
ISSN 1392 – 124X INFORMACINĖS TECHNOLOGIJOS IR VALDYMAS, 2004, Nr.3(32)

REALIZATION-INDEPENDENT TESTING OF SEQUENTIAL CIRCUITS.
EXPERIMENTAL RESULTS

Eduardas Bareiša, Vacius Jusas, Kęstutis Motiejūnas, Rimantas Šeinauskas
Software Engineering Department, Kaunas University of Technology

Studentų St., LT-3031 Kaunas, Lithuania

Abstract. In this paper we analyze the situation when the tests are generated for a particular implementation. In
this case there rises a question – can a test generated for one implementation be used for another implementation?
Naturally, that a test generated according to one structure may not detect all specified faults of another structure. In this
work we explore the test quality of one realization for detecting faults of other realizations. We analyze only such
implementations that are generated by the same synthesis tool according to the same description, changing only the
target library used during the synthesis. We have performed various experiments with sequential benchmark circuits.
Our experiments show that the fault coverage surprisingly coincides. We think that there are two possible explanations
of the outcome of the experiments. Firstly, the test redundancy is very high., Secondly, the combinational parts of all
analyzed sequential circuits have simple logic and, therefore, the test sequences generated for particular realization are
equally good for other realizations as well.

1. Indroduction

Many recent system-on-a-chip (SOC) ICs incor-
porate pre-designed and reusable circuits, variously
referred to as intellectual property (IP) circuits or
cores. Such circuits are frequently supplied by third-
party vendors and are extremely hard to test when
embedded in an SOC because their functions are
specified only in high-level terms. This is done either
to protect the circuits' IP content or else to allow
system designers to synthesize their own low-level
(gate-level) implementations. The tests can be gene-
rated for a high level description in order to reuse
them for all possible implementations [1]. However,
such tests usually can not guarantee detection of all
specified faults in all possible implementations. Con-
sequently, if we consider realization-independent test-
ing, we can only speak about such realizations that
fulfill specific requirements or have a particular
structure [2, 3].

In this paper we analyze the situation when the
tests are generated for a particular implementation. In
this case there naturally rises a question – can a test
generated for one implementation be used for another
implementation? The same core can have distinct
descriptions; e. g. a parallel or sequential carry can be
realized in an adder. Naturally, that a test generated
according to one structure may not detect all specified
faults of another structure. This case is studied in [4,
5], where it is shown that the deviation of the stuck-at
fault coverage in combinational circuits can be up to

18% high [4]. The employment of different synthesis
tools can have an influence on the test quality as well.

In [4] H.Kim and J.P.Hayes synthesized two
different gate-level implementations of the combina-
tional example circuits, one for low area and another
for high speed. The stuck-at fault tests for the gate-
level designs were generated using the conventional
ATPG program Atalanta [6]. It is stated that Atalanta
tests provide 100% stuck-at fault coverage only for the
gate-level designs at which they were targeted and
fairly poor coverage for the others. The most impres-
sive number is provided for the ISCAS’85 benchmark
circuit c880, namely, 100 % stuck-at fault test for high
speed realization detects only 82.2% stuck-at faults of
the low area realization. Similar experiments are
described in [5], too. In [5] it is reported that for the
ISCAS’85 benchmark circuit c880 99.8 % stuck-at
fault test for high speed realization detects already
99.7% stuck-at faults of the low area realization.

In [7] various experiments with ISCAS’85 com-
binational benchmark circuits are performed. The re-
sults of experiments show that the test sets generated
for a particular circuit realization fail to detect in
average only less than one and a half percent of the
stuck-at faults of the re-synthesized circuit but in some
cases this figure is more than nine percent.

