditions for input values and 
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post conditions for output values. Let’s consider a 
class Rectangle: 

class Rectangle  
{ 

public int calcArea(int width, int height); 
}; 

Let’s define constraints for this method: 
•  Width has to be greater than zero 
•  Height has to be greater than zero 
Let’s define constraints for the result: 
•  Result is width multiplied by height 

Constraints for a method calcArea such as width 
and height have to be greater than zero (pre condition) 
and the result is width multiplied by height (post 
condition) can be expressed in UML model by using 
OCL as follows: 

context Rectangle::calcArea 
  pre: width > 0 
  pre: height > 0 
  post: result = width * height 

The post condition can perfectly serve as an oracle. 
The test generator can easily select two input values, 
which fall in the range of pre conditions, execute the 
unit under test and evaluate if software has calculated 
the result, which matches OCL post constraint. If the 
result matches, then the test has passed otherwise it 
has failed, thus revealing a bug in software. 

Unfortunately, OCL constraints are not always 
available for all software units. Some constraints are 
not as precise as the one given in the example. In the 
given example, post condition completely reassembles 
the implementation of the method.  When a post con-
dition reassembles method implementation (provides 
full implementation) the constraint can be automati-
cally transformed into software implementation [23]. 
In this case no testing could be needed. C. Philippe 
and R. Roger [24] proposed the idea how to convert 
OCL constraints directly to the code implementation 
in this way removing the need for testing of imple-
mentation, because implementation correctly repre-
sents the model. Constraints have to be precise in 
order to perform such automatic implementation gene-
ration. But it is not so common situation. 

Aichenger and Salas [25] proposed a method for 
tests generation using OCL constraints. Their method 
relies on OCL specification mutation. In this method, 
inputs are selected that could detect changes in OCL 
specification. Such inputs passed to software under 
test could detect bugs in implementation too. 

Korel and Al-Yami [26] presented a similar me-
thod, which injects constraints into software code. 
These constraints serve as an oracle inside code and 
allow verifying if some method implementation vari-
ables are within defined ranges. 

Tracey et al. [27] presented a similar method for 
detecting bugs. They have analyzed “exceptions” fea-

ture of programming languages. Their method tried to 
calculate the required input, which would force to 
raise an exception, when the input is passed to soft-
ware under test. If it is not possible to calculate such 
input, the software under test is bug free. 

3. Test case generation using imprecise OCL 
constraints 

OCL [21] constraints usually are imprecise, be-
cause it is easier to define imprecise constraints or 
even derive them form other model elements. We 
propose a test case generation technique using UML 
models and imprecise OCL constraints. 

3.1. Imprecise constraint 
Imprecise OCL constraint is a constraint, which 

defines the post or pre conditions not by exact formu-
la, but by some boundaries or by a formula defining 
approximate result value. For example, in the previous 
example we could replace the post condition with the 
new imprecise one: 

  post: result > 0 

This modification makes the OCL constraint im-
precise. Despite the fact that such type of constraint is 
easier to define or derive, this constraint does not 
allow to verify if the computation was performed 
correctly. For example, we are testing an implemen-
tation of the method calcArea: 

class Rectangle  
{ 

public int calcArea(int width, int height) 
{ 

  return width/height; 
 }; 
}; 
There is usual mistyping in the given above imple-

mentation. The division ‘/’ is used instead of multipli-
cation ‘*’. Let’s say data set (2, 3) was generated for 
input parameters width and height, respectively. The 
unit under test returns a value equal to 0.666. Using a 
precise constraint would reveal an error, but imprecise 
constraint does not. 

We have another implementation with a bug, for 
example 

class Rectangle  
{ 

public int calcArea(int width, int height) 
{ 

  return width-height; 
}; 

}; 
The error is misplaced subtraction operator in the 

given above code. Instead of the multiplication ‘*’ 
symbol, subtraction ‘-‘symbol was typed. When the 
test data (2, 3) are passed to the method, it returns -1. 
This value does not satisfy model constraint, and we 
have found the bug. 
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Imprecise OCL constraints can be deduced from 
other model elements. For example, we have the class 
Rectangle which represents geometrical shape and it 
extends the class Shape. Shape is a generic class and 
serves as an interface for all geometric figures. The 
Class Shape could define a method calcArea and have 
an OCL constraint associated with it. The OCL const-
raint defines that an area is always greater than zero or 
is equal zero. So this constraint has to be valid for all 
classes, which extend the Shape base class. The const-
raint for the Rectangle class is derived from the base 
Shape class in this example. 

