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Abstract. In this paper we analyze the situation when the tests are generated for a particular implementation. In 
this case there rises a question – can a test generated for one implementation be used for another implementation? 
Naturally, that a test generated according to one structure may not detect all specified faults of another structure. In this 
work we explore the test quality of one realization for detecting faults of other realizations. We analyze only such 
implementations that are generated by the same synthesis tool according to the same description, changing only the 
target library used during the synthesis. We have performed various experiments with sequential benchmark circuits. 
Our experiments show that the fault coverage surprisingly coincides. We think that there are two possible explanations 
of the outcome of the experiments. Firstly, the test redundancy is very high., Secondly, the combinational parts of all 
analyzed sequential circuits have simple logic and, therefore, the test sequences generated for particular realization are 
equally good for other realizations as well. 

 
 

1. Indroduction 

Many recent system-on-a-chip (SOC) ICs incor-
porate pre-designed and reusable circuits, variously 
referred to as intellectual property (IP) circuits or 
cores. Such circuits are frequently supplied by third-
party vendors and are extremely hard to test when 
embedded in an SOC because their functions are 
specified only in high-level terms. This is done either 
to protect the circuits' IP content or else to allow 
system designers to synthesize their own low-level 
(gate-level) implementations. The tests can be gene-
rated for a high level description in order to reuse 
them for all possible implementations [1]. However, 
such tests usually can not guarantee detection of all 
specified faults in all possible implementations. Con-
sequently, if we consider realization-independent test-
ing, we can only speak about such realizations that 
fulfill specific requirements or have a particular 
structure [2, 3].  

In this paper we analyze the situation when the 
tests are generated for a particular implementation. In 
this case there naturally rises a question – can a test 
generated for one implementation be used for another 
implementation? The same core can have distinct 
descriptions; e. g. a parallel or sequential carry can be 
realized in an adder. Naturally, that a test generated 
according to one structure may not detect all specified 
faults of another structure. This case is studied in [4, 
5], where it is shown that the deviation of the stuck-at 
fault coverage in combinational circuits can be up to 

18% high [4]. The employment of different synthesis 
tools can have an influence on the test quality as well.  

In [4] H.Kim and J.P.Hayes synthesized two 
different gate-level implementations of the combina-
tional example circuits, one for low area and another 
for high speed. The stuck-at fault tests for the gate-
level designs were generated using the conventional 
ATPG program Atalanta [6]. It is stated that Atalanta 
tests provide 100% stuck-at fault coverage only for the 
gate-level designs at which they were targeted and 
fairly poor coverage for the others. The most impres-
sive number is provided for the ISCAS’85 benchmark 
circuit c880, namely, 100 % stuck-at fault test for high 
speed realization detects only 82.2% stuck-at faults of 
the low area realization. Similar experiments are 
described in [5], too. In [5] it is reported that for the 
ISCAS’85 benchmark circuit c880 99.8 % stuck-at 
fault test for high speed realization detects already 
99.7% stuck-at faults of the low area realization.  

In [7] various experiments with ISCAS’85 com-
binational benchmark circuits are performed. The re-
sults of experiments show that the test sets generated 
for a particular circuit realization fail to detect in 
average only less than one and a half percent of the 
stuck-at faults of the re-synthesized circuit but in some 
cases this figure is more than nine percent.  

The possibilities of supplementing or expanding a 
particular realization test having a purpose to enhance 
test quality for detecting of various defects are 
analyzed in [7-11]. The defect coverage that can be 
achieved with test sets for stuck-at faults may not be 
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sufficient. In order to increase the defect coverage of a 
test set for stuck-at faults, in [8] and [9] n-detection 
test sets were considered. An n-detection stuck-at test 
set is one where each stuck-at fault f is detected by n 
different input patterns, or by the maximum number of 
input patterns if f has fewer than n different input 
patterns that detect it. Experiments with n-detection 
stuck-at test sets reported in [8] and [9] show that it is 
possible to enhance the defect coverage using this 
approach. In various types of experiments performed 
in [10] and [11] n-detection test sets were shown to be 
useful in achieving a high defect coverage for all types 
of circuits and for different fault models. Similar 
results for double test sets are obtained in [7], too. 
Another interesting outcome of the experiments per-
formed in [7] is that the supplement of the test set with 
sensitive adjacent test patterns significantly increases 
the fault coverage and is a very cheap way to adopt 
test patterns for the re-synthesized gate level 
description of the IP core. 