The possibilities of supplementing or expanding a
particular realization test having a purpose to enhance
test quality for detecting of various defects are
analyzed in [7-11]. The defect coverage that can be
achieved with test sets for stuck-at faults may not be

7

E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

sufficient. In order to increase the defect coverage of a
test set for stuck-at faults, in [8] and [9] n-detection
test sets were considered. An n-detection stuck-at test
set is one where each stuck-at fault f is detected by n
different input patterns, or by the maximum number of
input patterns if f has fewer than n different input
patterns that detect it. Experiments with n-detection
stuck-at test sets reported in [8] and [9] show that it is
possible to enhance the defect coverage using this
approach. In various types of experiments performed
in [10] and [11] n-detection test sets were shown to be
useful in achieving a high defect coverage for all types
of circuits and for different fault models. Similar
results for double test sets are obtained in [7], too.
Another interesting outcome of the experiments per-
formed in [7] is that the supplement of the test set with
sensitive adjacent test patterns significantly increases
the fault coverage and is a very cheap way to adopt
test patterns for the re-synthesized gate level
description of the IP core.

All results described in [4-11] concern only com-
binational circuits and there are no publications con-
cerning sequential circuits. In this work we will
explore the test quality of one realization for detecting
faults of other realizations regarding sequential cir-
cuits. We will analyze only such implementations that
are generated by the same synthesis tool according to
the same description, changing only the target library
used during the synthesis. The ITC’99 sequential
benchmark circuits have been selected for experi-
ments.

The structure of the paper is as follows. We ana-
lyze the parameters of ITC’99 benchmark circuits in
Section 2. We present the experimental results in
Section 3. We finish with conclusions in Section 4.

2. The parameters of considered circuits

As it was already mentioned in the introduction
the core can be synthesized by different electronic de-
sign automation systems and mapped into different
cell libraries and manufacturing technologies. In [7]
we have presented the experimental results that show
how the test set of the core covers the faults of new
implementations for combinational circuits. In this
paper we are going to consider the same problem for
sequential circuits. The original ITC’99 benchmark
circuits [12] were chosen for experiments. The combi-
national part of these circuits has been re-synthesized
with the Synopsys Design Compiler program by the
default mode and by using an AND-NOT cell library
of two inputs. The three realizations have been
analyzed:

R1 – the non-redundant benchmark circuit
R2 – Synopsys Design Optimization, the target

library – class.db (default mode)
R3 - Synopsys Design Optimization, the target

library – and_or.db
The parameters of the original ITC’99 benchmark

circuits are given in Table 1 and Figures 1, 2. The co-
lumns are denoted as follows: Gates – the number of
gates, FF – the number of flip-flops, PI – the number
of primary inputs, PO – the number of primary
outputs, Best fault coverage % - the best published in
the papers stuck-at fault coverage of the original
ITC’99 benchmark circuits reached using test gene-
rators Hitec, RAGE, TetraMAX or GATO, R1, R2,
R3– the number of stuck-at faults in the circuit
realizations R1, R2, R3 respectively, ∆ - the difference
between the maximum and the minimum stuck-at
faults numbers, % - the percent of the difference to the
maximum stuck-at faults number.

Table 1. The parameters of the original ITC’99 benchmark circuits

Number of stuck-at faults
Circuits Gates FF PI PO Best fault

coverage % R1 R2 R3
∆ %

b01 40 5 4 2 100.00 268 246 278 32 12
b02 18 4 3 1 99.22 128 126 128 2 2
b03 111 30 6 4 73.24 822 782 784 40 5
b04 394 66 13 8 89.58 2640 2614 2666 52 2
b05 570 34 3 36 40.00 3362 2880 3132 482 14
b06 48 9 4 6 94.15 346 334 336 12 3
b07 321 51 3 8 50.00 2198 2302 2488 290 12
b08 154 21 11 4 88.10 800 812 828 28 3
b09 100 28 3 1 87.23 736 758 772 36 5
b10 137 17 13 6 93.59 952 964 1078 126 12

Total 12252 11818 12490

8

Realization-Independent testing of sequential circuits. Experimental results

9

0

100

200

300

400

500

600

B01 B02 B03 B04 B05 B06 B07 B08 B09 B10

Gates
FF
PI
PO

Figure 1. The parameters of the original ITC’99 benchmark circuits

0
500

1000
1500
2000
2500
3000
3500
4000

B01 B02 B03 B04 B05 B06 B07 B08 B09 B10

R1
R2
R3
?∆

Figure 2. The number of stuck-at faults for each realization

We can see the number of stuck-at faults for each
realization in Table 1 and Figure 2. The benchmark
circuit realizations using the target library and_or.db
have more stuck-at faults in total. The most optimized
are realizations using the target library class.db. But
the percent of the difference between the maximum
and the minimum numbers to the maximum number of
stuck-at faults, which varies from 2 to 14, is not so big
as for analyzed combinational ISCAS’85 benchmark
circuits (from 8 to 53 percent).