3.2. Testing procedure 
During software testing using imprecise OCL 

constraints, we generate test data for each class me-
thod using some selected test data generation tech-
nique. Generated test data are filtered if they match 
input OCL constraints, thus reducing test execution 
time. The test data which satisfy OCL input const-
raints are passed to software under test and a software 
output is received. The received output is verified 
against OCL constraints. If the output does not satisfy 
OCL constraints, then we have detected a bug and the 
test has failed. If the output satisfies OCL constraints, 
then the test has passed. 

The testing procedure is represented in the Figure 
1. The procedure generates testing result as a set TR of 
records. Each record specifies the class C, the method 
M, the Boolean flag R (which defines does it contain 
bugs or not R), and the probability P of an inaccuracy 
of flag R.  
Input. A set of classes, a set of methods in each 
class, a set of OCL input constraints associated 
with each method, a set of OCL output constraints 
associated with each method. 
Output. The set TR of records <C, M, R, P>  
1. While there are untested classes 
2.   Do select class C1 
3.     While there are untested methods in class C1 
4.       Do select method M1 
5.         Select OCL constraint OCLI for  
           method M1 input 
6.         While can generate test data (the 
           required coverage criteria has not   
           been yet met) 
7.           Generate test data TD 
8.           If TD matches OCL input  
             constraint OCLI then 
9.             Execute M1 with test data TD  
               and get result MER 
10.             Select OCL constraint OCLR for  
               method M1 output 
11.            If MER does not satisfy OCLR 
               then 
12.              add <C1, M1, FAIL, 100%> to TR 
13.              go to step 3 
14.          Else 
15.            Discard test data TD 
16.        add <C1, M1, PASS,  
           EVALUATEPROBABILITY()> to TR 

Figure 1. Testing procedure 

Test generation can be performed for selected me-
thod until the bug is found or until we have reached 
some defined coverage criteria. For example, if we 
selected all path criteria then testing continues by 
generating test input data until the input which forces 
method to produce invalid output is found (input does 

not satisfy OCL constraint) (lines 11, 12). Testing can 
also be finished when all paths in the method are 
executed and no inputs which have invalidated const-
raints have been found or no more new test data can 
be generated (line 14). If test passes, the EVALUATE-
PROBABILITY function is called which has to 
calculate the correctness of the testing result. If, using 
some test data, software under test produced an output 
which does not satisfy OCL constraints, then we defi-
nitely can say that the test has failed. If the output 
satisfies OCL constraints then we can only predict that 
test has passed. The EVALUATEPROBABILTY func-
tion calculates the probability that the test has passed. 
The probability depends on the number of test data 
executed. The probability is required because the OCL 
constraints are imprecise. Using imprecise constraints 
we cannot be sure completely if software calculated 
value is correct despite the fact that constraints are 
satisfied. 

3.3. Testing framework 
Software testing framework implementing our me-

thod is presented in Figure 2. Its main parts are: the 
test data generator, the oracle and models. The test 
data generator generates test inputs for software under 
test. The generated inputs are passed to software under 
test, which is executed using those inputs. Software 
under test produces some output.  

Test data generator

Software under test

UML+ OCL

Testing report

Oracle

Inputs

Outputs

Constraints

PASS/FAIL

 
Figure 2. Testing framework 

The oracle takes the produced output and evaluates 
its correctness against the UML+OCL model. It eva-
luates if the produced output satisfies provided OCL 
constraints and produces the testing report. If the 
output satisfies OCL constraints the PASS record is 
added to the testing report and the probability of the 
likelihood that test has passed is calculated. If the 
output does not satisfy the OCL constraint, the FAIL 
record is added to the testing report. 

3.4. Test data generation 
In order to generate test data for software under 

test any test data generation technique can be used. 
For test data generation random generation technique, 
genetic algorithms, symbolic execution [28, 29], 
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chaining approach [12], simulated annealing [30], 
variable dependence analysis [31], evolutionary algo-
rithms [32] and other white box testing techniques 
could be used. The techniques could target to some 
code coverage criteria. For example, all paths criteria 
could be used as a mean for determining the test 
success probability.  