All results described in [4-11] concern only com-
binational circuits and there are no publications con-
cerning sequential circuits. In this work we will 
explore the test quality of one realization for detecting 
faults of other realizations regarding sequential cir-
cuits. We will analyze only such implementations that 
are generated by the same synthesis tool according to 
the same description, changing only the target library 
used during the synthesis. The ITC’99 sequential 
benchmark circuits have been selected for experi-
ments.  

The structure of the paper is as follows. We ana-
lyze the parameters of ITC’99 benchmark circuits in 
Section 2. We present the experimental results in 
Section 3. We finish with conclusions in Section 4. 

2. The parameters of considered circuits 

As it was already mentioned in the introduction 
the core can be synthesized by different electronic de-
sign automation systems and mapped into different 
cell libraries and manufacturing technologies. In [7] 
we have presented the experimental results that show 
how the test set of the core covers the faults of new 
implementations for combinational circuits. In this 
paper we are going to consider the same problem for 
sequential circuits. The original ITC’99 benchmark 
circuits [12] were chosen for experiments. The combi-
national part of these circuits has been re-synthesized 
with the Synopsys Design Compiler program by the 
default mode and by using an AND-NOT cell library 
of two inputs. The three realizations have been 
analyzed: 

R1 – the non-redundant benchmark circuit 
R2 – Synopsys Design Optimization, the target 

library – class.db (default mode) 
R3 - Synopsys Design Optimization, the target 

library – and_or.db 
The parameters of the original ITC’99 benchmark 

circuits are given in Table 1 and Figures 1, 2. The co-
lumns are denoted as follows: Gates – the number of 
gates, FF – the number of flip-flops, PI – the number 
of primary inputs, PO – the number of primary 
outputs, Best fault coverage % - the best published in 
the papers stuck-at fault coverage of the original 
ITC’99 benchmark circuits reached using test gene-
rators Hitec, RAGE, TetraMAX or GATO, R1, R2, 
R3– the number of stuck-at faults in the circuit 
realizations R1, R2, R3 respectively, ∆ - the difference 
between the maximum and the minimum stuck-at 
faults numbers, % - the percent of the difference to the 
maximum stuck-at faults number. 

Table 1. The parameters of the original ITC’99 benchmark circuits 

Number of stuck-at faults 
Circuits Gates FF PI PO Best fault 

coverage % R1 R2 R3 
∆ % 

b01 40 5 4 2 100.00 268 246 278 32 12 
b02 18 4 3 1 99.22 128 126 128 2 2 
b03 111 30 6 4 73.24 822 782 784 40 5 
b04 394 66 13 8 89.58 2640 2614 2666 52 2 
b05 570 34 3 36 40.00 3362 2880 3132 482 14 
b06 48 9 4 6 94.15 346 334 336 12 3 
b07 321 51 3 8 50.00 2198 2302 2488 290 12 
b08 154 21 11 4 88.10 800 812 828 28 3 
b09 100 28 3 1 87.23 736 758 772 36 5 
b10 137 17 13 6 93.59 952 964 1078 126 12 

Total      12252 11818 12490   
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Figure 1. The parameters of the original ITC’99 benchmark circuits 
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Figure 2. The number of stuck-at faults for each realization 
 

We can see the number of stuck-at faults for each 
realization in Table 1 and Figure 2. The benchmark 
circuit realizations using the target library and_or.db 
have more stuck-at faults in total. The most optimized 
are realizations using the target library class.db. But 
the percent of the difference between the maximum 
and the minimum numbers to the maximum number of 
stuck-at faults, which varies from 2 to 14, is not so big 
as for analyzed combinational ISCAS’85 benchmark 
circuits (from 8 to 53 percent).  

3. Experimental results 

Most sequential ATPG algorithms are the direct 
extensions of combinational algorithms applied to the 
iterative logic array model [13] of the circuit under 
test. An advanced circuit description language like 
VHDL gives an opportunity to apply an iterative logic 

array model of a sequential circuit, and in the case of 
the use of the combinational ATPG to manage the 
search space flexibly. 