3. Experimental results

Most sequential ATPG algorithms are the direct
extensions of combinational algorithms applied to the
iterative logic array model [13] of the circuit under
test. An advanced circuit description language like
VHDL gives an opportunity to apply an iterative logic

array model of a sequential circuit, and in the case of
the use of the combinational ATPG to manage the
search space flexibly.

A test generation approach for sequential circuits
based on the iterative logic array model is described in
[13]. We will shortly remind the main features of this
approach. Each component of the state vector can
have one of five values, namely {0, 1, X, D, notD}. If
a test exists, 0 or 1 can replace the X value, hence only
four values need to be considered. It is clear that in
testing a circuit it is never necessary to enter some
state twice, therefore each state vector can be
restricted to be unique, and there are 4n such unique
states, where n is the number of state variables. The
test generation procedure given in [13] consists of the
following three steps:
 1. Set k to 1 for the number of copies (combi-

national cells) of the iterative circuit model. Set

E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

don’t-care value X for all state variables of the
first copy.

 2. Construct the k-iterative array model of the
circuit.

 3. Apply the combinational ATPG for a k-iterative
array model of the circuit. If no test vectors are
found for undetected faults, increment k by one
and repeat (2). Terminate when k>4n. If no test
vectors are found for some faults, the circuit is
redundant.
We implemented the procedure described above

by means of the SYNOPSYS combinational ATPG for
stuck-at faults. Of course, the extent of the state search
space 4n is purely theoretical and not applicable for
real circuits. In our experiments we stopped incremen-
ting the length k of the iterative logic array model

when the appliance of the last twenty additional com-
binational copies of the circuit did not increase the
fault coverage or in the case when the SYNOPSYS
combinational test generator was not able to deal with
such enlarged circuit.

The combinational ATPG (SYNOPSYS)
generates test vectors of the length k*PI, where k – the
number of combinational copies, PI – the number of
primary inputs in one copy. In order to apply these test
vectors to initial circuits they were folded in test
sequences of k test vectors of length equal to PI each.
The test sets have been generated for each original
ITC’99 benchmark circuit and than reused for two
other realizations. A Sun Ultra 5 computer was used
for the test generation. The results of the experiment
are presented in Table 2.

Table 2. The iterative logic array model. Undetected stuck-at faults for the three realizations

R1 R2 R3
Circuit Nr.

Sequence
length

Generation
time % D U S % D U S % D U S

b01 18 12 1 sec. 100 268 0 8 100 246 0 8 100 278 0 7
b02 10 11 <1 sec. 99.2 127 1 6 97.6 123 3 5 98.4 126 2 6
b03 33 16 7 sec. 74,8 615 207 13 72,0 563 219 12 73,9 579 205 5
b04 74 15 54 sec. 90.7 2395 245 35 90,8 2374 240 37 91,0 2425 241 36
b05 55 257 500 sec. 50,8 1708 1654 3 56,5 1627 1253 3 55,5 1739 1393 3
b06 16 11 <1 sec. 93.5 290 20 7 93,4 312 22 8 94,3 317 19 8
b07 34 289 6000 sec. 75,0 1648 550 2 72,5 1670 632 2 73,0 1816 672 2
b08 48 65 <400 sec. 98.2 786 14 23 98,6 801 11 20 98,6 816 12 20
b09 37 81 328 sec. 87.9 647 89 12 86,3 654 104 13 84,5 652 120 13
b10 39 25 377 sec. 93.6 891 61 17 93,5 901 63 18 94,3 1017 61 18

R1 – the original ITC’99 benchmark circuit
R2 –Synopsys Design Optimization, the target library – class.db
R3 – Synopsys Design Optimization, the target library – and_or.db
Nr. – the number of test sequences
% – the fault coverage
D – the number of detected faults
U – the number of undetected faults
S – the number of test sequences that add their value to the fault coverage

The second test generation approach used in our
experiments is based on the algorithmic level of the
circuit description. The basic ideas presented in [14],
where we consider input – output paths testing in
combinational circuits, were employed for sequential
circuits as well. In this section we present only addi-
tional information concerning sequential circuits.