OCL constraints can filter some generated test data 
and reduce testing time by doing that. For example, 
when we are generating test inputs for method 
calcArea, the random test generator chooses values 
from range -32K and +32K. Using OCL constrains 
values ranging from -32K to 0 can be removed be-
cause they do not satisfy pre conditions. By removing 
them the testing time is reduced. 

3.5. Oracle 
OCL post conditions serve as test oracles. Methods 

are executed using generated test data, and the output 
is checked against post conditions. If the function 
output does not satisfy post conditions, the test has 
failed and the bug is found. But if the result value 
satisfies the post condition, we can only predict with 
some likelihood that the test actually has passed and 
there are no errors in the implementation. The 
probability that the test has passed could be calculated 
using some of coverage techniques. For example, we 
have calculated that software under test has n paths in 
the code and using one of test data generation tech-
niques, we have generated test data which covers m 
paths (0 < m <= n) of the code. After the execution we 
could get that all generated outputs satisfy OCL 
constraints and we have to calculate the success 
probability. Using all-paths coverage criteria, we can 
assume that p = m / n * a. Here p is the probability of 
accuracy of the testing result, m – the number of the 
covered paths with test data, n – the number of total 
paths in software under test, a – a constant (0 <= a 
<=1) which defines the imprecision level of OCL 
constraints. Here 1 could mean that OCL constrains 
are precise, and 0 could mean that we have no OCL 
constraints at all. 

4. Example 
We used our method for testing the Shapes 

example. Example software is represented as a UML 
class diagram in Figure 2. The base class Shape de-
fines an interface for all child classes. For the simp-
licity and clarity of example, this class defines only 
one method for calculating the area size of the shape. 
There are two classes which implement this interface: 
Circle and Triangle. The Circle class has only one 
attribute r – the radius of the circle and one method 
SetR for setting the radius of the circle. 

The class Triangle has three attributes: a, b and c. 
These attributes represent edge lengths of the triangle. 
The class under test has a method SetABC, which 
specifies edge lengths of the triangle. The Class 
Triangle extends the class Shape and implements its 

abstract method GetArea. The method GetArea 
calculates the area size of the shape. 

 
Figure 3. UML class diagram for the example system 

The model has the following OCL constraints: 
1. context: Shape::GetArea 
2. post: result >= 0 
3. context Triangle::SetABC(a,b,c) 
4. pre: a > 0 
5. pre: b > 0 
6. pre: c > 0 
7. contect Circle::SetR(r) 
8. pre: r > 0 

The constraint on the line 1 specifies that GetArea 
method have to return a result, which is a positive 
number. This constraint is automatically applied to 
classes Triangle and Circle through the class inheri-
tance. The constraints on lines 4-6 and 8 define that 
input values have to be positive numbers. 

The area size of triangle is calculated using the 
following formula: 

S = b * c * cos (asin(b*b + c * c – a * a) / (2 * b * c) ) 

The area of circle is calculated using the following 
formula 

S = Pi * r * r 

Assume that the developer has provided an incor-
rect implementation of the Trinagle::GetArea method 
(asin function was replaced with acos function in this 
implementation): 
class Triangle extends Shape  
{ 

public float GetArea() 
{ 

  return 0.5 * b * c * Math.cos(Math.acos( (b 
* b + c * c - a * a) / (2*b*c) ) ); 
 }; 
}; 
The developer has provided a correct implementation 
for the Circle::GetArea method: 
class Circle extends Shape 
{ 
 public float GetArea() 
 { 
  Return Math.PI * r * r; 
 }; 
}; 
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The automatic test generator has generated some 
random inputs, software was executed using that input 
and the calculated software result was validated 
against OCL constraints. The testing results are given 
in Table 1. 

Table 1. Testing results of the method Triange::GetSize 

No. a b c Output Result 
1. 3 3 3 2.24 PASS 

2. 4 3 3 0.5 PASS 
3. 5 3 3 -1.75 FAIL 

Using the last set of test data we have found an 
error. The implementation has calculated the -1.75 
values, which does not satisfy the OCL constraint, and 
we can say that using the third set of input data, the 
test has failed. But the first and the second test data 
sets have provided the results which have obeyed OCL 
constraints and the test have passed. Therefore despite 
the fact that tests have passed, the calculated values 
are incorrect. In order to detect a fault in the imple-
mentation, the test generator has to generate a suffi-
cient amount of test data. If the generator has managed 
to generate an input, which invalidates constraint, we 
have found a bug. 