A test generation approach for sequential circuits 
based on the iterative logic array model is described in 
[13]. We will shortly remind the main features of this 
approach. Each component of the state vector can 
have one of five values, namely {0, 1, X, D, notD}. If 
a test exists, 0 or 1 can replace the X value, hence only 
four values need to be considered. It is clear that in 
testing a circuit it is never necessary to enter some 
state twice, therefore each state vector can be 
restricted to be unique, and there are 4n such unique 
states, where n is the number of state variables. The 
test generation procedure given in [13] consists of the 
following three steps: 
  1. Set k to 1 for the number of copies (combi-

national cells) of the iterative circuit model. Set 
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don’t-care value X for all state variables of the 
first copy. 

  2. Construct the k-iterative array model of the 
circuit. 

  3. Apply the combinational ATPG for a k-iterative 
array model of the circuit. If no test vectors are 
found for undetected faults, increment k by one 
and repeat (2). Terminate when k>4n. If no test 
vectors are found for some faults, the circuit is 
redundant. 
We implemented the procedure described above 

by means of the SYNOPSYS combinational ATPG for 
stuck-at faults. Of course, the extent of the state search 
space 4n is purely theoretical and not applicable for 
real circuits. In our experiments we stopped incremen-
ting the length k of the iterative logic array model 

when the appliance of the last twenty additional com-
binational copies of the circuit did not increase the 
fault coverage or in the case when the SYNOPSYS 
combinational test generator was not able to deal with 
such enlarged circuit.  

The combinational ATPG (SYNOPSYS) 
generates test vectors of the length k*PI, where k – the 
number of combinational copies, PI – the number of 
primary inputs in one copy. In order to apply these test 
vectors to initial circuits they were folded in test 
sequences of k test vectors of length equal to PI each. 
The test sets have been generated for each original 
ITC’99 benchmark circuit and than reused for two 
other realizations. A Sun Ultra 5 computer was used 
for the test generation. The results of the experiment 
are presented in Table 2. 

 
Table 2. The iterative logic array model. Undetected stuck-at faults for the three realizations 

R1 R2 R3 
Circuit  Nr.  

Sequence 
length  

Generation 
time % D U S % D U S % D U S 

b01 18 12 1 sec. 100 268    0 8 100 246 0 8 100 278 0 7 
b02 10 11 <1 sec. 99.2 127 1 6 97.6 123 3 5 98.4 126 2 6 
b03 33 16 7 sec. 74,8 615 207 13 72,0 563 219 12 73,9 579 205 5 
b04 74 15 54 sec. 90.7 2395 245 35 90,8 2374 240 37 91,0 2425 241 36 
b05 55 257 500 sec. 50,8 1708 1654 3 56,5 1627 1253 3 55,5 1739 1393 3 
b06 16 11 <1 sec. 93.5 290 20 7 93,4 312 22 8 94,3 317 19 8 
b07 34 289 6000 sec. 75,0 1648 550 2 72,5 1670 632 2 73,0 1816 672 2 
b08 48 65 <400 sec. 98.2 786 14 23 98,6 801 11 20 98,6 816 12 20 
b09 37 81 328 sec. 87.9 647 89 12 86,3 654 104 13 84,5 652 120 13 
b10 39 25 377 sec. 93.6 891 61 17 93,5 901 63 18 94,3 1017 61 18 

R1 – the original ITC’99 benchmark circuit 
R2 –Synopsys Design Optimization, the target library – class.db 
R3 – Synopsys Design Optimization, the target library – and_or.db 
Nr. – the number of test sequences 
% – the fault coverage 
D – the number of detected faults  
U – the number of undetected faults 
S – the number of test sequences that add their value to the fault coverage 

The second test generation approach used in our 
experiments is based on the algorithmic level of the 
circuit description. The basic ideas presented in [14], 
where we consider input – output paths testing in 
combinational circuits, were employed for sequential 
circuits as well. In this section we present only addi-
tional information concerning sequential circuits. 

The algorithmic description is accomplished in 
some high-level programming language, for example, 
C. It excludes clock and reset information. Such a mo-
del expresses only a function carried out by a circuit. 
We call such a model of the circuit a black box model. 
In order to generate tests based on the black box 
model, a fault simulation is used. The tests are gene-
rated for PP faults [14].  

As we have mentioned, a model of the circuit at 
the algorithmic level has no clock information. There-
fore, generated test patterns based on such model may 
be applied directly only if a circuit is combinational. If 
a circuit is sequential, these test patterns require an 
additional treatment. For this purpose the test frames 
are used. 