The algorithmic description is accomplished in
some high-level programming language, for example,
C. It excludes clock and reset information. Such a mo-
del expresses only a function carried out by a circuit.
We call such a model of the circuit a black box model.
In order to generate tests based on the black box
model, a fault simulation is used. The tests are gene-
rated for PP faults [14].

As we have mentioned, a model of the circuit at
the algorithmic level has no clock information. There-
fore, generated test patterns based on such model may
be applied directly only if a circuit is combinational. If
a circuit is sequential, these test patterns require an
additional treatment. For this purpose the test frames
are used.

A sequential circuit has a defined clock and
control signal sequence in order to carry out some
operations with data. Such a control and clock input
stimuli sequence defines the mode of data transac-
tions. We call a sequence of the input stimuli, which
defines the values of a signal only for some inputs and
leaves undefined values for other inputs, a test frame.
A sequential circuit together with a test frame can be
presented as a function whose outputs depend only on
inputs and do not depend on the inner state of a

10

Realization-Independent testing of sequential circuits. Experimental results

circuit; this means that the sequential circuit is like the
combinational circuit. A test frame defines those in-
puts which control the storage of sequential circuit and
leaves undefined inputs, which are devoted for data. A
test frame is defined before the test generation. A
constructed model of a circuit is very closely related to
the test frame. This model is created according to a
test frame. A test frame defines a mode of transferring
of test cases that it gets from a test generation to the
test sequences. A test frame is filled up with the values
of test cases [14].

As it was mentioned above ITC"99 benchmark
circuits B01 – B10 [12] were chosen for the experi-
ments. For these circuits there were written the models
in the programming language C according to their
VHDL models. In the C models clock and reset sig-
nals were eliminated. Only the model of the circuit
b08 was changed by a combinational equivalent, but
nevertheless the test frame was used for this circuit
too. Some VHDL circuits like b05 have several paral-

lel processes, but C is a sequential language. There-
fore, there was a challenge to solve the problem of
parallel processes using C programming language.
There is no common recipe for this problem. In every
case an individual approach was used. For example,
the parallel processes of the circuit b05 are activated
by different signals. Therefore, the main process,
which is sensible to clock and reset signals, was
found. All other processes were accomplished as sub-
programs, which are called when the active signal has
changed its value. The structure of test frames for all
circuits was very simple – every test sequence began
with Reset and Clock and the following test vectors of
the sequence had only Clock.

The test sets have been generated for PP faults
and then analyzed how well they cover stuck-at faults
in all three realizations. A Pentium 4.3 GHz Hyper-
Threading PC was used for test generation. The results
of the experiment are presented in Table 3.

Table 3. The black box model. Undetected stuck-at faults for the three realizations

R1 R2 R3
Circuit Nr.

Sequence
length

Generation
time % D U S % D U S % D U S

b01 65 12 1 sec. 100 268 0 8 100 246 0 7 100 278 0 8
b02 28 11 1 sec. 99,22 127 1 4 99,22 125 1 4 99,22 127 1 4
b03 384 16 1 sec. 74,82 615 207 12 72 563 219 11 73,9 579 205 10
b04 890 15 2 sec. 90,7 2395 245 37 90,8 2374 240 38 91 2425 241 36
b05 24 257 1 sec. 50,8 1708 1654 2 56,5 1627 1253 3 55,5 1739 1393 3
b06 187 11 1 sec. 93,5 290 20 6 93,4 312 22 6 94,3 317 19 6
b07 36 289 1 sec. 75 1648 550 1 72,5 1670 632 1 73 1816 672 1
b08 274 65 3 sec. 98,2 786 14 20 98,6 801 11 20 98,6 816 12 19
b09 1228 81 2 sec. 87,9 647 89 16 88,1 668 90 23 88,1 680 92 26
b10 1225 25 3 sec. 93,59 891 61 22 93,5 901 63 21 94,3 1017 61 22

R1 – the original ITC’99 benchmark circuit
R2 –Synopsys Design Optimization, the target library – class.db
R3 – Synopsys Design Optimization, the target library – and_or.db
Nr. – the number of test sequences
% – the fault coverage
D – the number of detected faults
U – the number of undetected faults
S – the number of test sequences that add their value to the fault coverage

We cannot examine the results of experiments
with sequential circuits in the same way as we exa-
mined the combinational circuits [7]. The reason is
that for all these circuits except b01 we do not have
100% fault coverage and, therefore, we do not know
the number of redundant faults in separate realization.