The random test data generator was also used for 
testing the Circle class. Class methods were executed 
using generated test data. The testing results are 
provided in Table 2. 

Table 2. Testing results of  the method Circle::GetSize 

No. r Output Result 
1. 1 3.14 PASS 
2. 2 12.56 PASS 
3. 3 28.26 PASS 

Using generated test data, we have not found any 
inputs which could force the implementation to 
produce an output which could invalidate OCL const-
raints. Thus we can assume that the implementation is 
bug free. 

The testing report is provided in Table 3. 

Table 3. Testing results of the example classes. 

No. Method Result Probability 
1. Triangle::GetArea FAIL 100% 
2. Circle::GetArea PASS 67% 

The provided probability specifies that if we have 
failed test we are 100% sure that we have found the 
bug. When we have passed the test we can only say 
that the test result is accurate with some probability. 
The probability rises from imprecise model const-
raints. Because constraints define the method result 
imprecisely, the result of the passed test is imprecise 
as well. We can only evaluate approximately if the 
calculated value is really correct. The testing result is 
as precise as precise is the OCL constraint. The prob-
ability is less then or equal 100%. The probability de-
pends on the number of test data executed. For 

example, if we decided to use all paths coverage cri-
teria and have exercised all paths, the probability is 
quite high. If we have exercised only a few paths, the 
probability is low. All paths have been exercised 
during the testing of the Circle class, so the probability 
has to be high. If we assume that OCL constraint pre-
cision constant a is 0.67 the probability could be 
calculated as p = m/n * a * 100% = 1 / 1 * 0.67 * 
100% = 67%. m and n equals 1 because the method 
has one path and the test generator has generated test 
data which allowed to cover all paths. 

5. Experiments 
In order to verify the efficiency of our testing 

method we have performed the testing on some bench-
mark programs. We have generated some mutants for 
each selected benchmark program. Mutations were 
created by substituting one operator with another in 
the code, changing constants values to other ones and 
by removing some statements from the code.  

After performing mutations, we have performed 
the testing on mutated programs and have calculated 
what percentage of mutants our method can detect. 

5.1. Benchmarks 
For evaluating method besides the Triangle class, 

which was presented in Section 4, we have selected 
several popular benchmarks used by other authors 
[26]. The selected benchmarks and associated const-
rains are presented Table 4. 

Table 4. Benchmarks for evaluation of the testing method 

No. Benchmark Description Constraint 
1. Triangle::GetArea Calculates 

the area size 
of the shape 

result > 0 

2. MinMax Returns min 
and max 
values from 
the array of 
numbers 

result.min 
<= any 
random 
input value 
& result.max 
>= any 
random 
input value 

3. Average Returns the 
calculated 
average 
value of the 
array of 
numbers 

result >= 
min & result 
<= max 

4. RestrictedAverage Returns the 
calculated 
average 
value of the 
array of 
numbers 
excluding 
some values. 

result >= 
min & result 
<= max 

5. Concat Joins two 
strings a and 
b. 

Result.length 
= a.length  + 
b.length 
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5.2. Evaluation criteria Triangle

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 100 1000

Test data

M
ut

an
ts

 

The percentage of killed mutants for each bench-
mark was selected as an evaluation criterion. The 
more mutants the method is able to kill the better it is. 
We also measured how many test data inputs we need 
to generate in order to kill mutants. 

5.3. Results 
During the evaluation of our technique we have 

used the random test data generation technique. Gene-
rated test data were submitted to mutated programs 
and the produced output was evaluated against OCL 
constraints. If the output produced by one mutant has 
not satisfied the OCL constraint we have marked that 
mutant as killed. Finally, we have calculated what 
percentage of mutants was killed for the selected prog-
ram. The percentage of the killed mutants for each 
benchmark is provided Table 5. 

Figure 4. Test data input count needed for killing mutants of 
the class Triangle 
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Table 5. Killed mutants for the benchmark 

No. Benchmark Mutants 
count 

Killed 

1. Triangle::GetArea 9 89% 
2. MinMax 10 78% 
3. Average 9 100% 
4. RestrictedAverage 11 100% 
5. Concat 11 100% 

Figure 5. Test data input count needed for killing mutants of 
the class Average During mutants generation some mutants appeared 

to be identical correct programs. Such mutants were 
removed from the set of mutants we were trying to 
kill. For example, such a mutant could be a program 
with removed variable initialization with zero value. 
In languages like Java each declared variable gets a 
default value of zero if it is of number type. 