A sequential circuit has a defined clock and 
control signal sequence in order to carry out some 
operations with data. Such a control and clock input 
stimuli sequence defines the mode of data transac-
tions. We call a sequence of the input stimuli, which 
defines the values of a signal only for some inputs and 
leaves undefined values for other inputs, a test frame. 
A sequential circuit together with a test frame can be 
presented as a function whose outputs depend only on 
inputs and do not depend on the inner state of a 

10 



Realization-Independent testing of sequential circuits. Experimental results 

circuit; this means that the sequential circuit is like the 
combinational circuit. A test frame defines those in-
puts which control the storage of sequential circuit and 
leaves undefined inputs, which are devoted for data. A 
test frame is defined before the test generation. A 
constructed model of a circuit is very closely related to 
the test frame. This model is created according to a 
test frame. A test frame defines a mode of transferring 
of test cases that it gets from a test generation to the 
test sequences. A test frame is filled up with the values 
of test cases [14].  

As it was mentioned above ITC"99 benchmark 
circuits B01 – B10 [12] were chosen for the experi-
ments. For these circuits there were written the models 
in the programming language C according to their 
VHDL models. In the C models clock and reset sig-
nals were eliminated. Only the model of the circuit 
b08 was changed by a combinational equivalent, but 
nevertheless the test frame was used for this circuit 
too. Some VHDL circuits like b05 have several paral-

lel processes, but C is a sequential language. There-
fore, there was a challenge to solve the problem of 
parallel processes using C programming language. 
There is no common recipe for this problem. In every 
case an individual approach was used. For example, 
the parallel processes of the circuit b05 are activated 
by different signals. Therefore, the main process, 
which is sensible to clock and reset signals, was 
found. All other processes were accomplished as sub-
programs, which are called when the active signal has 
changed its value. The structure of test frames for all 
circuits was very simple – every test sequence began 
with Reset and Clock and the following test vectors of 
the sequence had only Clock.  

The test sets have been generated for PP faults 
and then analyzed how well they cover stuck-at faults 
in all three realizations. A Pentium 4.3 GHz Hyper-
Threading PC was used for test generation. The results 
of the experiment are presented in Table 3. 

Table 3. The black box model. Undetected stuck-at faults for the three realizations 

R1 R2 R3 
Circuit  Nr.  

Sequence 
length 

Generation 
time % D U S % D U S % D U S 

b01 65 12 1 sec. 100 268 0 8 100 246 0 7 100 278 0 8 
b02 28 11 1 sec. 99,22 127 1 4 99,22 125 1 4 99,22 127 1 4 
b03 384 16 1 sec. 74,82 615 207 12 72 563 219 11 73,9 579 205 10 
b04 890 15 2 sec. 90,7 2395 245 37 90,8 2374 240 38 91 2425 241 36 
b05 24 257 1 sec. 50,8 1708 1654 2 56,5 1627 1253 3 55,5 1739 1393 3 
b06 187 11 1 sec. 93,5 290 20 6 93,4 312 22 6 94,3 317 19 6 
b07 36 289 1 sec. 75 1648 550 1 72,5 1670 632 1 73 1816 672 1 
b08 274 65 3 sec. 98,2 786 14 20 98,6 801 11 20 98,6 816 12 19 
b09 1228 81 2 sec. 87,9 647 89 16 88,1 668 90 23 88,1 680 92 26 
b10 1225 25 3 sec. 93,59 891 61 22 93,5 901 63 21 94,3 1017 61 22 

R1 – the original ITC’99 benchmark circuit 
R2 –Synopsys Design Optimization, the target library – class.db 
R3 – Synopsys Design Optimization, the target library – and_or.db 
Nr. – the number of test sequences 
% – the fault coverage 
D – the number of detected faults  
U – the number of undetected faults 
S – the number of test sequences that add their value to the fault coverage 

We cannot examine the results of experiments 
with sequential circuits in the same way as we exa-
mined the combinational circuits [7]. The reason is 
that for all these circuits except b01 we do not have 
100% fault coverage and, therefore, we do not know 
the number of redundant faults in separate realization. 

However, if we examine Tables 2 and 3 together 
we can see that the fault coverage for all realizations 
in both tables surprisingly coincides. There are only 
two exceptions – the fault coverage values in the 
tables differ for realizations R2 and R3 of the circuits 
b02 and b09. Afterwards we additionally conducted 
the third experiment using adjacent input vectors [7] 

for the black box model approach. The appliance of 
adjacent input vectors for combinational circuits was 
very effective [7]. However, it was not the same case 
for sequential circuits. We got exactly the same results 
as those presented in Table 3. Therefore, in our opi-
nion, there is a very high probability that the obtained 
stuck-at fault coverage is maximal in every particular 
realization for the used number of copies.  