However, if we examine Tables 2 and 3 together
we can see that the fault coverage for all realizations
in both tables surprisingly coincides. There are only
two exceptions – the fault coverage values in the
tables differ for realizations R2 and R3 of the circuits
b02 and b09. Afterwards we additionally conducted
the third experiment using adjacent input vectors [7]

for the black box model approach. The appliance of
adjacent input vectors for combinational circuits was
very effective [7]. However, it was not the same case
for sequential circuits. We got exactly the same results
as those presented in Table 3. Therefore, in our opi-
nion, there is a very high probability that the obtained
stuck-at fault coverage is maximal in every particular
realization for the used number of copies.

We also considered another possible explanation
of such outcome of the experiments. Namely, if we
examine the quantities of generated test sequences
(column “Nr.” in both tables) and the quantities of test
sequences that add their value to the fault coverage

11

E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

(columns “S”), we can see that the test redundancy is
very high. It ranges from 211% (circuit b04) to 1833%
(circuit b05) for the iterative logic array model
approach and from 700% (circuit b02) to 7675%
(circuit b09) for the black box model approach. By
reason of such a high redundancy the test sequences
generated for particular realization may be equally

good for other realizations as well. That’s why we
performed the fourth experiment. The test sets gene-
rated for each original ITC’99 benchmark circuit using
the iterative logic array model approach were mini-
mized and then the minimized tests were reused for
two other realizations. The results of the experiment
are presented in Table 4.

Table 4. The iterative logic array model. Minimized tests. Undetected stuck-at faults for the three realizations

R1 R2 R3
Circuit Nr.

% D U S % D U S % D U S
b01 18 100 268 0 8 100 246 0 100 278 0
b02 10 99.2 127 1 6 97,6 123 3 98,4 126 2
b03 33 74,8 615 207 13 72,0 563 219 73,9 579 205
b04 74 90.7 2395 245 35 90,8 2374 240 91,0 2425 241
b05 55 50,8 1708 1654 3 56,5 1627 1253 55,5 1739 1393
b06 16 93.5 290 20 7 93,4 312 22 94,3 317 19
b07 34 75,0 1648 550 2 72,5 1670 632 73,0 1816 672
b08 48 98.2 786 14 23 98,6 801 11 98,6 816 12
b09 37 87.9 647 89 12 86,0 652 106 83,9 648 124
b10 39 93.6 891 61 17 93,5 901 63 94,3 1017 61

R1 – the original ITC’99 benchmark circuit
R2 –Synopsys Design Optimization, the target library – class.db
R3 – Synopsys Design Optimization, the target library – and_or.db
Nr. – the number of test sequences
% – the fault coverage
D – the number of detected faults
U – the number of undetected faults
S – the number of test sequences that add their value to the fault coverage

If we compare the results in Tables 2 and 4 we
can see that minimized tests for most analyzed circuits
give the same stuck-at fault coverage as well. Only for
one circuit b09 the fault coverage is lower than
maximal in a particular realization; for the realization
R2 the difference is 0.3% and for the realization R3 -
0.6%. We think that there is a second possible expla-
nation of the results of all our experiments with
sequential circuits. Namely, the combinational parts of
all analyzed sequential circuits have simple logic and,
therefore, the tests generated for a particular realiza-
tion are equally good for other circuit realizations in
almost all cases.

4. Conclusions

We cannot examine the results of experiments
with sequential circuits in the same way as with com-
binational circuits. The reason is that for almost all
these circuits we do not have 100% fault coverage
and, therefore, we do not know the number of redun-
dant faults in separate realizations.