6. Conclusions and future work 
We have presented a method for performing 

software testing using imprecise OCL constraints. Im-
precise OCL constraints are easier to define and derive 
from UML models. In order to detect an incorrect 
implementation we have to generate a sufficient 
amount of test data. By executing tests, we evaluate a 
software calculated output against OCL constraints. If 
constraints are not satisfied, we have established the 
fact of the existence of a bug in the implementation. 
The test data generation can be stopped at this point.  

The percentage of the killed mutants shows that 
using imprecise OCL constraints is not enough to kill 
all mutants. But the percentage of the killed mutants is 
quite high. We are planning to extend the technique by 
adding one or two test cases with an actual input and 
the expected output values. This addition could in-
crease testing accuracy and only slightly increases 
testing costs. Out future work is targeted to developing a method 

for measuring the probability of passed tests more 
precisely. Also we are willing to determine what kinds 
of faults our method can detect. We are also thinking 
about extending this method in order to define new 
testing criteria. The criteria should define when to stop 
generating test cases and finish testing when we have 
not found any errors. We are interested in comparison 
of imprecise models with constraints versus models 
with precise OCL constraints in the testing aspect. 

We have also measured how much test data are 
required to kill mutants for a specific benchmark. For 
example, during the Triangle class testing there were 
enough to generate only 10 inputs in order to kill 
mutants. 

The number test data inputs used to kill Triangle 
class mutants is presented in Figure 3.  The graph 
shows that a relatively small number of generated test 
data inputs is required for killing mutants and genera-
ting more additional data does not give better results. 
There is no difference if we have generated 1000 or 10 
test data inputs the number of killed mutants remains 
the same for the Triangle class. 

References 
 [1] J. A. Whittaker, J.M. Voas. 50 years of software: 

key principles for quality. IT Professional, Vol.4, 28-
35, 2002. 

The same results could be observed and for Ave-
rage program in Figure 4. 

 [2] B. Beizer. Software testing techniques. 2nd ed. New 
York: Van Nostrand Reinhold, 1990. 

251 



Š. Packevičius, A. Ušaniov, E. Bareiša 

252 

 [3] R. V. Binder. Testing Object-Oriented Systems: Mo-
dels, Patterns, and Tools. Boton: Addison Wesley Pro-
fessional, 2000. 

 [4] E.N. Robert, H.P. Richard. Unit testing frameworks. 
Proceedings of the 33rd SIGCSE technical symposium 
on Computer science education, Cincinnati, Kentucky: 
ACM Press, 2002. 

 [5] G. Neelam, P.M. Aditya, S. Mary Lou. Automated 
test data generation using an iterative relaxation me-
thod. Proceedings of the 6th ACM SIGSOFT interna-
tional symposium on Foundations of software enginee-
ring, Lake Buena Vista, Florida, United States: ACM 
Press, 1998. 

 [6] G. Arnaud, B. Bernard, R. Michel. Automatic test 
data generation using constraint solving techniques. 
Proceedings of the 1998 ACM SIGSOFT international 
symposium on Software testing and analysis. Clea-
rwater Beach, Florida, United States: ACM Press, 
1998. 

 [7] S. Nguyen Tran, D. Yves. Consistency techniques for 
interprocedural test data generation. Proceedings of 
the 9th European software engineering conference 
held jointly with 11th ACM SIGSOFT international 
symposium on Foundations of software engineering. 
Helsinki, Finland: ACM Press, 2003. 

 [8] B. Korel, M. Harman, S. Chung, P. Apirukvorapi-
nit, R. Gupta, Q. Zhang. Data Dependence Based 
Testability Transformation in Automated Test 
Generation. 16th IEEE International Symposium on 
Software Reliability Engineering (ISSRE'05) 2005. 

 [9] W.E. Wong, L. Yu, M. Xiao. Effective generation of 
test sequences for structural testing of concurrent 
programs. 10th IEEE International Conference on En-
gineering of Complex Computer Systems (ICECCS'05) 
2005. 

[10] D. Beyer, A.J. Chlipala, R. Majumdar. Generating 
tests from counterexamples. 26th International 
Conference on Software Engineering (ICSE'04) 2004. 