We also considered another possible explanation 
of such outcome of the experiments. Namely, if we 
examine the quantities of generated test sequences 
(column “Nr.” in both tables) and the quantities of test 
sequences that add their value to the fault coverage 
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(columns “S”), we can see that the test redundancy is 
very high. It ranges from 211% (circuit b04) to 1833% 
(circuit b05) for the iterative logic array model 
approach and from 700% (circuit b02) to 7675% 
(circuit b09) for the black box model approach. By 
reason of such a high redundancy the test sequences 
generated for particular realization may be equally 

good for other realizations as well. That’s why we 
performed the fourth experiment. The test sets gene-
rated for each original ITC’99 benchmark circuit using 
the iterative logic array model approach were mini-
mized and then the minimized tests were reused for 
two other realizations. The results of the experiment 
are presented in Table 4. 

Table 4. The iterative logic array model. Minimized tests. Undetected stuck-at faults for the three realizations 

R1 R2 R3 
Circuit  Nr.  

% D U S % D U S % D U S 
b01 18 100 268 0 8 100 246 0  100 278 0  
b02 10 99.2 127 1 6 97,6 123 3  98,4 126 2  
b03 33 74,8 615 207 13 72,0 563 219  73,9 579 205  
b04 74 90.7 2395 245 35 90,8 2374 240  91,0 2425 241  
b05 55 50,8 1708 1654 3 56,5 1627 1253  55,5 1739 1393  
b06 16 93.5 290 20 7 93,4 312 22  94,3 317 19  
b07 34 75,0 1648 550 2 72,5 1670 632  73,0 1816 672  
b08 48 98.2 786 14 23 98,6 801 11  98,6 816 12  
b09 37 87.9 647 89 12 86,0 652 106  83,9 648 124  
b10 39 93.6 891 61 17 93,5 901 63  94,3 1017 61  

R1 – the original ITC’99 benchmark circuit 
R2 –Synopsys Design Optimization, the target library – class.db 
R3 – Synopsys Design Optimization, the target library – and_or.db 
Nr. – the number of test sequences 
% – the fault coverage 
D – the number of detected faults  
U – the number of undetected faults 
S – the number of test sequences that add their value to the fault coverage 

If we compare the results in Tables 2 and 4 we 
can see that minimized tests for most analyzed circuits 
give the same stuck-at fault coverage as well. Only for 
one circuit b09 the fault coverage is lower than 
maximal in a particular realization; for the realization 
R2 the difference is 0.3% and for the realization R3 - 
0.6%. We think that there is a second possible expla-
nation of the results of all our experiments with 
sequential circuits. Namely, the combinational parts of 
all analyzed sequential circuits have simple logic and, 
therefore, the tests generated for a particular realiza-
tion are equally good for other circuit realizations in 
almost all cases.  

4. Conclusions 

We cannot examine the results of experiments 
with sequential circuits in the same way as with com-
binational circuits. The reason is that for almost all 
these circuits we do not have 100% fault coverage 
and, therefore, we do not know the number of redun-
dant faults in separate realizations. 

However, if we examine all our experimental 
results we can see that the fault coverage surprisingly 
coincides. In our opinion there is a very high 
probability that the obtained stuck-at fault coverage is 

maximal in every particular realization for the used 
number of copies. We also considered another possible 
explanation of such outcome of the experiments. 
Namely, if we examine the quantities of generated test 
sequences and the quantities of test sequences that add 
their value to the fault coverage we can see that the 
test redundancy is very high. It ranges from 211% 
1833% for the iterative logic array model approach 
and from 700% to 7675% for the black box model 
approach. By reason of such a high redundancy the 
test sequences generated for a particular realization 
may be equally good for other realizations as well. 
This explanation sustains and the fact that he 
appliance of adjacent input vectors, which was very 
effective for combinational circuits, did not improve 
the test quality for considered sequential circuits. 

We think that there is a second possible explana-
tion of the results of our experiments with sequential 
circuits. Namely, the combinational parts of all ana-
lyzed sequential circuits have simple logic and, there-
fore, the tests generated for a particular realization are 
equally good for other circuit realizations in almost all 
cases. The impact of the complexity of combinational 
parts on the fault coverage can be investigated in near 
future. 
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