However, if we examine all our experimental
results we can see that the fault coverage surprisingly
coincides. In our opinion there is a very high
probability that the obtained stuck-at fault coverage is

maximal in every particular realization for the used
number of copies. We also considered another possible
explanation of such outcome of the experiments.
Namely, if we examine the quantities of generated test
sequences and the quantities of test sequences that add
their value to the fault coverage we can see that the
test redundancy is very high. It ranges from 211%
1833% for the iterative logic array model approach
and from 700% to 7675% for the black box model
approach. By reason of such a high redundancy the
test sequences generated for a particular realization
may be equally good for other realizations as well.
This explanation sustains and the fact that he
appliance of adjacent input vectors, which was very
effective for combinational circuits, did not improve
the test quality for considered sequential circuits.

We think that there is a second possible explana-
tion of the results of our experiments with sequential
circuits. Namely, the combinational parts of all ana-
lyzed sequential circuits have simple logic and, there-
fore, the tests generated for a particular realization are
equally good for other circuit realizations in almost all
cases. The impact of the complexity of combinational
parts on the fault coverage can be investigated in near
future.

12

Realization-Independent testing of sequential circuits. Experimental results

References
 [1] Y. Zorian, S. Dey, M. Rodgers. Test of Future Sys-

tem-on-Chips. Proceedings of the 2000 International
Conference on Computer-Aided Design, November,
2000, 392-398.

 [2] S. B. Akers. Universal Test Sets for Logic Networks.
IEEE trans. Computers, Vol. C-22, 1973, 835-839.

 [3] R. Betancourt. Derivation of Minimum test sets for
Unate Logic Circuits. IEEE Trans. Computers, Vol. C-
20, Nov. 1971, 264-1269.

 [4] H. Kim, J.P. Hayes. High-Coverage ATPG for data-
path circuits with unimplemented blocks. Proc. Int.
Test Conf., Oct. 1998, 577-586.

 [5] J. Yi, J.P. Hayes. A Fault Model for Function and De-
lay Testing. Proc. of the IEEE European Test Work-
shop, ETW'01, 2001, 27-34.

 [6] H.K. Lee, D.S. Ha. On the generation of test patterns
for combinational circuits. Technical Report, Depart-
ment of Electrical Eng., Virginia Polytechnic Institute
and State University, 1993, 12-93.

 [7] E. Bareisa, V. Jusas, K. Motiejunas, R. Seinauskas.
The Influence of Circuit Re-synthesizing on the Fault
Coverage. Information technology and control, Kau-
nas, Technologija, 2004, No.2(31).

 [8] S.C. Ma, P. Franco, E.J. McCluskey. An experi-
mental chip to evaluate test teshniques. Experimental
results, in Proc. 1995 Intl. Test Conf., Oct 1995, 663-
672.

 [9] S.M. Reddy, I. Pomeranz, S. Kajihara. On the Ef-
fects of Test Compaction on Defect Coverage. Proc.
VLSI Test Symp., Apr. 1996, 430-435.

[10] I. Pomeranz, S.M. Reddy. On n-Detection Test Sets
and Variable n-Detection Test Sets for Transition
Faults. Proc. 17th VLSI test Symp., April 1999, 173-
179.

[11] H. Takahashi, K.K. Sulaja, Y. Takamatsu. An
Alternative Method of Generating Tests for Path
Delay Faults Using N -Detection Test Sets. Proc. Of
the 2002 Pacific Rim International Symposium on
Dependable Computing (PRDC'02), 2002.

[12] F. Corno, M.Sonza Reorda, G. Squillero. RT-level
ITC99 Benchmarks and First ATPG Results. IEEE
Design & Test of Computers, July-August 2000, 44-
53.

[13] M.A. Breuer, A. D. Friedman. Diagnosis & Reliable
Design of Digital Systems. Computer Science Press,
1976.

[14] V.Jusas, R.Seinauskas. Automatic Test Patterns Ge-
neration forSimulation-based Validation. Proc. of the
8-th Biennal Baltic ElectronicsConference. ISBN
9985-59-292-1. Tallinn Technical University, October
6-9, 2002, Tallinn, Estonia, 295-299.