[11] A. Gotlieb, T. Denmat, B. Botella. Goal-oriented test 
data generation for programs with pointer variables. 
29th Annual International Computer Software and 
Applications Conference (COMPSAC'05), 2005. 

[12] F. Roger, K. Bogdan. The chaining approach for 
software test data generation. ACM Trans. Softw. Eng. 
Methodol., Vol.5, 1996, 63-86. 

[13] F. Corno, E. Sanchez, M.S. Reorda, G. Squillero. 
Automatic test program generation: a case study. 
Design & Test of Computers, IEEE, Vol.21, 2004, 
102-109. 

[14] H. Harmanani, B. Karablieh. A hybrid distributed 
test generation method using deterministic and genetic 
algorithms. Fifth International Workshop on System-
on-Chip for Real-Time Applications (IWSOC'05) 
2005. 

[15] P. Kalpana, K. Gunavathi. A novel specification 
based test pattern generation using genetic algorithm 
and wavelets. 18th International Conference on VLSI 
Design held jointly with 4th International Conference 
on Embedded Systems Design (VLSID'05), 2005. 

[16] P. Amit. Case studies on fault detection effectiveness 
of model based test generation techniques. Procee-
dings of the first international workshop on Advances 
in model-based testing. St. Louis, Missouri: ACM 
Press, 2005. 

[17] P. Alexander. Model-based testing. Proceedings of 
the 27th international conference on Software engi-
neering. St. Louis, MO, USA: ACM Press, 2005. 

[18] O.E. Mir, G. Hassan. Model-based testing for appli-
cations derived from software product lines. Procee-
dings of the first international workshop on Advances 
in model-based testing. St. Louis, Missouri: ACM 
Press, 2005. 

[19] S.K. Kim, L. Wildman, R. Duke. A UML approach 
to the generation of test sequences for Java-based 
concurrent systems. 2005 Australian Software Engi-
neering Conference (ASWEC'05) 2005. 

[20] W. Xin, C. Zhi, L. Qi Shuhao. An optimized method 
for automatic test oracle generation from real-time 
specification. 10th IEEE International Conference on 
Engineering of Complex Computer Systems 
(ICECCS'05), 2005. 

[21] J. Warmer, A. Kleppe. The Object Constraint Lan-
guage Second Edition: Getting your models ready for 
MDA. Adisson-Wesley, 2003. 

[22] M. Fowler, K. Scott. UML Distilled. Addison-Wesley, 
1997. 

[23] C. Philippe, R. Roger. Towards Efficient Support for 
Executing the Object Constraint Language. Procee-
dings of the Technology of Object-Oriented Lan-
guages and Systems: IEEE Computer Society, 1999. 

[24] A.M. Brian, M.V. Jeffrey. Programming with Asser-
tions: A Prospectus. IT Professional, Vol.6, 2004, 53-
59. 

[25] B.K. Aichernig, P.A.P. Salas. Test case generation by 
OCL mutation and constraint solving. Fifth Internatio-
nal Conference on  Quality Software, 2005. 

[26] B. Korel, A.M. Al-Yami. Assertion-oriented auto-
mated test data generation. Proceedings of the 18th 
international conference on Software engineering. 
Berlin, Germany: IEEE Computer Society, 1996. 

[27] N. Tracey, J. Clark, K. Mander, J. McDermid. 
Automated test-data generation for exception condi-
tions. Software: Practice and Experience, Vol.30, 
2000, 61-79. 

[28] J. King. A new approach to program testing. Interna-
tional Conference on Reliable Software, 1975. 

[29] J. King. Symbolic execution and program testing. 
Communications of ACM, Vol.19, 1976, 385-394. 

[30] S. Kirkpatrick, C.D.G. Jr, M.P. Vecchi. Optimiza-
tion by Simulated Annealing. Science, Vol.220, 1983,  
671-680. 

[31] M. Harman, C. Fox, R. Hierons, H. Lin, S. Danicic, 
J. Wegener. VADA: a transformation-based system 
for variable dependence analysis. Second IEEE Inter-
national Workshop on Source Code Analysis and 
Manipulation, 2002. 

[32] T. Back, F. Hoffmeister, H. Schwefel. A Survey of 
Evolution Strategies. Fourth International Conference 
on Genetic Algorithms, San Diego, CA, 1991. 

Received May 2007. 


